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Human hepatitis B virus (HBV) is a small enveloped DNA virus with a complex

life cycle. It is the causative agent of acute and chronic hepatitis. HBV can resist

immune system responses and often causes persistent chronic infections. HBV

is the leading cause of liver cancer and cirrhosis. Interferons (IFNs) are

cytokines with antiviral, immunomodulatory, and antitumor properties. IFNs

are glycoproteins with a strong antiviral activity that plays an important role in

adaptive and innate immune responses. They are classified into three

categories (type I, II, and III) based on the structure of their cell-surface

receptors. As an effective drug for controlling chronic viral infections, Type I

IFNs are approved to be clinically used for the treatment of HBV infection. The

therapeutic effect of interferon will be enhanced when combined with other

drugs. IFNs play a biological function by inducing the expression of hundreds of

IFN-stimulated genes (ISGs) in the host cells, which are responsible for the

inhibiting of HBV replication, transcription, and other important processes.

Animal models of HBV, such as chimpanzees, are also important tools for

studying IFN treatment and ISG regulation. In the present review, we

summarized the recent progress in IFN-HBV treatment and focused on its

mechanism through the interaction between HBV and ISGs.
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Introduction

Hepatitis B virus (HBV) infection and its related diseases is

an important medical problem in China and all over the world.

In addition to causing chronic hepatitis B (CHB), it is a major

cause of advanced liver disease and hepatocellular carcinoma

(HCC) (1). HBV is a non-cytopathic DNA virus, belonging to

the hepatophilic DNA virus family (2). Chronic HBV infection

can cause persistent low-grade hepatic inflammation in patients,

accompanied by transient episodes of high hepatic inflammation

and the development of fibrotic processes, which results in liver

fibrosis, cirrhosis, and ultimately decompensated liver disease or

HCC in 25–40% of patients (3). CHB is characterized by the

persistence of free covalently closed circular DNA (cccDNA) of

the HBV genome as a stable miniature chromosome in the

nucleus of infected hepatocytes (4). After treatment

discontinuation or loss of immune defense, HBV cccDNA

multiples in hepatocytes and can reactivate viral replication to

produce an intact virus (5). Therefore, complete elimination of

cccDNA from infected hepatocytes is important to achieve

complete elimination of HBV. However, the presently available

therapies can only control HBV infection or replication and

cannot cure it completely. Previous studies have divided HBV

cures into “functional” and “complete” (6). Functional cure

refers to serum clearance of hepatitis B surface antigen

(HBsAg), which is sometimes accompanied by serum DNA

and continuously transcribed inactive cccDNA. Complete cure

refers to the complete elimination of cccDNA (6).

HBV infection is generally controlled by reverse

transcriptase inhibitors (nucleosides or nucleotide analogs

[NAs]) and interferon (IFN) therapy (7). Presently, antiviral

drugs approved for CHB treatment can be divided into two

major groups. One is pegylated IFN-a (PEG-IFN-a), which
inhibits viral replication in about 25% of patients (8). The other

is the new generation of NAs that have high antiviral potency

and resistance barriers and produce strong viral suppression in

many patients (9). IFNs are a group of cytokines first discovered

and explored in 1957. It is a key regulator of the immune

response process against various viruses and cancers and also

one of the first lines of defense for host cells against viruses (10).

The following three types of IFNs are found: I (a, b, , k, and e),
II (g), and III (l). IFN complexes can activate the Janus-activated

kinase (JAK)-signal transducer and the activator of the

transcription (STAT) pathway, which leads to the expression

of IFN-stimulated genes (ISGs). These genes can further regulate

viral replication and immune response as downstream effectors

(11). The proteins encoded by ISGs inhibit the proliferation of

viruses by inhibiting their transcription, translation, and

replication, which promotes the degradation of viral nucleic

acid, and changes the cellular lipid metabolism level (12).

Studies have shown that ISG expression is associated with

HBV infection and treatment (13). IFNs can regulate almost
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10% of genes in the human genome. The proteins encoded by

