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Construction of a novel
choline metabolism-related
signature to predict prognosis,
immune landscape, and
chemotherapy response in
colon adenocarcinoma

Cong Liu1,2,3,4†, Dingwei Liu1,2,3,4†, Fangfei Wang1,2,3,4,
Yang Liu1,2,3,4, Jun Xie1,2,3,4, Jinliang Xie1,2,3,4 and Yong Xie1,2,3,4*

1Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of
Nanchang University, Nanchang, Jiangxi, China, 2Gastroenterology Institute of Jiangxi Province,
Nanchang, Jiangxi, China, 3Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang,
Jiangxi, China, 4Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
Background: Colon adenocarcinoma (COAD) is a common digestive system

malignancy with high mortality and poor prognosis. Accumulating evidence

indicates that choline metabolism is closely related to tumorigenesis and

development. However, the efficacy of choline metabolism-related signature

in predicting patient prognosis, immunemicroenvironment and chemotherapy

response has not been fully clarified.

Methods: Choline metabolism-related differentially expressed genes (DEGs)

between normal and COAD tissues were screened using datasets from The

Cancer Genome Atlas (TCGA), Kyoto Encyclopedia of Genes and Genomes

(KEGG), AmiGO2 and Reactome Pathway databases. Two choline metabolism-

related genes (CHKB and PEMT) were identified by univariate and multivariate

Cox regression analyses. TCGA-COAD was the training cohort, and GSE17536

was the validation cohort. Patients in the high- and low-risk groups were

distinguished according to the optimal cutoff value of the risk score. A

nomogram was used to assess the prognostic accuracy of the choline

metabolism-related signature. Calibration curves, decision curve analysis

(DCA), and clinical impact curve (CIC) were used to improve the clinical

applicability of the prognostic signature. Gene Ontology (GO) and KEGG

pathway enrichment analyses of DEGs in the high- and low-risk groups were

performed. KEGG cluster analysis was conducted by the KOBAS-i database.

The distribution and expression of CHKB and PEMT in various types of immune

cells were analyzed based on single-cell RNA sequencing (scRNA-seq). The

CIBERSORT and ESTIMATE algorithms evaluated tumor immune cell infiltration

in the high- and low-risk groups. Evaluation of the half maximal inhibitory

concentration (IC50) of common chemotherapeutic drugs based on the

choline metabolism-related signature was performed. Small molecule

compounds were predicted using the Connectivity Map (CMap) database.
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Molecular docking is used to simulate the binding conformation of small

molecule compounds and key targets. By immunohistochemistry (IHC),

Western blot, quantitative reverse transcription-polymerase chain reaction

(qRT-PCR) experiments, the expression levels of CHKB and PEMT in human,

mouse, and cell lines were detected.

Results: We constructed and validated a choline metabolism-related

signature containing two genes (CHKB and PEMT). The overall survival

(OS) of patients in the high-risk group was significantly worse than that of

patients in the low-risk group. The nomogram could effectively and

accurately predict the OS of COAD patients at 1, 3, and 5 years. The DCA

curve and CIC demonstrate the clinical utility of the nomogram. scRNA-seq

showed that CHKB was mainly distributed in endothelial cells, while PEMT

was mainly distributed in CD4+ T cells and CD8+ T cells. In addition, multiple

types of immune cells expressing CHKB and PEMT differed significantly.

There were significant differences in the immune microenvironment,

immune checkpoint expression and chemotherapy response between the

two risk groups. In addition, we screened five potential small molecule drugs

that targeted treatment for COAD. Finally, the results of IHC, Western blot,

and qRT-PCR consistently showed that the expression of CHKB in human,

mouse, and cell lines was elevated in normal samples, while PMET showed

the opposite trend.

Conclusion: In conclusion, we constructed a choline metabolism-related

signature in COAD and revealed its potential application value in predicting

the prognosis, immune microenvironment, and chemotherapy response of

patients, which may lay an important theoretical basis for future

personalized precision therapy.
KEYWORDS

colon adenocarcinoma, chol ine metabol ism, prognost ic, immune,
chemotherapy response
Introduction

Colon adenocarcinoma (COAD) is a lethal cancer and is the

second leading cause of cancer deaths worldwide (1). Currently,

the standard treatment modalities for COAD mainly include

surgery, chemotherapy, radiotherapy, targeted drugs and

immunotherapy. Despite significant advances in these

treatment modalities, the 5-year survival of COAD patients

remains unsatisfactory (2). Therefore, finding a novel and

reliable biomarker to improve the diagnostic accuracy and

treatment effect is of great significance for improving the

prognosis of COAD patients.

In recent years, increasing evidence has shown that

abnormal choline metabolism is accompanied by elevations in

phosphocholine (PCho) and glycerophosphocholine (GPC) and

may serve as a marker of metabolic reprogramming in
02
cancer (3). Due to the active proliferation of malignant tumor

cells, a large amount of choline needs to be converted into

phosphatidylcholine for the synthesis of cell membranes. A

study showed that an abnormal choline metabolite profile of

cancer can be used as an adjunct to current methods of

diagnosing primary and other tumors (4). For example,

choline metabolite profiling can be used as an aid in the

diagnosis of brain malignancies and prostate and breast

cancers (5–7). However, the gene changes and specific

mechanisms related to choline metabolism in COAD remain

to be elucidated.

In this study, we applied The Cancer Genome Atlas (TCGA)

dataset as a training cohort to construct a choline metabolism-

related signature, which was composed of two genes (CHKB and

PEMT). Subsequently, we validated the prognostic value of the

signature in a Gene Expression Omnibus (GEO) dataset
frontiersin.org
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(GSE17536). Next, we further analyzed the correlation of the

choline metabolism-related signature via nomogram

construct ion with the immune microenvironment ,

chemotherapy response and somatic mutations of patients. In

addition, we analyzed the distribution and expression of two key

genes, CHKB and PEMT, in immune cells based on single-cell

RNA sequencing (scRNA-seq). We also predict potential drugs

for COAD treatment based on molecular docking. Finally, we

verified the expression of CHKB and PEMT in COAD and

normal samples by IHC, Western blot, and qRT-PCR

experiments. In short, the choline metabolism-related

signature is expected to be a potential biomarker for COAD,

which may provide new perspectives for the diagnosis and

treatment of this disease.
Materials and methods

Data source and processing

The clinical information, transcriptome expression data, and

gene mutation profiles of COAD patients were obtained from

the TCGA database (https://cancergenome.nih.gov/). Patients

with incomplete survival information were excluded. We finally

included 452 COAD patients as the TCGA-COAD cohort

(Supplementary Table 1). The GSE17536 dataset containing

corresponding RNA expression data and clinical information

was downloaded from the GEO database (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE17536). Seventy-six choline

metabolism-related genes were obtained from the KEGG,

AmiGO2 and Reactome Pathway Databases (Supplementary

Table 2). A total of thirty differentially expressed genes

(DEGs) between COAD tissue and normal tissue were

screened (|log2 (fold change) |>0.5, p<0.05) (Supplementary

Table 3). After univariate and multivariate Cox regression

analyses, two choline metabolism-related genes (CHKB and

PEMT) were obtained (Supplementary Tables 4 and 5). The

protein-protein interaction (PPI) network of choline

metabolism-related genes was constructed through the

STRING database (ht tps : / /cn . s t r ing-db .org/) . The

GeneMANIA database (http://genemania.org/) generated genes

with similar functions to choline metabolism-related genes and

predicted their biological functions (8, 9). The analysis flowchart

of the study is shown in Figure 1.
Genomic alterations of choline
metabolism-related genes in pan-cancer

