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Single-cell RNA sequencing (scRNA-seq) is a novel technology that characterizes

molecular heterogeneity at the single-cell level. With the development of more

automated, sensitive, and cost-effective single-cell isolation methods, the

sensitivity and efficiency of scRNA-seq have improved. Technological

advances in single-cell analysis provide a deeper understanding of the

biological diversity of cells present in tissues, including inflamed skin. New

subsets of cells have been discovered among common inflammatory skin

diseases, such as atopic dermatitis (AD) and psoriasis. ScRNA-seq technology

has also been used to analyze immune cell distribution and cell-cell

communication, shedding new light on the complex interplay of components

involved in disease responses. Moreover, scRNA-seq may be a promising tool in

precision medicine because of its ability to define cell subsets with potential

treatment targets and to characterize cell-specific responses to drugs or other

stimuli. In this review, we briefly summarize the progress in the development of

scRNA-seq technologies and discuss the latest scRNA-seq-related findings and

future trends in AD and psoriasis. We also discuss the limitations and technical

problems associated with current scRNA-seq technology.
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Introduction

Inflammatory skin diseases are induced by skin barrier disorders and dysregulation

of innate and adaptive immunity. Atopic dermatitis (AD) and psoriasis are two of the

most common chronic inflammatory skin diseases (1, 2). The Global Burden of Disease

study showed that AD is the 15th most common non-fatal disease and the skin disorder
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with the highest disease burden, with a prevalence of 15% to 20%

among children and up to 10% in adults (3). Approximately 125

million people worldwide are estimated to have psoriasis (4).

Although genetic, immune dysregulation, and environmental

factors play important roles in the pathogenesis of AD and

psoriasis (1, 2), the detailed mechanisms of AD and psoriasis

remain unclear. In recent years, specific immune component

targeted therapies have been reported in AD and psoriasis, with

substantially positive effects. However, some patients do not

respond to these treatments, have a secondary failure, or relapse

after drug withdrawal; thus, the underlying mechanisms

regarding the treatment of these diseases remain unclear.

Bulk RNA sequencing is an indispensable tool for

analyzing transcriptional variations, which determine the

average gene expression among pooled populations of cells

and reported as single data. However, tissues consist of

multiple cell types in various states; hence, the results of such

a technique can be misleading. Newly developed single-cell

RNA sequencing (scRNA-seq) technologies facilitate the

analysis of transcriptional activity at the single-cell level (5).

scRNA-seq facilitates the assessment of cellular heterogeneity,

identification of new or rare cell populations, and clarification

of cellular transition states at a high resolution. In addition,

Thus, organ- or tissue-specific transcriptomic characteristics of

keratinocytes (KCs), fibroblasts, endothelial cells, and immune

cells hosted within or infiltrated after inflammation can be

assessed to elucidate the function of cell heterogeneity in AD

and psoriasis.
A brief introduction to single-cell
RNA sequencing

scRNA-seq is a powerful tool for providing precision and

detail to individual cells (6). The workflow of scRNA-seq usually

includes sample preparation, single-cell capture, reverse

transcription of full-length mRNA, cDNA amplification,

preparation of a sequencing library, high-throughput

sequencing, and bioinformatics analyses. Single-cell isolation

and amplification of cDNA are the main steps in various

single-cell sequencing strategies.

Methods of traditional single-cell isolation have eventually

developed after many optimizations. Micromanipulation is a

classic technique for manually capturing under a microscope (7,

8). It can accurately select single cells under microscopic

observation and is suitable for analyzing a limited number of

cells (9). However, this method is time-consuming, has low

throughput, and may cause cellular injury due to mechanical

shearing (10). Laser capture microdissection (LCM) is another

approach for obtaining single cells from solid tissue. In this

technique, a laser beam is used to capture the cells of interest
Frontiers in Immunology 02
from the tissue specimen quickly and accurately, attaching these

cells to a thin and transparent film (11). Here, the spatial

positional information of the target cells is retained (12);

however, in addition to being laborious and inconvenient,

there is a risk of destroying the integrity of cells and damaging

cellular RNA (13), which could impact subsequent analyses.

Fluorescence-activated cell sorting (FACS) is a specialized type

of flow cytometry that sorts large numbers of cells based on cell

surface markers and physicochemical properties and completes

quantitative analyses quickly (14). Time consumption and low

throughput limit the use of these traditional technologies. To

circumvent this, scRNA-seq technology platforms have been

rapidly developed based on the application of microfluidic and

single-cell identification technologies.