ISGs can individually or collectively play a role in inducing the

intrinsic antiviral proliferation activity of cells and activating

adaptive immunity for antiviral defense (14). In this review, we

mainly focus on the mechanism underlying the treatment of

IFNs, emphasizing the regulation of ISGs. Elucidating the

regulatory mechanism underlying ISGs is helpful to

understand their future impact better on antiviral therapy and

pave the way for research of long-term HBV control therapy and

the identification of new therapeutic targets.
HBV

CHB is prevalent in Africa, Asia, and parts of Central and

Eastern Europe. Nearly 1 million people die every year due to

complications of persistent HBV infection, cirrhosis, and HCC,

with 250 million people affected by CHB globally (15). The

present research has reported the gene expression and

replication mechanisms underlying the HBV life cycle. Viral

and host determinants influence whether the virus can

successfully infect (16). Studies have reported that HBV

naturally infects humans, chimpanzees, and some primates to

a lesser extent. The parenchymal cells in the liver are the only

sites where HBV can multiply (17).
HBV pathogenesis and clinical diagnosis

HBV can be transmitted through infected bodily fluids such

as blood and semen, which can be caused immune-mediated

liver disease (7). HBV does not directly damage cells. The

inflammation and necrosis of liver tissue are mainly due to the

host’s recognition of invading antigens and the activation of its

own immune system, which targets and destroys infected

hepatocytes. Liver injury caused by excessive immune

activation can further contribute to liver fibrotic disease and

HCC during chronic HBV infection (18). HBV is highly effective

in invading recognition by the innate immune system owing to

its unique replication strategies, such as the use of capped and

polyglandulated transcripts similar to host-derived mRNAs or

the restriction of RNA/DNA genomes produced by replication

to nucleocapsid particles in the cytoplasm (19). The HBV

genotypes can be classified based on their genome sequences

from A to J with many subtypes (20). The pathogenicity,

virulence, clinical outcome, and response of HBV to type I

IFN treatment are associated with its genotype. HBV DNA levels

and hepatitis B E antigen (HBeAg) seroconversion rates were

lower in patients infected with HBV genotypes C or D than those

with HBV genotypes A or B (21). HBeAg seroconversion rate

refers to patients who no longer express HBeAg and produce

anti-HBeAg antibodies (22). HBV infection can be divided into
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the following four stages: immune tolerance, HBeAg positive

immune active, HBeAg negative immune inactive (CHB loss or

low replication), and HBeAg negative immune active (23).

Serological markers should be discovered to determine the

disease stage. General serum markers can diagnose CHB and

help in distinguishing between acute and chronic infections.

Common serological tests can detect HBV surface antigen

(HBS), HBeAg, HBV surface antibody (anti-HBS), hepatitis B

core antibody (anti-HBC), HBV envelope antibody (anti-HBE),

and HBV DNA (24).
HBV life cycle and infection process

During the HBV life cycle, HBV DNA is transformed into a

highly stable double-stranded circular DNA structure called

cccDNA, which is an important stage in the nucleus of the liver

cells. During this stage, cccDNA is integrated into the host

genome as a template for viral RNA transcription, and cccDNA

hides in the nuclei of the liver cell nuclei and serves as a

template for viral replication (25) (Figure 1). HBV infectious

virions are enveloped nucleocapsids that selectively enter

hepatocytes and deliver incomplete circular DNA genomes,

which initiates multiple viral replication processes (26). The

circulating virions are initially attached to heparan sulfate

proteoglycans (HSPG) (27), then viral surface proteins

facilitate their entry into host hepatocytes. The preS1 domain

is a crucial structure for mediating large surface proteins (28).
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HBV can enter the hepatocytes, which is co-mediated by

surface molecules called sodium taurocholate cotransport

polypeptides (NTCPs) (29). After the entry of the virus, the

HBV nucleocapsid containing relaxed circular DNA (rcDNA)

is delivered into the nucleus, where host enzymes transform the

viral genome into cccDNA (30). Human RNA polymerase II

mediates cccDNA transcription to produce pregenomic RNA

(pgRNA). PgRNAs are mRNAs of core proteins and polymerases

that serve as templates for HBV DNA replication (31). PgRNA

is reverse transcribed to form incomplete rcDNA, wherein the

HBV capsid is coated with HBsAg to become mature virus

particles (32). Capsid-containing rcDNAs are transported back

to the nucleus to increase the cccDNA content or enter

multivesicular bodies. They come into contact with viral

envelope proteins and exit hepatocytes to circulate in the

blood as infectious virions (33).
HBV animal model

Establishing animal HBV infection models is important for

elucidating the mechanism underlying the immune response to

HBV infection, which leads to hepatitis and the progression of

liver injury and repair. Establishing relevant animal models has

facilitated the development of methods to control chronic HBV

infection and the study of ISG regulatory pathways. Mice have

good immune system characteristics and are easy to handle.

However, they cannot naturally be infected with HBV.
FIGURE 1

HBV virions and HBV life cycle.
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Therefore, many studies have established various HBV

infection models in transgenic mice using gene editing and

humanized liver technologies (34). Past studies have found that

sterile alpha motif domain-containing 4A (SAMD4A) is an

important anti-HBV ISG by overexpressing or knocking down

ISGs in HBV transgenic mice (35). Besides, interferon alpha-

inducible protein 27 (IFI27) as ISG can inhibit HBV gene

expression and DNA replication in mouse models (36). Other

studies have shown that the steady-state level of HBV DNA in

ubiquitin specific peptidase 18 (USP18) (UBP43) deficient

mice is significantly reduced (37). Moreover, some studies

have used the human liver chimeric mouse model and shown

that HBV/HDV infection significantly induced ISG expression

(38). Chimpanzees are the only immunocompetent animals

that are naturally susceptible to HBV, and they are the main

animal model for studying HBV infection (39). However, their

HBV-related studies were limited because of ethical issues.

Other animals, such as woodchucks, are naturally infected with

hepatitis viruses similar to HBV (40). Woodchucks can be

infected with woodchucks hepatitis virus (WHV), and ducks

can be infected with duck hepatitis virus (41). These viruses

have characteristics similar to HBV infection in humans. Some

studies have investigated the changes in ISG expression after

HBV infection using custom woodchuck microarray platforms

(42). Moreover, another HBV-like virus, woolly monkey HBV

(WMHBV), can infect its natural host, woolly monkeys, and
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was investigated for antiviral therapies for HBV infection (43).