Gene set cancer analysis (GSCALite) (http://bioinfo.life.hust.

edu.cn/web/GSCALite/) is a comprehensive cancer genome big
Frontiers in Immunology 03
data analysis platform developed by Professor An-yuan Guo’s

team. Major functions of GSCALite include DEGs expression

analysis, immune cell infiltration analysis, gene mutation

analysis and drug sensitivity analysis (10). Here, we analyzed

the mRNA expression of choline metabolism-related genes, copy

number variation (CNV), methylation, and single nucleotide

variation (SNV) at the pan-cancer level based on the

GSCALite database.
Construction and validation of the
choline metabolism-related signature

The TCGA-COAD dataset was used as the training cohort,

and GSE17536 was used as the external validation cohort. We

calculated the risk score for each COAD patient. The formula for

calculating the risk score is as follows:

Risk Score = S Ei*Ci

Ei represents the expression level of each choline

metabolism-related gene, and Ci represents the corresponding

regression coefficient.

According to the optimal cutoff value of the risk score, the COAD

patients were divided into high- and low-risk groups. The Kaplan–
FIGURE 1

Flowchart of the present study.
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Meier (KM) curves plotted by the “survival” and “survminer” R

packages were used to compare the survival rates of patients in the

high- and low-risk groups. Receiver operating characteristic (ROC)

curves were generated by the “timeROC” R package.
Establishment of a prognostic
nomogram

Based on the results of univariate and multivariate Cox

regression analyses, we integrated age, stage and the risk score

and visualized the prognostic nomogram through the “rms” R

package. The calibration curve was used to assess the consistency

of the nomogram. The clinical net benefit of the nomogram was

evaluated by decision curve analysis (DCA) and the clinical

impact curve (CIC).
GO and KEGG enrichment analyses
of DEGs

The DEGs between the high- and low-risk groups were

screened using the “limma” R package and visualized by

volcano plots (Supplementary Table 6). Using the R package

“clusterProfiler”, GO function enrichment analysis and KEGG

pathway enrichment analysis of the DEGs were performed.

Furthermore, the KOBAS-i database (http://bioinfo.org/kobas)

was used to perform an integrated functional enrichment

analysis of the DEGs, and the results were visually clustered by

a circular function map (cirFunMap) (11).
scRNA-seq analysis

The Tumor Immune Single-cell Hub (TISCH) database

(http://tisch.comp-genomics.org/) contains seventy-nine high-

quality single-cell transcriptomic datasets of twenty-seven

tumors mainly from the GEO and ArrayExpress databases

with corresponding clinical information, which can provide

detailed cell type annotation at the single-cell level. This

database has the advantages of comprehensive data, easy

operation, user-friendly, and data visualization (12). Based on

the TISCH database, the Uniform Manifold Approximation and

Projection (UMAP) plot was used to visualize the distribution

and expression of CHKB and PEMT in the GSE146771 dataset.

In addition, we compared the expression of CHKB and PEMT in

different immune cell types. After stratification based on gender

and TNM stage, the expression of CHKB and PEMT in immune

cell subsets was visualized by violin plots. In addition, the whole

transcriptome information of COAD tissue sections was

obtained from the website of 10X Genomics (https://www.
Frontiers in Immunology 04
10xgenomics.com/) and visualized the spatial expression of

choline metabolism-related genes.
Analysis of the immune
microenvironment

The CIBERSORT algorithm was used to assess the infiltrating

abundance of twenty-two types of immune cells in the high- and

low-risk patients. The ESTIMATE algorithm was used to calculate

the stromal score, immune score, ESTIMATE score and tumor

purity of each COAD patient. The Tracking Tumor

Immunophenotype (TIP) website (http://biocc.hrbmu.edu.cn/TIP/)

is a one-stop platform that can quickly analyze and visualize

anticancer immune activity (also called the cancer immune cycle)

(13). Based on the TIP website, we compared the antitumor immune

responses of patients in the high- and low-risk groups. In addition,

we analyzed the expression of thirty-six common immune

checkpoints between the high- and low-risk groups.
Somatic mutation analysis

Based on the somatic mutation profiles from the TCGA

database, we used the “maftools” R package to draw a waterfall

plot to visualize the frequency of somatic mutations and the

distribution of different types of variant genes in the high- and

low-risk groups. In addition, to further explore the underlying

molecular mechanism of the development of COAD, we

analyzed the mutually exclusive and co-occurrence of mutated

genes between the high- and low-risk groups.
Chemotherapy response and small
molecule agents screening

The Genomics of Drug Sensitivity in Cancer (GDSC) Project

(https://www.cancerrxgene.org/) is a publicly available genomics

database of antitumor drug sensitivity dedicated to identifying the

molecular characterization of cancer and predicting the target

response to antitumor drugs (14). Based on the GDSC database,

we predicted the sensitivity of COAD patients to six common

chemotherapeutic agents. Calculation of the response to

chemotherapy drugs in COAD patients was achieved using the

“pRRophetic” R package. The Connectivity Map (CMap) database

(https://www.broadinstitute.org/connectivity-map-cmap) is a

biological database that reveals the functional linkages of small

molecule compounds, genes, and disease status (15, 16). We

uploaded the upregulated and downregulated DEGs between the

high- and low-risk groups to the CMap database to predict small

molecule drugs that may be used to treat COAD (p<0.05, enrichment
frontiersin.org
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scores ranged from -1 to 0). We also used the PubChem accessible

chemical database (https://pubchem.ncbi.nlm.nih.gov/), which

provides 3D structures of small molecule drugs.
Molecular docking analysis

The top five DEGs with the largest fold difference were

selected as target genes. Protein sequence and annotation

information were obtained from The Universal Protein

Resource (https://www.uniprot.org/, UniProt). Download the

main protein structures of key targets (CPNE7, HSF4, OLFM4,

PGGHG, SLC26A3) from The Protein Data Bank database

(http://www.rcsb.org, PDB). Chem3D software (Version 15.1)

displays spatially matched maps of drug-receptor interactions.