Novel single-cell capture methods based on microfluidics

include integrated fluidic circuits (IFCs), droplets, microwells,

traps, and the SlipChip (15). Popular platforms have recently

enabled droplet-based scRNA-seq, which sorts cells into

aqueous compartments in a lipid suspension (16). Using this

system, the cell capture rate of a single sample can be as high as

65%, and 80,000 cells can be simultaneously isolated and

amplified in minutes (17). Split pool ligation-based

transcriptome sequencing (SPLiT-Seq) uses combinatorial

barcodes to label individual cells (18), which is expected to

decrease operational costs and does not involve microfluidic

devices. The development of these technologies has led to the

widespread use of scRNA-seq. The advantages and

disadvantages of these single-cell isolation methods are

summarized in Table 1.

Single-cell bioinformatics analysis, typically involves

fundamental analytical procedures such as quality control,

normalization, dimensionality reduction, differential

expression gene analysis, visualization, clustering, and cell type

annotation. Thus, this analysis can obtain the basic single-cell

landscape of specific disease. Some advanced analyses, such as

trajectory and cell-cell communications, can help us further

capture specific disease-related cells, genes, functional pathways,

and cell-cell interactions. scRNA-seq technology has been

applied in skin cancer and autoimmune skin diseases. For

example, ferroptosis-related genes and resident memory CD8+

T cells in regional lymph nodes have been identified to predict

the prognosis of melanoma using scRNA-seq analyses (19, 20).

Moreover, patterns of dedifferentiation in melanoma are

predictive of the response to immune checkpoint inhibitor

therapy (21). Type 1 cytokine signaling plays a central role in

vitiligo, and Treg cells inhibit disease progression in non-lesional

skin (22). A unique cluster of CXCL13+ T cells identified via

scRNA-seq appears to promote B- cell responses within the

inflamed skin of patients with systemic sclerosis (23). These data

provide critical insights into the pathogenesis of melanoma,

vitiligo, and systemic sclerosis, respectively.
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Applications of single-cell RNA
sequencing in inflammatory
skin diseases

Atopic dermatitis

Atopic dermatitis (AD) is one of the most common

inflammatory skin diseases. The prevalence of AD has been

reported up to 20% among children and 10% among adults

(24), and the causes are complex. Genetic susceptibility, a

dysfunctional epidermal barrier, skin microbiome abnormalities,

and type-2 immune dysregulation predominantly play a role in

the pathogenesis of AD (2). The endotype is the molecular

mechanism underlying the disease phenotypes (25, 26). Aside

from the presence of IgE that can distinguish between intrinsic

and extrinsic AD, AD is characterized by a highly diverse

endotype repertoire, including the dysregulation of Th1/Th2/

Th17/Th22 cells and impaired epidermal barrier integrity (27).

In addition to the unclear specific pathogenic mechanisms of

AD, the treatment options for this disease vary. Targeted therapies

for specific AD endotypes, such as those directed against Th2/Tc2,

and Th17 cells and general anti-inflammatory agents, have been

proved by the FDA or are currently in different phases of clinical

trials (28). Additionally, addressing the unsatisfactory efficacy of

current therapies and identifying biomarkers that will improve

therapy selection for biological agents and small-molecule drugs

should be the focus for AD.

RNA sequencing and gene microarray analysis of skin biopsy

specimens have provided insights into AD pathogenesis (29, 30).
Frontiers in Immunology 03
scRNA-seq was performed on lesional and non-lesional samples

from patients with AD and skin from healthy individuals. It was

found that COL6A5+COL18A1 +
fibroblast, which express the

cytokines CCL2 and CCL19, were a novel cell subpopulation

unique to AD lesional skin. A dendritic cell population that

expresses the CCL19 receptor CCR7 is also unique to AD

lesions (31). Prx1+ fibroblasts overexpressing the eosinophilic

chemokine CCL11 may also contribute to the pathogenesis of

AD by dysregulating IKKb/NF-kB signaling; hence, targeting

CCL11 upregulation in Prx1+ fibroblasts may be a way to treat

AD-like skin diseases (32). Whether these subpopulations of

fibroblasts recruit T cells and other inflammatory cells into the

local lesions or play a role in the initiation, maintenance, and

regression phases needs further research.

Meanwhile, myeloid dendritic cells (DCs), including

inflammatory dendritic epidermal cells, form the most

expanded immune cell population in AD lesions (33). It has

been demonstrated that unique inflammatory fibroblasts may

interact with immune cells, such as DCs expressing CCR7, to

regulate type 2 inflammation. Moreover, innate lymphoid cells

(ILC), especially ILC2, have been implicated in AD pathogenesis.