Other smaller non-human primate models are also being

developed, such as tupaias, cynomolgus monkeys, and rhesus

monkeys. The development of these animal models is crucial

for studying HBV infection (44) (Table 1). HBV has a high

species specificity. However, recent advances in transgenic

mice, humanized mice, and strategies to make macaques

more susceptible to HBV infection are gradually improving

our ability to study HBV in a more suitable in vivo

environment (47).
HBV treatment with IFNs

The prophylactic vaccine for HBV is adopted in all

developed countries. It is a common and crucial measure for

preventing and controlling HBV (48). However, this vaccine

does not affect patients with prolonged infections. Currently,

treatment for these patients is limited to immunomodulators,

including many direct-acting antivirals (DAAs), known as third-

generation nuclear analogs (NUCs), such as entecavir, tenofovir,

and tenofovir alanine or regular and pegylated type I IFNs (7).

Induction of IFN expression occurs in response to viral or

bacterial infection. With the development of recombinant

IFNs, IFNs have been increasingly applied in HBV treatment,

and have become a more popular treatment option (49).
TABLE 1 Animal models for HBV researches.

Animal
species

Hepadna-
virus

Naturally
Susceptible

Experimental
infection mode

Advantages and disadvantages

Mouse (45) HBV No HBV transgenic
mouse model

The HBV transgenic mouse model can be widely used for several preclinical HBV antiviral
evaluations in vivo. However, HBV transgenic mice revealed innate immune tolerance to HBV,
while no covalently closed circular cccDNA was detected.

Humanized Chimera
Mouse

The best model for studying HBV persistence is the humanized xenograft model, albeit it is
limited by a high degree of immune-deficiency.

Chimpanzee
(46)

HBV Yes Can be directly
infected

It can accurately simulate the pathogenesis and disease progression caused by human HBV.
However, the availability constraints, high associated costs, and considerable ethical concerns
have limited their use as experimental models.

Capuchin
monkey (34)

HBV Yes Can be directly
infected

Capuchin monkeys are highly endangered, have limited availability, are of xenogeneic origin, and
have poorly characterized immune systems.

Rhesus
macaques
(44)

HBV No Exogenous expression
of human NTCP on
the surface of
hepatocytes

It is the only available, non-endangered HBV NHP model. However, it is not susceptible to HBV
infection, which has a low level of replication.

Tupaia (44) HBV Yes Can be directly
infected

It is very sensitive to HBV, but has the genetic heterogeneity of outbred species, the overall virus
titer in vivo is low, and the research tools and materials for this species are scarce.

Woolly
monkey (43)

WMHBV Yes Can be directly
infected

The species is highly endangered and impossible to study.

Woodchuck
(40)

WHBV Yes Can be directly
infected

It has long been applied as a model to explore the biology and pathogenesis of hepatophilic DNA
viruses as well as to evaluate antiviral drugs. However, the viral sequence homology between
WHBV and HBV is limited, and the reagents used to characterize the immune system of
marmots are insufficient.

Duck (41) DHBV Yes Can be directly
infected

DHBV can effectively replicate after infection, and infected cells can release infectious virus
particles. However, the viral sequence homology between DHBV and HBV is limited, and ducks
are distant from humans.
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IFNs and PEG-IFNs

When the HBV viral load is low, it can induce a type I IFN

response and stimulate HBV gene expression and replication

(50). However, type I IFNs inhibits HBV replication when the

viral load is high. IFN-a and IFN-g can interfere with the

synthesis of negative-strand DNA virus by inducing

apolipoprotein B mRNA editing enzyme catalytic subunit 3G

(APOBEC3G) expression and binding to viral DNA polymerase

(51). Therefore, type I IFNs can promote or inhibit HBV

infection depending on the viral expression.

IFN-a induces genes encoding intracellular or secreted

proteins (ISGs) that promote immune cell activation. They

have direct or indirect antiviral activity (52). Human IFN-a
can reduce HBV DNA, HBeAg, and HBsAg levels in hepatocytes

(53). Furthermore, IFN-a14 can be the most effective IFN

subtype for inhibiting HBV cccDNA transcription and

HBeAg/HBsAg production. IFN-a14 can activate IFN-a and

IFN-g signaling and induce the expression of many potent

antiviral effectors, synergistically limiting HBV replication

(54). The anti-HBV activity of IFN-a is regulated by a

complex mode of action, which includes natural killer (NK) T

cell activation (55). They decrease pgRNA and subgenomic RNA

transcription in HBV cccDNA microsomes and decrease signal

transducer and activator of transcription 1 (STAT1) and 2

(STAT2) transcription factor binding to active cccDNA, which

collectively inhibit HBV replication (56). IFN-a can be used to

treat HBV by degrading cccDNA via APOBEC3A activation in

infected cells (56). Furthermore, IFN-a treatment significantly

upregulated the expression of the host gene ubiquitin-

conjugating enzyme E2 L3 (UBE2L3), whereas UBE2L3

silencing increased the antiviral activity of IFN-a against HBV

RNA, cccDNA, and DNA (57). IFN-a can also transfer antiviral

molecules from cell to cell through exosomes, which contributes

to its antiviral response to HBV in mice (58). Cross-linking IFN-

a with apolipoprotein A-I produces a molecule with different

antiviral and immune-stimulating activities that decrease IFN-a
hematologic toxicity and have HBV therapeutic effects (59).