AutoDock Tools software (Version 1.5.7) molecularly docks key

targets with small molecule drugs. Pymol software (http://www.

pymol.org, The PyMOL Molecular Graphics System) removes

water molecules and small molecule ligands and evaluates their

binding activities according to the docking energy values and

visualizes the docking results.
Cells, animal and human specimens

Human normal intestinal epithelial cell NCM460, human

COAD cell lines (Caco-2, SW480, DLD-1, HCT 116) were

purchased from China Center for Type Culture Collection,

Shanghai. Caco-2 was cultured by Special medium for Caco-2

cells (Procell Life Science&Technology Co.,Ltd., WuHan). Other

cell lines were cultured in RPIM-1640 medium (Gibco, USA)

containing 10% fetal bovine serum. All cells were cultured in an

CO2 incubator (Thermo Fisher Scientific) with 37°C, 5% CO2,

and saturated humidity.

Twelve eight-weeks-old wild-type male C57BL/6 mice were

purchased from the Department of Laboratory Animal Science

of Nanchang University. Mice were reared in an environment

with alternating day and night of 12h/12h, room temperature of

20-26°C, and humidity of 40-70%. Mice were randomly divided

into control group (n=6) and COAD model group (n=6).

Animals were treated as previously described (17), the COAD

model mice were given intraperitoneal injection of 10mg/kg

azoxymethane (AOM, Sigma-Aldrich Corp., United States), and

drink 3% Dextran sulfate sodium (DSS, MP Biomedicals, United

States) for five consecutive days (days 1-5), and then drinking

sterile drinking water at days 6-19. Take continuous drinking of

3% DSS and sterile drinking water as a cycle for three

consecutive cycles (Supplementary Figure 1). Mice in the

control group were given intraperitoneal injection saline or
Frontiers in Immunology 05
drinking sterile drinking water. All mice were euthanized on

days 55, and colon tissues were collected. A portion of colon

tissues were quickly frozen in liquid nitrogen and then stored in

-80°C freezer to avoid degradation. Another part of colon tissues

were fixed in 4% paraformaldehyde for 48h, embedded in

paraffin, and sliced at 4mm for subsequent IHC experiment.

The study protocol and all procedures were approved by The

First Affiliated Hospital of Nanchang University Ethics

Committee on Medical Research.

Human specimens were collected from patients who

underwent COAD resection at the General Surgery Department

of the First Affiliated Hospital of Nanchang University. A total of

eleven pairs of COAD specimens and paracancerous specimens

were collected. This study was approved by The First Affiliated

Hospital of Nanchang University Ethics Committee on Medical

Research. All patients signed informed consent forms. After the

samples were isolated, a portion of colon tissues were quickly

frozen in liquid nitrogen and then stored in -80°C freezer to avoid

degradation. Another part of colon tissues were fixed in 4%

paraformaldehyde for 48h, embedded in paraffin, and sliced at

4mm for subsequent IHC experiment.
Immunocytochemistry

Through IHC experiments, we detected the protein

expression of CHKB and PEMT in paraffin sections of human

and animal colon tissues. The paraffin sections of colon tissue

were dewaxed, hydrated, blocked with 3% H2O2, and after

antigen retrieval with citrate, the primary antibodies CHKB

(1:200, PH5354, Abmart) and PEMT (1:100, PK41366,

Abmart) were incubated at 4°C overnight. Then, the secondary

antibody (PV-6000, Beijing Zhongshan Jinqiao Biotechnology

Co., Ltd., China) was incubated at 37°C for thirty minutes, DAB

chromogenic kit (Beijing Zhongshan Jinqiao Biotechnology Co.,

Ltd., China) was added, and the nuclei were counterstained with

hematoxylin. Finally, the sections were sealed with neutral gum

and observed under the microscope (Nikon Ci-L, Nikon, Japan).

Double-blind readings were performed by two experienced

pathologists, and the percentage of positive cells and staining

intensity were scored respectively. The percentage of positive

cells was scored as follows:<5%, 0 point; 5%-25%, 1 point; 26%-

50%, 2 points; 51%-75%, 3 points; 76%-100%, 4 points. The

staining intensity evaluation criteria were as follows: 0 point for

colorless; 1 point for pale yellow; 2 points for tan; 3 points for

brown. The percentage of positive cells and staining intensity

were multiplied to obtain the final score. Among them, 0 point

for negative (–); 1-4 points for weakly positive (+), 5-8 points for

positive (++), and 9-12 points for strong positive (+++).
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Western blot analysis

Using RIPA buffer (R0020, Beijing Solarbio Science &

Technology Co.,Ltd., China) and Phenylmethylsulfonyl

fluoride (PMSF, P0100, Beij ing Solarbio Science &

Technology Co.,Ltd., China), proteins were extracted from all

cell lines (NCM460, Caco-2, SW480, DLD-1, HCT 116), colon

tissue of human and animal. BCA Protein Assay kit (PA115-01,

TIANGEN BIOTECH BEIJING CO., Ltd., China) for protein

quantification. Protein samples were transferred to

nitrocellulose (NC) membranes (GE Healthcare Life Science,

Pittsburgh, USA) by SDS-PAGE gel (G2043, Wuhan Servicebio

Technology Co., Ltd., HuBei) at 10% concentration. The

membranes were blocked with 5% skim milk powder for

1.5 h, then incubated with primary antibody CHKB (1:1000,

PH5354, Abmart) and PEMT (1:1000, PK41366, Abmart)

overnight at 4°C. The membrane was incubated with HRP

Conjugated AffiniPure Goat Anti-rabbit IgG (BA1055, Boster

Biological Technology Co., Ltd., Wuhan) for 1 h at room

temperature . The membranes were detected using

SuperSignal West Pico PLUS (34580, Thermo Fisher

Scientific) and visualized by iBright CL1500 Imaging System

(Thermo Fisher Scientific).
Quantitative reverse transcription-
polymerase chain reaction

We used TRIzol Universal Reagent (Tiangen Biotech

Beijing Co., Ltd., China) to extract total RNA from the cell

lines, human and animal colon tissues. The FastKing RT Kit

with gDNase (Tiangen Biotech Beijing Co., Ltd., China) was

used to remove gDNA interference and synthesize cDNA.

qPCR was performed on an Applied Biosystems Quant

Studio 5 PCR instrument. Using b-actin as the internal

reference gene, the 2-DDCt method was used to calculate the

relative mRNA expression of the target genes. The primer

sequences (Sangon Biotech Shanghai Co., Ltd., China) of genes

were shown in Supplementary Table 7.
Statistical analysis

R software (version 4.0.5, https://www.r-project.org/) and

associated R packages were used to perform all graphing and

statistical analyses. Student’s t test was used to test the difference

between two groups. Nonparametric comparisons between two

groups were performed using the Wilcoxon test. Survival

analysis was performed using the log-rank test. Spearman

correlation analysis was used to evaluate the correlation

between two continuous variables. P< 0.05 was considered

statistically significant.
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Results