ILC2s are activated by various tissue-derived factors and exhibit

different functions in both the steady- state and inflammation.

The number of ILC2s in lesional skin biopsies from patients with

AD was significantly higher than in healthy individuals (34, 35).

Skin ILC2s were further sub-classified into skin-resident and

circulating ILC2s through scRNA-seq in a transgenic mouse line

expressing skin-specific IL-33 expression. Here, these transgenic

mice showed ILC2- dependent atopic dermatitis-like skin
TABLE 1 Comparison of the advantages and disadvantages of single-cell isolation methods.

Techniques Automation
level

Impact
on cell
integrity

Advantages Disadvantages

Micromanipulation (8–10) Manual Gentle Precise capturing of single cells under direct
visualization. Low cost.

Time-consuming and low throughout.

Laser capture microdissection
(LCM) (11–13)

Manual Often
impairing

Isolation of single cells from solid samples, not need
the preparation of cell suspensions.

Time-consuming, low throughout. and influence
subsequent amplification.

Fluorescence-activated cell
sorting (FACS) (14)

Automatic Often
impairing

Suitable for sorting different types of cells. High
hroughout.

Hard to detect cellular characteristics expressed
at a low level and differentiate with similar
marker expressions.

Integrated fluidic circuits-
based microfluidics (15)

Automatic Few Capture and process 800 small or medium-size single
cells simultaneously.

High cost.

Microdroplet-based
microfluidics (16, 17)

Automatic Few Isolation and amplification of 80,000 cells
imultaneously in minutes.

A risk of blockage.

Microwell-based
microfluidics (15)

Automatic Few Single cells settled by gravity and microwells replaced
droplets. Simultaneously capture approximately
10,000 single cells.

May not provide adequate space for the
proliferation and movement of the cells.

Split pool ligation-based
transcriptome sequencing
(SPLiT-Seq) (18)

Automatic / Independent to microfluidic devices and low cell
requirement of samples.

/

/: Not mentioned.
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inflammation (36). Patients with AD have a high percentage of

ILC2s in their peripheral blood that respond better to IL-4/13

inhibitors, such as dupilumab (37). Furthermore, ILC2s in lesional

AD skin have been shown to be biologically heterogeneous and

are involved in the IL-33 signaling pathway. ILC2s are flexible and

co-express typical genes, either type 2 or type 3/17 immunity

markers, within individual cells (38). It is well known that type3/

17 immunity is associated with the development of psoriasis.

However, whether the plasticity of ILC2s is responsible for

psoriasis-related dermatitis remains unclear.

AD typically starts in infancy or early childhood, showing

spontaneous regression after puberty in a subset of patients

while waxing and waning for life in many others. However, the

factors that modify the natural course of spontaneous remission

remain to be elucidated. The overall cell composition of patients

with spontaneously healed AD was comparable to that of healthy

individuals. Compared to healthy controls, melanocytes exhibit

many differentially expressed genes in all cell types in

spontaneously healed atopic dermatitis. Specifically, the

expression of the potential anti-inflammatory, maker PLA2G7

(Lipoprotein-associated phospholipase A2 or “platelet-activating

factor acetylhydrolase) is increased. Regulatory markers

are also upregulated in conventional T-cells (39). Moreover,

skin-resident memory T cells showed the greatest transcriptional

dysregulation in AD (40), which may be responsible for the

recurrence of the disease. KCs also play an important role in the

pathogenesis of AD. Epidermal proliferation and chemokines

(CCL2 and CCL27) were significantly upregulated in the KCs of

lesional AD. Such KCs were found to be enriched during

epidermis development and immune responses (31).

Based on previous studies, innate immune cells (ILC2s and

DCs), fibroblasts, and KCs, as well as their interplay and

interactions, play a role in AD development. Melanocytes and

skin-resident memory T cells may contribute to the specific

regulatory microenvironment in the spontaneous remission and

recurrence of AD, respectively.
Psoriasis

Psoriasis is also a common, chronic inflammatory skin disease,

and its incidence in ethnic groups and countries is significantly

different (41). The pathogenesis of psoriasis is complex and

multifactorial, involving genetic, immune, and environmental

factors. The IL-23/Th17 pathway is thought to be the

predominant pathway governing the progression and

development of psoriasis (42). Biologics that target IL-17/IL-17

receptor and IL-23 have shown significant clinical efficacy in

patients with psoriasis (43, 44). Cutaneous type 17 T-cells showed

markedly different g transcriptome profiles depending on various

cytokines, including IL-17A, IL-17F, and IL-10 (45). CD8+ T cells
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are increased in abundance within psoriatic lesions (46) and are

found to produce inflammatory cytokines, such as IL-17, at sites of

the active phase of psoriasis (47). However, CD8+ T cells are

phenotypically heterogeneous and have distinct functional

properties with cytotoxic and cytokine-producing features (48).