Moreover, IFNs inhibit HBV secretion by inducing the protein

Tetherin, which is the potential anti-HBV response mechanism

triggered by IFNs (60).

PEG-IFN-a is added to some therapeutic agents that are

pegylated by partially incorporating polyethylene into the active

product. PEG-IFN-a molecules are mainly used to increase the

pharmacokinetic properties of unmodified IFN-a (61). The

binding of pegylated molecules to IFNs increases its half-life

more than that by IFN-a alone. This reduces its rates of

absorption and renal and cellular clearance. Moreover, PEG-

IFN-a requires less frequent administration than IFN-a and

produced more durable viral inhibitory effects in clinical trials

(62). A recent study created and evaluated two pegylated IFN

preparations (PEG IFN-a-2a and PEG IFN-a-2b) with different
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molecular sizes and structures, in vivo and in vitro properties,

and half-lives (63, 64). The immunomodulatory function of

PEG-IFN-a, especially NK cell activation, plays a key role in

response to HBV treatment (65). Furthermore, PEG-IFN-a-2b
improved the resistance of CHB patients to HBV by increasing

the number of HBV-specific CD8+ T cells and regulating the

expression of Th1 and Th2 cytokines (66). PEG-IFN-a
treatment upregulates exosomal microRNAs (miRNAs) miR-

193a-5p, miR-25-5p, and miR-574-5p, with exosomes secreted

by macrophages transferring IFN-a-related miRNA into HBV-

infected hepatocytes, which inhibits HBV replication and

transcription (67).
IFNs and PEG-IFNs clinical practice in
HBV treatment

Systematic reviews and meta-analyses of the role of

conventional IFN-a in patients with HBeAg-positive CHB have

found that it can improve their biological, serological, and

virological responses. Treatment with higher doses of IFN-a and

a longer duration of continuous administration can have a better

therapeutic effect; however, it can also lead to side effects and

increased treatment costs (68). IFN-a is presently the first choice of

antiviral therapy for children with CHB older than one year,

whereas PEG-IFN-a-2a is the recommended treatment for

children with CHB older than three years. The results showed

that antiviral monotherapy with IFNa-2B or PEG-IFNa-2a was

well tolerated and effective in CHB children compared with adults

with higher HBeAg seroconversion rates and HBsAg clearance

rates (69). Many studies have shown that standard IFN-a has a

specific role in anti-HBV infection; however, pure IFN-a is not

commonly given as a therapy in clinical trials (70). Some studies

have shown that IFN-a treatment is ineffective in most patients

with HBV infection possibly because HBV prevents the induction

of IFN-a signaling and interferes with ISG transcription in

hepatocytes by inhibiting STAT1 nuclear translocation, which

results in a low IFN-a therapeutic effectiveness (71). Overall, its

antiviral effects in patients with CHB are modest for unknown

reasons but may include inadequate delivery to the infected liver,

tolerance of infected hepatocytes to IFN-a signaling, or other

mechanisms (72).

Clinical results showed that PEG-IFN-a-2b was effective in

treating HBeAg-positive CHB (73). In addition, PEG-IFN-a
monotherapy was effective in 298 Chinese inactive HBV

carriers, with good tolerability and safety (74). Using PEG-

IFN-a in treating HBeAg-positive patients with CHB could

inhibit viral production to some extent in 10%–40% of

patients, and the HBeAg serum conversion rate of patients was

about 25%–30%. Loss of HBsAg expression was observed in

approximately 5% of patients six months after treatment

discontinuation (75). Treatment regimens with PEG-IFN-a
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should be determined based on host-related factors and viral

predictive markers, such as age, alanine transaminase (ALT)

levels, viral load, and HBV genotype (76). Moreover, hepatitis B

core-related antigen and HBsAb levels at the end of treatment

can help determine the curative effect of PEG-IFN-a-based
treatment in patients with CHB (77).
Clinical use of IFNs and
PEG-IFNs combined with other
drugs in HBV treatment

Combining IFN-a and PEG-IFN-a with other drugs is

currently an attractive approach. The co-administration of

ribavirin and IFN-a may be effective in treating viremic anti-

HBE-positive patients with CHB who have not responded well to

previous IFN treatment (78). Another clinical trial showed that

sequential combination therapy with lamivudine and IFN-a
induced a sustained virological response, including HBS

seroconversion, in patients with CHB who were unresponsive

to IFN-a alone. This observation suggests that this treatment

regimen needs to be further evaluated in clinical trials (79).

NVR3-778 is one of the core protein allosteric modulators

(CpAMs), which has been shown to reactivate the host innate

immune response by inducing the expression of ISGs (80, 81).

Clinical studies have shown that combining PEG-IFN-a and

NVR3-778 exerts a good antiviral effect in vivo (82). In addition,

combining entecavir or tenofovir with PEG-IFN-a can reduce

HBsAg levels consistently (83). Additional treatment with PEG-

IFN-a results in higher serological response rates than

monotherapy and may facilitate NAs discontinuation (84).

Furthermore, current regimens that may be of more interest

include combining IFNs with traditional Chinese medicine

(TCM) (85). Many studies have reported that TCM and

related active compounds extracted from TCM have a

potential anti-HBV activity, including Salvia miltiorrhiza,

Astragalus, Oxymatrine, Artemisinin, and Vogoning. TCM

preparations have better safety than IFN-a regarding dose-

dependent side effects and drug resistance and are potential

candidates for anti-HBV therapies (86). TCM preparations

combined with IFNs considerably decreased serum HBeAg,

increased serum HBV DNA clearance rates, and improved

serum ALT normalization compared with IFNs alone (87).