Identification of choline metabolism-
related genes

We obtained clinical information on COAD patients from

the TCGA database. Choline metabolism-related genes were

acquired from the KEGG, AmiGO2 and Reactome Pathway

databases. By comprehensively analyzing the above databases,

we finally screened thirty choline metabolism-related DEGs

between normal tissues and COAD tissues, including

seventeen upregulated genes and thirteen downregulated genes

(Figure 2A). Then, we performed univariate and multivariate

Cox regression analyses of the DEGs and obtained two choline

metabolism-related genes (CHKB and PEMT) (Figure 2B,

Supplementary Table 1). Figure 2C visualizes the PPI network

of choline metabolism-related genes constructed by the STRING

database. In addition, the GeneMANIA database showed genes

with similar functions to choline metabolism-related genes and

predicted their biological functions, such as phosphatidylcholine

metabolic process, glycerophospholipid biosynthetic process and

phospholipid biosynthetic process (Figure 2D).
Comprehensive analysis of choline
metabolism-related genes at
pan-cancer level

Based on the GSCALite database, we carried out a

comprehensive analysis of mRNA expression, CNV,

methylation, and SNV of choline metabolism-related genes. As

shown in Figure 3A, homozygous amplification (Homo.Amp.)

and heterozygous deletion (Hete.Del.) were the top two CNV

types with the highest proportions in each cancer. The

correlation of CNV with mRNA expression of choline

metabolism-related genes showed that the correlation of

PEMT mRNA expression with CNV was positively correlated

in 24 of 33 cancers, especially Kidney Chromophobe (KICH),

Esophageal carcinoma (ESCA) and Pheochromocytoma and

Paraganglioma (PCPG) (Figure 3B). In addition, differential

methylation bubble plots showed methylation difference of

choline metabolism-related genes in each cancer (Figure 3C).

PMET is hypermethylated in Kidney renal clear cell carcinoma

(KIRC) and Liver hepatocellular carcinoma (LIHC), and

hypomethylated in Bladder Urothelial Carcinoma (BLCA),

Kidney renal papillary cell carcinoma (KIRP). In 33 cancer

types, methylation was negatively correlated with mRNA

expression of choline metabolism-related genes (Figure 3D).

Furthermore, the SNV percentage heatmap showed that at the

pan-cancer level, CHKB had the highest mutation frequency in

Uterine Corpus Endometrial Carcinoma (UCEC) and Skin

Cutaneous Melanoma (SKCM), while PEMT had the highest
frontiersin.org
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mutation frequency in UCEC (Figure 3E). The waterfall plots

further visualized the mutation types of CHKB and PEMT in

pan-cancer. Missense mutation and nonsense mutation are the

most common types of mutations in CHKB and PEMT. CHKB

and PEMT occupy the highest mutation frequencies in

Adrenocortical carcinoma (ACC) (Figure 3F).
Construction and validation of the
choline metabolism-related signature

First, according to the formula Risk score = 0.7318 × CHKB +

(0.467) × PEMT, we calculated the risk score of each COAD patient.

Then, based on the optimal cutoff value of the risk score, the COAD

patients were divided into high- and low-risk groups in TCGA-

COAD (training cohort) and GSE17536 (validation cohort)

(Figures 4A, B). The KM curve showed that the low-risk group

had a lowermortality rate than the high-risk group in TCGA-COAD

and GSE17536 (Figures 4C, D). In addition, ROC curves were used

to assess the prognostic predictive power of the choline metabolism-

related signature. The areas under the ROC curve (AUCs) of TCGA-

COAD were 0.65, 0.62, and 0.59 for 1-year, 3-year, and 5-year

survival, respectively (Figure 4E). The AUCs of GSE17536 further
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validated the excellent and accurate prognostic ability of the choline

metabolism-related signature (AUCs of 0.56, 0.54 and 0.58 for 1-, 3-,

and 5-year survival, respectively) (Figure 4F).
Correlation between the choline
metabolism-related signature and
clinicopathological manifestations

In our study, the risk score of each COAD patient was

calculated based on the expression of two choline metabolism-

related genes. As shown in Figure 5A, we analyzed the

correlation between the expression of the choline metabolism-

related genes and clinicopathological manifestations by

heatmap. The results showed that the expression of choline

metabolism-related genes was significantly correlated with age,

gender, stage and survival status. In addition, the choline

metabolism-related signature, choline metabolism-related gene

expression and risk score were also highly consistent. Next, we

performed KM survival analysis of COAD patients stratified by

age, gender, and stage. The results demonstrated that the

survival time of patients in the high-risk group was

significantly lower than that of patients in the low-risk group
A
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FIGURE 2

Identification of choline metabolism-related genes. (A) Screening of choline metabolism-related DEGs between COAD tissues and normal
tissues. (B) Multivariate Cox regression analysis of choline metabolism-related genes. (C) PPI network of choline metabolism-related genes by
the STRING database. (D) Coexpression network of choline metabolism-related genes by the GeneMANIA database.
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(Figures 5B–G). Furthermore, we further analyzed the

correlation of risk score with stage, age, and gender through

violin plots (Supplementary Figure 2). In brief, the choline

metabolism-related signature may have the potential to guide

the prognostic management of COAD patients.
Development of a prognostic nomogram

To investigate whether the choline metabolism-related

signature is an independent prognostic factor for COAD, we

performed univariate and multivariate Cox regression analyses

on the risk score and clinical characteristics. Our results showed

that the hazard ratio (HR) values of the risk score were 2.56 (95%

CI: 1.45-4.53) and 2.69 (95% CI: 1.49-4.83) in univariate

and multivariate Cox regression analyses, respectively

(Supplementary Figures 3A, B). In particular, the HR showed

an increasing trend from univariate Cox regression analysis to

multivariate Cox regression analysis. Next, we constructed a

prognostic nomogram based on the choline metabolism-related

signature, combining age, stage and the risk score (Figure 6A).

To further validate the predictive power of the nomogram, we

plotted calibration curves and found a high degree of agreement

between the predicted and actual 1-, 3-, and 5-year overall
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survival (OS) (Figure 6B). The DCA curve and CIC indicated

that the nomogram could obtain the best net benefit compared

with other clinical factors, with good stability and reliability

(Figure 6C; Supplementary Figure 3C). In addition, we further

compared the predictive power of the nomogram with other

clinical features. Our results showed that compared with other

clinical features, the nomogram for predicting OS at 1, 3, and 5

years had the highest AUC values of 0.766, 0.78, and 0.724,

respectively (Figure 6D). In short, our analysis results suggested

that the nomogram has good predictive prognostic ability and

may help clinicians make more accurate and efficient

treatment decisions.
Functional enrichment analysis of the
choline metabolism-related signature

The volcano plot revealed 156 DEGs between the high- and

low-risk groups, including 37 downregulated genes and 119

upregulated genes (Figure 7A; Supplementary Table 6). GO

analysis showed that the DEGs were mainly enriched in

“Extracellular matrix organization”, “Extracellular structure

organization”, “External encapsulating structure organization”

and “Germ cell development” (Figure 7B). KEGG analysis
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FIGURE 3