Two pathogenic cytotoxic type 17 T-cell (Tc17) subsets of CD8+

T cells were identified in psoriatic skin from lesional skin biopsies of

11 patients with psoriasis and five healthy control individuals via

single-cell transcriptomics. CXCL13- expressing Tc17 cells appear

to be specific to psoriatic lesions and are associated with disease

severity (49). Up to 30% patients with psoriasis may develop

psoriatic arthritis (PsA), presenting with peripheral arthritis,

enthesitis, and (or) dactylitis (50). The expansion of memory

CD8+ T cells in the joints of PsA patients was significantly

higher than that in their peripheral blood. CD8+ T cells have also

been previously reported in the synovial fluid of PsA patients (51).

single-cell sequencing showed that in the synovial fluid, CD8+T

cells that express CXCR3, a tissue-homing receptor, are increased in

abundance and that the expression of its ligands (CXCL9 and

CXCL10) were elevated, providing molecular insight into the

cellular immune mechanism of PsA (52). Compared to healthy,

patients with psoriasis are characterized by Treg expansion and CD8

+ T cell exhaustion. Moreover, differentially expressed genes in

skin-resident memory T cells have been recently reported to

discriminate psoriasis vulgaris from AD. Other T cell subsets,

such as dysfunctional T cells that regulate and express NR4A1,

are also involved in psoriasis (53).

In addition to adaptive immunity, innate immunity plays an

important role in the pathogenesis of psoriasis. Cutaneous

antigen-presenting cells (APCs) are divided into three groups:

Langerhans cells in the epidermis, classical dendritic cell type 1

(cDC1) and cDC2 in the dermis, and macrophages (54). A new

subset of inflammatory DCs expressing CD5-CD163+CD14+

(DC3) was identified in human blood (55). CD14+ DC3 cells

expressing genes related to IL-17 and neutrophil activation

signaling were enriched in psoriatic lesions, which were

considered potential promoters of inflammation in psoriasis.

Higher proportions of macrophage-expressing genes related to

inflammatory chemokines and cytokines (CXCL8 and CXCL2)

were found in psoriatic lesions compared to non-lesional skin

(56). ILC3s have been reported in human and mouse psoriatic

lesions (57, 58). The response to therapeutic compounds has

decreased the number of ILC3 cells (59). Fate mapping analysis

suggested that ILC3-like cells may arise from quiescent-like cells

and ILC2s, highlighting the flexibility of skin ILC responses and

driving the pathological remodeling process (60).

Even though immune cell infiltration plays a fundamental

role in cutaneous inflammation, KCs can also influence the

inflammatory microenvironment (61). scRNA-seq analysis

showed that aberrant inflammatory transcription of A20 in

KCs in psoriasis is related to the IL-17 and tumor necrosis
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factor-a(TNF-a) signaling pathways (62), suggesting a potential
targeted therapy. Hence, Th17 cells, CD8+ T cells, DC3 cells,

macrophages, ILCs and KCs play an important role in the

development of psoriasis. And Tc17 cells, a subtype of CD8+

T cells, are associated with disease activity.
Discussion

Since 2009, the first conceptual and technical breakthrough of

the single-cell RNA sequencing method was made by Tang et al.

(8). An increasing number of improved scRNA-seq technologies

were developed to introduce essential modifications and

improvements in sample collection, single-cell capture, barcoded

reverse transcription, cDNA amplification, library preparation,

sequencing and streamlined bioinformatics analysis. Freshly

tissues, high cost of per sample and scRNA-seq data analysis

still remain challenge. Subsequent studies are expected to explore

fixed tissue sample and to downregulate costs. And automatic sc-

RNA-seq data analysis pipelines and visualization platforms are

expected to be available in the future.

Most of studies related in this review prepare the libraries

and sequence depending on 10X Genomics platform. These

findings highlight KCs, fibroblasts, and different types of

immune cells in mechanisms for coping with the different

stages of AD and psoriasis. scRNA-seq offers a novel method

to identify the receptors, ligands, and cytokines expressed in

each cell type to further highlight intercellular communication

in the skin microenvironment. However, the detailed

mechanisms driving the pathogenicity of these cells and the

relationship between them require further study. And the

clinical characteristics of AD and psoriasis varied. Therefore,

more specific studies are necessary to elucidate the

characteristics of AD and psoriasis based on the differences in

the stages and subtypes of these diseases. Patients with clinical

characteristics of both AD and psoriasis have been described as

having psoriasis dermatitis, typically found in children (63). In

addition to the co-existence of both AD and psoriasis, disease co-

occurrence but alternating flare-ups or co-occurrence at

different life stages may also be observed (64). The overlap

condition not only presented in children but also in adult

patients. With the increasing application of biologics agents,

the psoriasiform reaction during dupilumab therapy has been

reported in AD, and an eczematous reaction to anti-interleukin

(IL)-17 treatment has been reported in psoriasis (65, 66).