Moreover, a polysaccharide from Radix isatidis (Isatis

indigotica Fortune) can exert an antiviral effect by activating

the IFN-a-dependent JAK/STAT signaling pathway and

increasing anti-HBV protein levels (88). Despite many IFN-

related clinical trials, stronger evidence and more detailed

experiments are needed to evaluate the safety and efficacy of

combination therapy. In addition, more studies are needed to

develop more convenient and effective IFN-a-based HBV

treatment strategies.
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Interaction between HBV and ISGs

After HBV infection, the host can induce many ISGs, the

core components of intracellular antiviral innate immunity (89).

ISGs can regulate IFN signaling and even directly inhibit viral

infection. Studies on ISG mechanisms can show how IFN-

induced signaling reprograms and primes cells to enhance

viral detection, achieve effective viral defense, and return cells

to normal functions. In addition, some studies have shown that

ISGs are related to treating HBV using IFN-a (90). In the

present study, we focused on the role of ISGs in treating HBV

by regulating type I IFNs.
IFNs and ISGs

All type I IFNs, including IFN-a and IFN-b, are regulated by
the IFN-a/b receptor (IFNAR) complex, which contains two

subunits, IFNAR1 and IFNAR2 (91). However, type I IFN

binding to IFNAR can induce ISG expression and activate the

JAK/STAT signaling pathway (92). The heterotrimeric ISG

factor 3 (ISGF3) transcription factor complex comprises

phosphorylated STAT1/STAT2 and interferon regulatory

factor 9, and type I IFNs can activate ISGF3 expression via the

JAK/STAT signaling pathway (14). Activated ISGF3 binds to

ISG upstream promoter regions in the nucleus in response to

IFN stimulation (Figure 2). Furthermore, studies have shown

that the increased interaction between STAT1 methylation and

STAT1- protein inhibitor of activated STAT-1 is involved in

IFN-aHBV antagonism, and the antiviral effect of IFN-a can be

enhanced by increasing the expression of methylated STAT1 and

S-adenosyl methionine (93). In addition, the unbiased high-

throughput RNA interference technology was used to screen

cells that showed HBV inhibition after IFN-a treatment. Among

711 epigenetic modifiers, SET domain containing 2-mediated

K525 STAT1 methylation is an important antiviral signaling

mechanism (94). Activating the JAK signaling pathway further

induces alternative signaling pathways such as mitogen-

activated kinase-like protein, phosphatidylinositol 3-kinase,

and nuclear factor Kappa-light chain enhancer of activated B

cells (NF-kB), amplifying the strength and magnitude of type I

IFN signaling (49). Though previous studies considered ISGs as

IFN-induced protein-coding mRNAs, recent studies have shown

that IFNs also mediate changes in the expression of many non-

coding RNAs, including long non-coding RNAs and

miRNAs (95).

The ISG gene pool is complex and large. Next-generation

RNA sequencing studies have shown that IFNs regulate ~10% of

all human genes. Moreover, studies comprehensively examining

ISG expression in transcriptomes of different animals identified

62 core ISGs (96). Furthermore, several antiviral ISGs with

critical roles have been discovered by identifying genes that
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are aberrantly expressed during viral infection inhibition.

Among them, anti-myxovirus protein (MX)1 is the first

classical effector molecule found to inhibit virus entry,

primarily by preventing early-stage viral replication (97). In

addition, interferon-induced transmembrane protein 3

(IFITM3) prevented the membrane fusion process of virus

entry into cells via the endocytic pathway (98). Protein kinase

R (PKR) and zinc antiviral protein are typical ISGs that inhibit

viral protein production (99, 100). Therefore, different ISGs can

block the HBV life cycle via corresponding pathways and play an

essential role in regulating IFN-induced immune response and

antiviral processes.
The mechanism of ISGs in regulating
HBV infection

IFN-a is an antiviral drug with a limited treatment course. It

acts on important biological processes including HBV

replication and transcription by enhancing immune cell

function, increasing cytokine levels, inducing ISG expression,

and activating multi-antiviral proteins via the IFN signaling

pathway, thereby playing a dual role in immune and antiviral

regulation (10). Various ISGs exert anti-HBV effects in the host

via different mechanisms (Table 2). Host cells infected with

viruses can immediately recognize their pathogen-associated

molecular pattern, promoting the viability of B cells activated
Frontiers in Immunology 07
by transcription factors IFN regulator 3 or 7 and NF-kB. This
process initiates the expression of the genes of type I IFNs and

proinflammatory cytokines, inducing downstream ISGs to

establish an antiviral host cell environment with antiviral

effects (97).