Comprehensive analyze the CNV, methylation difference, and SNV of choline metabolism-related genes in pan-cancer. (A) The proportion of
CNV in each cancer. (B) Correlation between the expression levels of choline metabolism-related genes and CNV. (C) Methylation differences in
each cancer. (D) Correlation of choline metabolism-related genes expression levels with methylation; (E) Heat map of SNV percentage in each
cancer. (F) Waterfall plot of mutation types of choline metabolism-related genes in each cancer.
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showed that the DEGs were mainly enriched in “Antiviral and

anti-inflammatory effects of Nrf2 on SARS-CoV-2 pathway”,

“Collagen degradation” , and “Activation of matrix

metalloproteinases” (Figure 7C). In addition, we further

visualized the KEGG analysis of DEGs through the KOBAS-i

database and found that the gene functional enrichment analysis

results were mainly clustered in “IL-17 signaling pathway”,

“Renin-angiotensin system” and “Protein digestion and

absorption” (Figure 7D).
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Correlation of the choline
metabolism-related signature
with single-cell properties

In recent years, the development of scRNA-seq has become

an important means to reveal cell population differences and

characterize heterogeneous cell populations (18). To further

explore the role of the choline metabolism-related signature in

the tumor microenvironment (TME), we analyzed the scRNA-
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FIGURE 4

Construction and validation of the choline metabolism-related signature. (A, B) Correlation of the choline metabolism-related signature with the
prognosis of COAD patients in the training cohort (A) and validation cohort (B). From top to bottom, the distribution of risk scores, the patient’s
survival status and the expression of choline metabolism-related genes. (C, D) KM survival curves of high- and low-risk patients in the training
cohort (C) and validation cohort (D). (E, F) ROC curves of the signature for predicting 1-, 3-, and 5-year OS in the training cohort (E) and
validation cohort (F).
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seq data of GSE146771 through the TISCH database. As shown

in Figure 8A, the UMAP plot visualizes thirteen cell clusters,

each annotated based on its own signature genes. CD8+ T cells,

CD4+ T cells, NK cells, Treg cells, monocytes/macrophages, and
Frontiers in Immunology 10
malignant cells accounted for the majority. B cells, plasma cells,

mast cells, and fibroblasts were also key components in the

immune microenvironment. As shown in Figures 8B, C, we

assessed the distribution of CHKB and PEMT in thirteen cell
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FIGURE 5

Relationship of the choline metabolism-related signature with clinicopathological manifestations. (A) Correlation of choline metabolism-related
genes with clinicopathological manifestations. (B–G) KM survival curves of patients in the high- and low-risk groups stratified by age (B, C),
gender (D, E), and stage (F, G).
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FIGURE 6

Establishment of a clinical prognostic nomogram. (A) Clinical prognostic nomogram integrating clinical factors and the risk score. The scores for
each predictor were summed to obtain total points to predict the patient’s OS at 1, 3, and 5 years. (B) Calibration curves of the clinical
prognostic nomogram for predicting 1-, 3-, and 5-year OS. The X-axis represents the predicted patient survival rate, and the Y-axis represents
the actual patient survival rate. (C) DCA of the clinical prognostic nomogram. (D) ROC curve of the clinical prognostic nomogram for predicting
1-, 3-, and 5-year survival in COAD patients.
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clusters. Our results showed that CHKB was mainly distributed

in monocytes/macrophages, NK cells, CD8+ T cells, CD4+ T

cells, and Treg cells, while PEMT was mainly distributed in

malignant cells, CD8+ T cells, CD4+ T cells, NK cells, and Treg

cells. To further confirm the expression characteristics of CHKB

and PEMT in the COAD immune microenvironment, we

analyzed the expression levels of CHKB and PEMT in the

scRNA-seq data of GSE146771. The violin plot showed that

the expression of CHKB was mainly increased in monocytes, M1

macrophages, and NK cells, while the expression of PEMT was

mainly increased in malignant cells, mast cells, and monocytes

(Figures 8D, E). Then, we compared the expression of CHKB

and PEMT in different immune cell populations of COAD

patients stratified by gender. As shown in Figure 8F, CHKB

expression in malignant cells, NK cells, and Treg cells was

statistically significant. Likewise, only malignant cells had

statistically significant PEMT expression (Figure 8G).

Furthermore, based on TNM stage stratification, we found that

the expression of CHKB in CD4+ T cells, CD8+ T cells, and NK

cells was statistically significant (Figure 8H). Similarly, only NK

cells had statistically significant PEMT expression (Figure 8I). A

high degree of heterogeneity and dynamics is a hallmark of

tumors that greatly affects patient diagnosis, treatment, and

prognostic monitoring (19, 20). As shown in Figure 8J, based

on the Visium Spatial Gene Expression Solution released by 10X

Genomics, we obtained the spatial expression information of

choline metabolism-related genes on Hematoxylin-Eosin (HE)
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staining sections of COAD tissue, and identified eighteen cell

clusters by unsupervised clustering. Figure 8K visualized the

spatial expression information of CHKB, which is mainly highly

expressed in cluster 6, cluster 8 and cluster 9. Likewise, PMET

was mainly highly expressed in cluster 0, cluster 2 and cluster 8

(Figure 8L). Overall, the results indicated that the choline

metabolism-related signature was strongly associated with the

tumor immune microenvironment, and the signature has the

potential to serve as a biomarker for predicting the efficacy of

immunotherapy in COAD patients.
Relationship between the choline
metabolism-related signature and the
immune microenvironment

To further explore the relationship between the choline

metabolism-related signature and the immune microenvironment,

we used the CIBERSORT algorithm to analyze the immune

landscape in the TCGA-COAD dataset. As shown in Figure 9A,

the stacked bar plot visualized the abundance of twenty-two

immune cells. We found that macrophages, CD4+ T cells, and

Tregs accounted for the majority of the entire immune cell

population. Then, we assessed the relative proportions of immune

cells in the high- and low-risk groups. The infiltration density of

CD8+ T cells and Treg cells in the high-risk group was significantly

increased (Figure 9B). Next, we compared the stromal score,
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FIGURE 7