However, the pathophysiology should be further clarified.

Moreover, it will be beneficial to analyze cell lineage

trajectories and patient-specific cell heterogeneity using

scRNA-seq data.

Analyzing the non-coding RNAs (ncRNAs) with scRNA-

seq and combining proteomics with epigenomics will get closer

to a ture global examination of single cell. In addition, the

analysis of minimally invasive or non-invasive samples, such as
Frontiers in Immunology 05
blood or urine specimens, may also hold promise in diagnosis

process and treatment response prediction. Considering the

rapid development of sequencing methods, scRNA-seq can be

expected to enter the clinics soon and facilitate personalized

therapeutic decisions for patients with inflammatory

skin diseases.
Limitations of single-cell RNA
sequencing

Although scRNA-seq can identify cell type-specific

transcriptional regulation and cellular heterogeneity, its

limitations can be challenged. Firstly, high-throughput single-cell

analysis requires cell dissociation, quality control, and are largely

tend to examine freshly isolated cells. More research will use such

technology to explore cryopreserved and fixed tissue samples. And

the preparation of single-cell suspensions destroys spatial

information of tissues. In addition, researchers have mostly

focused on protein-coding RNA. An increasing number of studies

have indicated that ncRNAs have important roles in cell function

and specialization (67–69). Even though it has been neglected in

previous scRNA-seq studies, nanopore sequencing and Smart-seq-

total technology may also address current gaps in the technology

(70, 71). Bioinformatics analysis of DEGs in scRNA-seq strongly

depends on the cell count in each identified cluster, whether the

transcriptional changes obtained via scRNA-seq are specific

biological findings, or a biased subset clustering data that is prone

to misinterpretation (72, 73). The development of scRNA-seq

technology has raised a wide range of computational and

analytical challenges. Even though several methods have now

been designed to efficiently perform upstream (quality control

and normalization) and downstream (cell-, gene- and pathway-

level) analyses of scRNA-seq data (74), there are limited guidelines

on how to define quality control standards, remove technical

artifacts, and interpret results. Deep-learning based methods, such

as machine learning, may also provide more benefits than

traditional statistical models in dealing with high-dimensional data.
Conclusions

In recent years, transcriptomics has made a great leap from

bulk RNA-seq, which measures the average gene expression, to

analyzing gene expression data in individual cells. This mini-

review summarizes and discusses the applications of scRNA-

seq in AD and psoriasis (Figure 1). Single-cell RNA sequencing

has provided new insights into inflammatory skin disease

heterogeneity, revealed complex interactions between cell

types, and allowed a more comprehensive understanding of

inflammatory skin disease initiation, progression, and
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regression. New insights are crucial for developing targeted and

innovative therapeutic strategies, to advance precision

medicine for inflammatory skin diseases. Although some

limitations remain, scRNA-seq will pave the way for

personalized medicine once solving the challenges.
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FIGURE 1

Application of scRNA-seq in AD and PS. Single-cell RNA sequencing (scRNA-seq) is especially useful in the detection of rare cell populations,
identifying cell-to-cell interactions, reconstructing skin cell trajectories, spatial transcriptomic mapping of skin (75), and developing more
precision medicine tools for the better prediction of patient-specific drug responses. The future trends involved cell-to-cell communication,
skin cell trajectories, spatial transcriptomic mapping of skin, and precision medicines in these diseases. AD, atopic dermatitis; PS, psoriasis; FBs,
fibroblasts; KCs, keratinocytes; MCs, melanocytes; Th1, T helper 1; Th17, T helper 17; Tc17, expressing IL-17 cytotoxic CD+8 T cell; Trm, skin-
resident memory T cell; Treg, regulatory T cell; DC, dendritic cell; Mreg DC, mature dendritic cell enriched in immunoregulatory molecules; ILC,
innate lymphoid cell; Mø, macrophage; CCL, CC chemokine ligand; CXCL, C-X-C motif ligand; GRN, gene regulatory network; t-SNE, t-
distributed stochastic neighbor embedding.
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