IFN-a-induced ISG MX2 reduces HBV cccDNA expression

by inhibiting viral RNA synthesis, an important anti-HBV

function. MX2 represents a novel HBV inhibitor with

therapeutic potential (101). APOBEC3G is an IFN-a-induced
cytosine deaminase that deaminates cytosine to uracil in single-

stranded DNA replication, inhibiting the coding and replication

ability of HBV (110). In a study, cell-based assays were

performed to screen 285 human ISGs to check their anti-HBV

activity, finding SAMD4A to be an important anti-HBV ISG and

a strong repressor of HBV replication. It can be used in IFN-

HBV treatment. SAMD4A/B expression was associated with

human HBV sensitivity (35). In addition, IFN-a-inducible
protein 6 (IFI6) inhibited HBV replication in cell and mouse

model by reducing the expression of the gene of HBV enhancer

II and core promoter (EnhII/Cp); thus, increasing IFI6

expression may be a potential therapeutic approach for

inhibiting HBV infection (102).

Another study showed that the SPRY domain of tripartite

motif containing 14 (TRIM14) interacted with the C-terminus of

the HBV X protein (HBx) and might block HBV replication by

inhibiting the formation of the structural maintenance of

chromosome protein (SMC)-HBx- DNA damage-binding
FIGURE 2

The major signaling pathway through which IFN produces its inhibitory effect on HBV.
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protein 1 (DDB1) complex (103). Other studies have shown that

the IFN-interleukin (IL)-27-TRIM25 signaling pathway is induced

by type I IFNs and inhibits HBV replication, identifying the ISG

TRIM25 as a potential therapeutic target for HBV infection (104).

In addition, TRIM5g and TRIM31 were identified as key genes

interacting with HBx that promote its degradation among the 145

ISGs examined, identifying them as potential therapeutic strategies

for IFN-resistant patients with HBV infection (111). ISG20 is a 3′-
5′ exonuclease that binds and degrades HBV transcripts (105).

ISG20 is primarily induced by IFN-b, reducing HBV gene

expression and inhibiting HBV enhancer activity by binding to
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EnhII/Cp regions (112). Moreover, m6A reader protein YTH

domain family 2 (YTHDF2) regulates ISG20 expression by

selectively recognizing and processing N6-methyladenosine

(m6A)-modified HBV transcripts for degradation (105).

Moreover, studies have shown that IFN-a treatment

significantly decreases microRNA-122 (miR-122) expression in

hepatocytes, targeting ISG 5′-nucleotidase, cytosolic III

(NT5C3), an inhibitor of miR-122 expression, and potentially

inhibiting IFN-a function in HBV treatment (106). Other

studies have shown that hepatocyte-specific miR-122

expression positively correlates with adenosine deaminase
TABLE 2 Summary of major anti-HBV ISGs.

ISGs Characterization Antiviral function Mechanism Different stages of
HBV infection

MX2
(101)

Myxovirus resistance (Mx) protein, an evolutionarily
conserved dynein-like large GTPase

MX2 can inhibit HBV
infection and proliferation
by reducing cccDNA level
and inhibiting HBV RNA
transcription.

When pgRNA transcription is driven by
HBV’s own promoter and enhancer from
the add-on vector, MX2 reduces HBV DNA
replication by downregulating all replication
markers

Inhibits HBV cccDNA
formation and RNA
transcription

SAMD4A
(35)

SAMD4A is reported to be a mammalian homolog of
Drosophila Smaug and to regulate post-transcriptional
processes.

SAMD4A and its
homolog SAMD4B can
reduce HBV replication

SAMD4A mediates viral degradation by
binding to the SRE site in viral RNA.

Promotes HBV RNA
degradation and
inhibits HBV
replication

IFI6 (102) IFI6 belongs to the FAM14 family localized on
chromosome 1P35 and is an ISG

The overexpression of
IFI6 inhibits HBV
replication and translation
in hepatocytes

IFI6 reduces HBV transcription and
translation by inhibiting the ENHII/Cp
promoter activity

Inhibits HBV DNA
replication and RNA
transcription

TRIM14
(103)

The members of the TRIM family are known for their
RING finger E3-ubiquitin ligase activity -including a
RING domain, 1 or 2 b-box domains, and associated
coiled-coil domains in the amino-terminal region

Type I IFN-stimulated
gene TRIM14 controls
HBV replication by
targeting HBx

The TRIM14 SPRY domain interacts with
the C-terminus of HBx, which may block
the role of HBx in promoting HBV
replication by inhibiting the formation of
the SMC-HBX-DDB1 complex.

Inhibits HBV RNA
transcription and HBV
replication

TRIM25
(104)

IL-27-dependent
induction of TRIM25
inhibits HBV replication

Il-27 signaling is required for TRIM25
induction by type I IFN, and the
transcription factors STAT1 and STAT3
play a role in TRIM25 induction.

Inhibits HBeAg
secretion and HBV
DNA replication

ISG20
(105)

ISG20 has antiviral function against a variety of RNA
viruses and is a 3’-5’ exonuclide induced by type I and
type II IFNs.

ISG20 can bind and
degrade HBV
transcription factors and
inhibit HBV replication.

ISG20 inhibits the HBV activity by binding
to EnhII/Cp and inhibits HBV transcription
by binding to YTHDF2 and recognizing
m6A modifications.

Inhibits HBV
transcription

miR-122
(106)

MiR-122 is a mammalian liver-specific microRNA that
is highly expressed in the liver, accounting for 70% of
the total miRNA population in the liver.

MiR-122 significantly
inhibited HBV expression
and replication

MiRNA-122 was positively correlated with
ADAR1 expression, and NT5C3 was
identified as the miR-122 target.