Functional enrichment analysis of the choline metabolism-related signature. (A) Volcano plot of DEGs in the high- and low-risk groups. (B) GO
analysis of DEGs. (C) KEGG analysis of DEGs. (D) cirFunMap of functional enrichment analysis of DEGs by the KOBAS-i database. The left side
shows a circular network view, with different colors representing different clusters. Node sizes represent the P values at eight different levels.
The right side shows a bar graph of the enrichment ratio in different cluster terms.
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immune score, ESTIMATE score, and tumor purity between the

high- and low-risk groups. The results showed that the stromal

score of the low-risk group was significantly higher than that of the

high-risk group (p=0.046) (Figure 9C). The above results suggest

that there are significant differences in the immune cell

microenvironment between the high- and low-risk groups that

may lead to differences in immune function between the two risk

groups. We further evaluated differences in cancer immune cycles

in the high- and low-risk groups. As shown in Figure 9D, there were

significant differences in step 1 and step 2 between the two risk

subgroups. In recent years, significant and rapid progress has been

made in immunotherapy, which can induce a greater sustained

response in cancer patients than conventional chemotherapy and

provides hope for overcoming cancer (21). Therefore, we analyzed

the expression of thirty-six immune checkpoint genes in high- and

low-risk patients. As shown in Figure 9E, we observed increased

expression of the immune checkpoint genes LAG3, PDCD1,

TNFRSF18, TNFRSF25, and TNFRSF4 in the high-risk group,

while the immune checkpoint genes HHLA2, NRP1, TNFSF18,

and TNFSF4 showed elevated expression in the low-risk group. The

results of our analysis imply that the choline metabolism-related
Frontiers in Immunology 12
signature may have potential clinical utility in evaluating

COAD immunotherapy.
Correlation between the choline
metabolism-related signature and
mutation status

Next, we further explored the impact of the choline

metabolism-related signature on somatic mutations in COAD

patients. As shown in Figures 10A, B, the waterfall plots visualize

the mutational landscapes of the high- and low-risk groups. In

the high-risk group, the top five mutated genes were APC (73%),

TTN (58%), TP53 (52%), KRAS (37%), and MUC16 (35%). The

top five mutated genes were APC (73%), TP53 (54%), TTN

(52%), KRAS (42%), and PIK3CA (31%) in the low-risk group.

Notably, the high-risk group had a lower frequency of TP53

mutations than the low-risk group. Furthermore, missense

mutation was the most common type of mutation in the two

risk subgroups. Then, we compared the co-occurrence and

mutual exclusivity of the mutated genes in the high- and low-
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FIGURE 8

Correlation of the choline metabolism-related signature with single-cell properties. (A) UMAP plot of thirteen major cell clusters in the COAD tumor
microenvironment. (B, C) The distribution of CHKB (B) and PEMT (C) in cell subsets. (D, E) Violin plot of CHKB (D) and PEMT (E) expression at the single-
cell level. (F, G) Expression of CHKB (F) and PEMT (G) at the single-cell level after stratification based on gender. (H, I) Expression of CHKB (H) and PEMT
(I) at the single-cell level after stage-based stratification. (J) HE-stained images of COAD tissue sections labeled with seventeen cell clusters. (K) Spatial
expression levels of CHKB in COAD tissue sections. (L) Spatial expression levels of PEMT in COAD tissue sections.
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risk groups. In the high-risk group, we analyzed mutant genes

that were mutually exclusive, such as FAT4 and TTN

(Figure 10C). Consistent with this, we observed the co-

occurrence of mutant genes, such as MUC16 and PIK3CA, in

the low-risk group (Figure 10D).
Chemotherapy response and small
molecule drug screening

To increase the benefit of chemotherapy in patients with

COAD, we evaluated the predictive ability of the choline

metabolism-related signature for the efficacy of commonly

used chemotherapeutic agents for patients. As shown in

Figure 11A, compared with the high-risk group, axitinib,
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nilotinib, paclitaxel, rapamycin, sunitinib, and vinblastine had

higher half maximal inhibitory concentration (IC50) values in

the low-risk group (p<0.05), which indicated that high-risk

patients were more sensitive to chemotherapy drugs and that

these chemotherapy agents have better clinical efficacy in high-

risk patients. In short, the results of the above analysis

demonstrated that the choline metabolism-related signature

has potential predictive value for chemotherapy efficacy in

COAD patients. In addition, we uploaded the list of DEGs

between the high- and low-risk groups (37 downregulated

genes and 119 upregulated genes) to the CMap database and

predicted six small molecule compounds that may be useful in

the treatment of COAD, namely, entinostat (Figure 11B),

linifanib (Figure 11C), MLN-4924 (Figure 11D), ochratoxin-a

(Figure 11E), and piperacillin (Figure 11F).
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FIGURE 9

Association of the choline metabolism-related signature with the immune microenvironment. (A) Stacked bar plot of immune cell proportions in
all COAD patients. (B) Comparison of twenty-two immune cell subsets in the high- and low-risk groups. (C) Differences in the stromal score,
the immune score, the ESTIMATE score, and tumor purity between the two risk subgroups. (D) Comparison of antitumor immune status
between the high- and low-risk groups. (E) Expression of immune checkpoints in the two risk subgroups *p< 0.05; **p< 0.01; ****p< 0.0001;
ns, not significant.
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Molecular docking analysis

Molecular docking is an important method for structure-

based drug design and screening by finding the optimal

conformation of small molecule compounds and target

molecules for interaction (22). We molecularly docked five key

targets (CPNE7, HSF4, OLFM4, PGGHG, and SLC26A3) with the

corresponding active small molecule compounds. Generally, the

principles of studying whether ligands and receptors can interact,

and their optimal binding modes are the complementarity of their

spatial structures and the minimization of energy (23). As shown

in Figure 12, linifanib interacts with CPNE7 via LEU-372, SER-22,

CYS-20 and PHE-371 site forms hydrogen bonding, while

ochratoxin-a interacts with SLC26A3 via ASN-447, GLY-450,

GLU-293 and LYS-276 site forms hydrogen bonding.
Expression of choline metabolism-
related genes

We detected the expression of choline metabolism-related

genes from three levels of human, animal and cell lines. First,

IHC images showed that CHKB expression was significantly

elevated in paracancerous tissues, whereas PEMT expression was

significantly elevated in COAD tissues (Figure 13A). In six pairs

of COAD patient specimens, Western blot analysis showed that
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CHKB was highly expressed in paracancerous tissues, whereas

PEMT showed the opposite trend (Figure 13B). In addition, the

qRT-PCR experiments were performed to detect the mRNA

expression of CHKB and PMET in eleven pairs of COAD tissues

and paracancerous tissues. The results showed that CHKB was

highly expressed in paracancerous tissues, while PEMT was

highly expressed in COAD tissues (Figures 13C, D).

Second, we examined the expression levels of choline

metabolism-related genes in wild-type and COAD mouse

model. As shown in Figure 13E, IHC images indicated that

CHKB was increased in the wild-type mouse, while PEMT was

elevated in COAD mouse. Western blot analysis showed that

CHKB protein expression was elevated in wild-type mouse,

while PEMT protein expression was elevated in COAD mouse

(Figure 13F). qRT-PCR analysis results also showed a consistent

expression trend with Western blot (Figures 13G, H).