Inhibits HBV DNA
formation and RNA
transcription

ADAR1
(107)

ADAR1 is an ISG that catalyzes covalent modification
of RNA substrates and produces inosine through C-6
deamination of hydrolyzed adenosine.

ADAR1 inhibited MAVS
expression and reduced
HBV marker levels in
vitro and in vivo.

ADAR1 represses MAVS expression
through human antigen R (HuR)-induced
post-transcriptional regulation

Inhibits HBV DNA
replication, RNA
transcription, protein
expression, and viral
antigen packaging
levels.

IDO (108) IDO is an IFN-g-induced enzyme that catalyzes
tryptophan degradation

IDO effectively reduced
HBV DNA content in
cells without affecting
viral RNA stabilization.

IDO can inhibit viral genome replication
and translation, and this antiviral effect is
mediated by tryptophan deprivation.

Inhibits HBV DNA
replication and protein
translation

OAS
(109)

OAS encoded by the OAS gene uses adenosine
triphosphate to synthesize 2’,5’ -oligadenylate (2’, 5’AS)
in a 2’ -specific nucleotide transfer reaction, which
activates latent ribonucrenase, leads to viral RNA
degradation and inhibits viral replication

OAS gene variants may
play an important role in
the response to IFN-a

Polymorphism of IFN-induced gene OAS is
associated with response to IFN-a therapy
in chronic HBV infection

Promotes HBV RNA
degradation and
inhibits HBV
replication
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acting on RNA gene (ADAR1) expression. Exogenous miR-122

reduces HBV RNA and DNA, and p53 is also involved in the

ADAR1-mediated reduction of HBV RNA (113). In addition,

studies have shown that IFN-a attenuates mitochondrial

signaling protein (MAVS) by RNA editing, which is mediated

by ADAR1 antiviral therapy. These results indicate that

combining MAVS with IFN-a has potential clinical

applications in the studies on HBV infection (107).

ISG stimulator of interferon response the cyclic guanosine

monophosphate-adenosine monophosphate (cGAMP)

interactor (STING) is an important DNA-mediated regulator

regulating the natural immune response of the body and a

potential therapeutic target in HBV infection (114). Studies

have shown that activation of STING signaling pathway can

effectively reduce the severity of liver injury in chronic HBV

mouse models, which may be a promising approach to prevent

HBV virus proliferation and HBV-related liver fibrosis (115,

116). Furthermore, IFN-a reduces HBV cccDNA content by

regulating the general control non-repressed 5 protein-mediated

succinylation of histone H3K79 in HBV-infected human liver-

chimeric mice. Therefore, IFN-a can inhibit HBV transcription

at the epigenetic level (117). Indoleamine 2, 3-dioxygenase

(IDO) is an ISG that can effectively reduce intracellular HBV

DNA levels and the main IFN-g regulatory gene in hepatocytes

to produce an anti-HBV response (108). Moreover, the

downstream signaling pathway of IFN-l was identified by a

proteomic method. IFITM3, 5′-3′ exoribonuclease 2 (XRN2),

and 5’-nucleotidase, cytosolic IIIA (NT5C3A) expression were

upregulated, and ISG transcription was activated to inhibit HBV

replication (118).

In addition, ISG expression as a predictor of clinical efficacy

is also an attractive strategy. Single nucleotide polymorphisms

(SNPs) in the 2′,5′-oligoadenylate synthetase gene (OAS) in

patients play a major role in predicting the efficacy of IFN

treatment against CHB (119). Additionally, SNPs in IL28B and

OAS were correlated with the clinical efficacy of IFN therapy in
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children with CHB, suggesting that they might be a new

important consideration in treating CHB with IFNs (120).

According to recent studies, ISGs may also be involved in the

mechanism by which HBV antagonizes IFNs and inhibits IFN

efficacy. Studies have shown that IFN-a treatment activates

STAT1 nuclear translocation and ISG expression. Therefore,

HBV inhibits STAT1 nuclear translocation and interferes with

ISG transcription in hepatocytes, blocking IFN-a signaling and

causing a poor treatment response (71). In addition, HBV has

molecular mechanisms that promote resistance to IFN therapy.

HBV infection increases HBV polymerase levels and inhibits

ISG induction, resulting in the poor antiviral efficacy of IFN-a in

HBV mouse model (121). In addition, HBV precore protein P22

can reduce ISG expression and IFN-stimulated response element

activity and inhibit IFN-a signaling by blocking the JAK/STAT

signaling pathway and STAT nuclear translocation (122).

Spliceosome-associated factor 1 can reduce the antiviral

activity of IFN-a by attenuating JAK/STAT signaling and

reducing the expression of ISGs such as MX, OAS, and PKR in

HepG2 cells (123).

Moreover, IL-6 expression impaired the efficiency of IFN-a-
mediated HBV suppression in hepatocytes by upregulating the

suppressor of the cytokine signaling 3 genes (SOCS3). Therefore,

SOCS3 downregulation can improve the antiviral activity of

IFNs in HBV-replicating hepatocytes to a certain extent,

representing a novel therapeutic strategy that may effectively

target HBV infection (124). Other studies have shown that HBV

can promote miR-146a transcription, inhibiting STAT1 and

leading to IFN resistance. Therefore, this mechanism

represents a promising research target for recovering the

effects of IFN-a in HBV treatment (125). Moreover, the

homologous to the E6-AP carboxyl terminus and RLD domain

containing E3 ubiquitin-protein ligase 5-mediated modification

of HBx by ISG15 increased HBV replication, resulting in HBV

resistance to IFN-a therapy (126). Understanding the

interaction between HBV and ISGs and ISG regulation by
FIGURE 3

The regulatory pathways of ISGs.
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HBV to produce IFN antagonism will be helpful for further anti-

HBV research (Figure 3).
Discussion

As CHB can lead to immune impairment and tolerance,

immunomodulatory IFN therapy offers particular mechanistic

advantages in antiviral regulation than NAs, which cannot

directly target the viral cccDNA reservoir (10). Studies have

shown that IFN-a treatment can promote the degradation of

HBV pgRNA in transgenic mice and induce the epigenetic

inhibition of cccDNA in human hepatocytes both in vitro and

in vitro (127, 128). The PEGylated form of IFNs is an

immunomodulator providing the highest functional cure rate

over a fixed treatment period (129). However, IFN therapy also

has certain disadvantages. Loss of HBsAg associated with HBV

DNA suppression is a desirable outcome of antiviral therapy.

However, only 3%–11% of patients benefit from IFN therapy,

and most need to continue drug therapy indefinitely (130). PEG-

IFN-a is effective in only ~20% of patients, and its use is limited

by its side effects. Therefore, developing new therapies that can

be used in limited therapeutic courses to cure HBV infection is

imperative (131). IFN therapy requires new drug combination

strategies, IFN optimization, and more reliable biomarkers for

clinical diagnosis. New IFN subtypes and delivery methods can

be explored to improve the clinical effect of IFN treatment.

Besides, with the development of animal models, more and more

HBV animal models such as mice, chimpanzees, ducks,

woodchucks and monkeys have been used to study the

mechanism of IFN regulation of ISG, which helps us to

further understand the method of suppressing HBV in vivo.

Moreover, IFN-induced ISGs also play an important role in

HBV progression. An important research direction might be to

improve the efficacy of IFN treatment by ISGs targeting HBV.

Studies have shown that IFNs can achieve its powerful

antiviral performance by inducing ISGs, regulating the

immune response of the body, and acting directly on the

enhancer and promoter sequences of infected viruses (97).

Many ISGs are upregulated by IFN signaling and target

different phases of the HBV life cycle (132). ISGs can act as

effectors produced by IFN stimulation to exert a direct antiviral

effect. The overexpression of ISGs that inhibit HBV HBeAg

expression, including SAMD4A, MX2, IFI6, TRIM family

members, ISG20, miR-122, ADAR1, and IDO, is conducive to

the use of IFNs in HBV treatment. Other studies have shown

that ISGs such as MAVS, NT5C3, and SOCS3 attenuate the anti-

HBV effect of IFNs, and the downregulation of their expression

may be an effective treatment strategy.

In addition, the efficacy of IFN treatment against CHB varies

greatly among patients. Previous studies have shown that ISGs

may be related to the outcome and antiviral efficacy after HBV
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infection, making them promising biomarkers for predicting the

clinical efficacy of IFN treatment (120). However, HBV can also

regulate ISGs to inhibit IFN signal transduction and promote

viral proliferation. Hence, the mechanism of HBV acting on

ISGs can also be used as a breakthrough point for treatment

(122). Moreover, some important ISGs may contribute to the

development of adjuvants for viral vaccines. IDO expression is

increased in hemodialysis patients and affects the immune

response to HBV vaccination (133). In addition, the induction

of humoral and cellular immune responses to HBV vaccine can

be upregulated by the STING ligand cGAMP (134). Studies have

shown that ISG15 plays a critical role in MDA5-mediated

antiviral response, and this mechanism may facilitate the

development of new antiviral drugs and vaccines against

COVID-19 (135). Besides, toll-like receptor (TLR) has been

shown to control ISG mRNA levels, and a variety of vaccines

with TLR as adjuvants have been shown to be effective in

preclinical studies (136). It has also been demonstrated that

the regulation of constitutive ISGs in tumor cells contributes to

the enhancement of the antitumor response to Newcastle disease

virus-infected tumor vaccines (137). Therefore, the regulatory

mechanism of ISGs is a promising direction for the research of

HBV vaccine adjuvants. IFNs can induce many ISGs. At present,

only a few ISGs are associated with the antiviral activity of HBV,

and the related biology and antiviral action mechanism of most

remaining ISGs still need to be explored in depth. In addition, no

unified model for predicting the efficacy of IFN treatment on

CHB is available, and studies on the predictive efficacy of ISGs

are limited. Further basic and clinical studies are needed to

identify the target and mechanism of IFNs in HBV treatment by

the combined effect of IFNs and ISG regulation, which may be a

more promising strategy for clinical research to cure HBV.
Conclusions

HBV treatment remains an important medical problem.

IFNs are commonly used immunomodulatory agent that

suppresses HBV. The inhibitory mechanism of IFNs on HBV

is complex and includes regulating ISG to inhibit HBV, which

has received much attention. IFNs induces various ISGs to

reduce HBV transcription, replication, and translation.

Understanding the mechanism of ISG regulation of HBV will

help identify new targets that promote the therapeutic effect of

IFNs and develop new clinical strategies for HBV treatment.
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