Finally, we examined the expression of CHKB and PEMT in

human normal intestinal epithelial cell NCM460 and human

COAD cell lines (Caco-2, SW480, DLD-1, HCT 116). Western

blot analysis showed that CHKB was upregulated in NCM460

cell and downregulated in all COAD cell lines, while PEMT

showed the opposite trend (Figure 13I). Similarly, the qRT-PCR

results of CHKB and PEMT showed a trend consistent with

Western blot (Figures 13J, K). In brief, the above results suggest

that choline metabolism-related genes are crucial for the

construction of signature for COAD patients.
A B

DC

FIGURE 10

Somatic mutation analysis of the high- and low-risk groups. (A, B) Waterfall plot of mutated genes in the high-risk group (A) and low-risk group
(B). (C, D) Co-occurrence and mutually exclusive analyses of mutant genes in the high-risk group (C) and low-risk group (D).
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Discussion

COAD is one of the most common cancers of the digestive

tract and ranks among the top four in terms of morbidity and

mortality worldwide (24). Due to occult symptoms and a low

diagnosis rate, most COAD patients are diagnosed at an

advanced stage. In recent years, with the progress of surgical

treatment, chemotherapy, radiotherapy and targeted therapy,

the 5-year survival rate of patients has improved but is still below

10% (25). Therefore, there is an urgent need to study the effects

of choline metabolism-related signatures on the prognosis,

immune microenvironment, and chemotherapy response of

COAD patients and to provide clinicians with more accurate

prognostic prediction tools to maximize the survival time of

patients and improve their quality of life.

In this study, based on datasets downloaded from the TCGA,

KEGG, AmiGO2 and Reactome Pathway databases, we screened

thirty choline metabolism-related DEGs between CAOD tissues

and normal tissues. Then, univariate and multivariate Cox

regression analyses were performed on the thirty DEGs, and
Frontiers in Immunology 15
two choline metabolism-related genes (CHKB and PEMT) were

obtained. Next, we used TCGA-COAD and GSE17536 as the

training cohort and validation cohort, respectively, to construct

and validate the choline metabolism-related signature. The

survival time of patients in the low-risk group was

significantly higher than that of patients in the high-risk

group. In addition, the AUCs of the training cohort at 1 and 3

years were 0.65 and 0.62, respectively, which were significantly

higher than the AUCs of the signatures of other similar studies

(AUC=0.56, AUC=0.579) (26, 27). Univariate and multivariate

Cox regression analyses showed that the risk score was an

independent prognostic risk factor for COAD patients.

Furthermore, the AUC values of the nomogram for predicting

OS at 1, 3, and 5 years were significantly higher than those of

other clinical factors, which indicated that the nomogram had

the best and most stable predictive power. DCA and CICs

further indicated that the nomogram had the best clinical net

benefit. The above results suggest that the choline metabolism-

related signature has excellent and reliable predictive power for

the prognosis of COAD patients.
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FIGURE 11

Correlation of the choline metabolism-related signature with chemotherapy response. (A) Sensitivity analysis of high- and low-risk patients to
six common chemotherapeutic drugs. (B–F) 3D structures of small molecule drugs predicted by the PubChem open chemical database,
including entinostat (B), linifanib (C), MLN-4924 (D), ochratoxin-a (E), and piperacillin (F).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1038927
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.1038927
CHKB and PEMT are the key genes used to construct the

choline metabolism-related signature. CHKB, choline kinase beta, is

the first reaction enzyme of the Kennedy pathway, which activates

the choline metabolic pathway by catalyzing the biosynthesis of

phosphatidylethanolamine and phosphatidylethanol (28, 29).

Oliveira et al. found that a novel splicing mutation of CHKB

results in a lack of phosphatidylcholine in muscle fibers by

whole-exome sequencing technology, which in turn leads to

congenital muscular dystrophies (30). Studies have shown that

the reduction of choline kinase-a increases the expression level of

PD-L1, which in turn leads to immunosuppression (31). Kall et al.

found that targeted therapy against choline kinase-a causes cancer

cells to evade immune surveillance (32). In addition, PEMT,

phosphatidylethanolamine N-methyltransferase, as a transfer

enzyme, is one of the key enzymes catalyzing the synthesis of

phosphatidylcholine, which is essential for maintaining the integrity

of the cell membrane (33). Studies have shown that the loss of

PEMT function as a factor that inhibits the growth and

transformation of hepatocytes may lead to an increased incidence

of liver cancer (34). Studies have shown that the AMPK/PEMT

signaling axis is a promising therapeutic target in

lipopolysaccharide-tolerant systemic lupus erythematosus mice

(35). Overall, the choline metabolism-related signature

constructed by the core genes CHKB and PEMT has the
Frontiers in Immunology 16
potential to serve as a novel biomarker to reveal the pathogenesis

of COAD.

The TME is mainly composed of tumor cells, immune cells,

endothelial cells, and extracellular matrix, which provide the

basis for tumor growth, infiltration and metastasis (36). The

TME has the ability to further deteriorate tumor cells but also

has the potential to normalize tumor cells (37, 38). Studies have

shown that the infiltration density, function and localization of

immune cells in the TME profoundly affect the prognosis of

tumor patients (39). The rise of immunotherapy in recent years

has brought new hope to tumor patients, and different patients

have different immune responses, which is closely related to the

heterogeneity of the TME to a certain extent (40). In our study,

the expression of CD8+ T cells and Treg cells was elevated in the

high-risk group, whereas the expression of activated dendritic

cells was higher in the low-risk group. Studies have shown that

CD8+ T cells are activated by T-cell receptor (TCR) recognition

of tumor antigens and then rapidly proliferate and differentiate

into cytotoxic T cells (CTLs), thereby eliminating tumor cells in

a cell-to-cell contact manner (41). Interestingly, the expression

of CD8+ T cells was elevated in the high-risk group with worse

prognosis; this may be because the TME contains a large number

of immunosuppressive factors that greatly inhibit the antitumor

function of CD8+ T cells. Furthermore, increasing evidence
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FIGURE 12

Molecular docking pattern of key pharmacodynamic substances and core targets. (A) Linifanib-CPNE7. (B) Linifanib-HSF4. (C) Linifanib-PGGHG.
(D) ochratoxin-a-SLC26A3. (E) ochratoxin-a-OLFM4.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1038927
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.1038927
A

B

D

E

F

G

I

H

J K

C

FIGURE 13

Expression of key choline metabolism-related genes in human, animal and cell lines. (A) IHC images of CHKB and PEMT in COAD tissue and
paracancerous tissue (magnification ×200 and ×400). Scale bars: 10µm for 200×, 5µm for 400×. N represents paracancerous tissues, and T
represents COAD tissues. (B) Protein expression of CHKB and PEMT in six pairs of COAD patients by Western blot. N represents paracancerous
tissues, and T represents COAD tissues. (C, D) mRNA expression of CHKB (C) and PEMT (D) in COAD tissues and paracancerous tissues. N
represents paracancerous tissues, and T represents COAD tissues. ****p< 0.0001. (E) IHC images of CHKB and PEMT in wild-type (WT) and
AOM/DSS mice. WT represents control mice, and AOM/DSS represents COAD mouse model. (F) Protein expression of CHKB and PEMT in WT
and AOM/DSS mouse by Western blot. WT represents control mice, and AOM/DSS represents COAD mouse model. (G, H) mRNA expression of
CHKB (G) and PEMT (H) in WT and AOM/DSS mouse. WT represents control mice, and AOM/DSS represents COAD mouse model. ****p<
0.0001. (I) Protein expression of CHKB and PEMT in human normal intestinal epithelial cell NCM460 and human COAD cell lines (Caco-2,
SW480, DLD-1, HCT 116) by Western blot. (J, K) mRNA expression of CHKB (J) and PEMT (K) in human normal intestinal epithelial cell NCM460
and human COAD cell lines (Caco-2, SW480, DLD-1, HCT 116). *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001.
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suggests that Treg cell infiltration in the TME is closely

associated with poor prognosis and that the depletion of Treg

cells may activate and enhance antitumor immune responses

(42). Studies have revealed that Tregs play important roles in the

microenvironment, prognosis, and chemotherapy response of

various tumors (43). Shang et al. found that FoxP3 Tregs with an

increased infiltration density were closely associated with poor

prognosis in various tumors, such as cervical cancer, lung cancer,

melanoma, hepatocellular carcinoma and gastric cancer (44).

Therefore, this may explain why the higher number of Tregs in

the high-risk group was associated with a worse prognosis in our

study. In recent years, immune checkpoint inhibitors (ICIs) have

achieved remarkable therapeutic effects and are gradually being

recommended as first-line adjuvant therapy in many tumors (45,

46). In our study, we observed that various immune checkpoints

were significantly different between the two risk subgroups and

were mainly expressed in the high-risk group, implying that

high-risk patients may benefit more from immunotherapy. In

summary, it is of great significance for the diagnosis

and treatment of COAD to deeply study the immune

microenvironment based on the choline metabolism-related

signature to explore new immunotherapies and to screen out

those who are more likely to benefit from immunotherapy or

exclude those at high risk of adverse reactions.

Chemotherapy, as the most widely used and proven effective

treatment method in tumor treatment, plays an important role

in killing tumor cells, inhibiting tumor growth and prolonging

the survival of patients (47). However, the emergence of

resistance to chemotherapy drugs in tumor patients has

brought great challenges to treatment and prognosis.

Therefore, it is of great clinical significance to study the drug

resistance mechanism and improve the sensitivity to

chemotherapy (48). In this study, we determined the IC50

values of six chemotherapeutic drugs (axitinib, nilotinib,

paclitaxel, rapamycin, sunitinib, and vinblastine) commonly

used in the treatment of COAD. The results of the analysis

showed that the IC50 values of the above six chemotherapy

agents were significantly lower in the high-risk group, which

means that high-risk patients may benefit more from

chemotherapy with these agents. Axitinib in combination with

ICIs (e.g., pembrolizumab and avelumab) is often used as a first-

line treatment for patients with advanced renal cell carcinoma

(49). In addition, axitinib was able to significantly improve the

six-month progression-free survival (PFS) rate in patients with

recurrent or metastatic adenoid cystic carcinoma (ACC) (50).

Long-term treatment with nilotinib for Parkinson’s disease

patients is well tolerated, and its safety has been assured (51).

Compared with imatinib, nilotinib induces a more potent and

complete molecular response in chronic myeloid leukemia

patients, thereby inhibiting cancer cell generation (52).

Paclitaxel is a widely used natural antitumor drug, and its
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antitumor mechanism is mainly to inhibit mitosis and

promote the formation of tubulin (53). In addition, paclitaxel

nanoparticles have good biocompatibility and permeability and

are expected to prolong the survival of breast cancer patients and

relieve the suffering of patients (54, 55). As a potent and specific

inhibitor of mTOR, rapamycin can be used to treat diabetes,

advanced kidney cancer, and Huntington’s disease (56).

Rapamycin can reduce oral pathogenic flora and promote

periodontal bone regeneration in aged NIA-UW mice (57).

Sunitinib has long been regarded as a first-line treatment for

advanced renal cell carcinoma (58). Sunitinib has the potential to

treat thyroid cancer by inducing the apoptosis of cancer cells and

reducing tumor angiogenesis (59). Vinblastine is an alkaloid

extracted from the natural plant periwinkle that mainly exerts a

powerful antitumor effect by inhibiting the polymerization of

tubulin and interfering with protein metabolism (60, 61).

Nishida et al. found that vinblastine combined with

methotrexate is an effective regimen for the treatment of

desmoid tumors, with the advantages of good tolerance and

few adverse reactions (62). Therefore, predicting the

chemotherapy response of COAD patients based on the

choline metabolism-related signature is of great value for

alleviating the pain of patients and guiding clinical medication.

In this study, our molecular docking results revealed five key

molecular targets (CPNE7, HSF4, OLFM4, PGGHG, SLC26A3).

CPNE7 is a pre-ameloblast-derived protein that has an

important role in inducing odontoblast differentiation (63). Bai

et al. found that CPNE7 is beneficial to the recovery of damaged

periodontal ligament by regulating tubulin-mediated

cytoskeleton reorganization (64). HSF4 regulates lens

development and prevents cataracts in a zebrafish model by

activating p53 and its downstream genes (65). Ma et al. showed

that in patients undergoing liver cancer surgery, the expression

level of HSF4 was inversely proportional to the long-term

survival time (66). In chronic granulomatous patients, deletion

of OLFM4 enhances resistance to bacterial infection through

non-oxidative mechanisms (67). As a neutrophil granule-

specific protein expressed in circulating mature neutrophils,

OLFM4 has clinical value as a potential biomarker and

intervention target for infectious diseases (68). In a clinical

study on Chinese population, SLC26A3 polymorphism was a

risk factor for the development of ulcerative colitis (69). Peter

et al. found that SLC26A3 is a chloride/bicarbonate exchanger

expressed in intestinal epithelial cells, which inhibited its

expression will effectively relieve constipation (70).

It is undeniable that this study has some limitations. First,

the research data were obtained from public databases (such as

TCGA, KEGG, and AmiGO2), and some information was

missing and incomplete, so more prospective studies are

needed to explore the clinical value of the choline metabolism-

related signature in the future. Second, further validation of our
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signature with a larger sample size is essential. Finally, the

specific molecular mechanism of the choline metabolism-

related signature in the pathogenesis of COAD needs more in-

depth molecular biology experiments.
Conclusion

In conclusion, we constructed and validated a choline

metabolism-related signature with robust performance in

predicting COAD prognosis, immune cell infiltration, and

chemotherapy response. The prediction of the efficacy of

small-molecule drugs by the choline metabolism-related

signature provides new ideas for the drug treatment of

patients. The choline metabolism-related signature may have

important guiding significance for providing more precise and

effective individualized treatment for COAD patients and as an

auxiliary diagnosis and treatment tool for clinicians.
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