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Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death

worldwide. Local ablation, such as radiofrequency ablation, microwave

ablation, cryoablation and irreversible electroporation, etc., are well

established in elimination and control of HCC. However, high recurrence

rate after local ablation remains the biggest challenge for HCC management.

Novel and effective therapeutic strategies to improve long-term survival are

urgently needed. Accumulating studies have reported the role of ablation in

modulating the tumor signaling pathway and the immune microenvironment

to both eliminate residual/metastatic tumor and promote tumor progression.

Ablation has been shown to elicit tumor-specific immune responses by

inducing massive cell death and releasing tumor antigen. Immunotherapies

that unleash the immune system have the potential to enhance the anti-tumor

immunity induced by ablation. Multiple combinatory strategies have been

explored in precl in ical and cl in ical studies. In this review, we

comprehensively summarize the latest progress on different mechanisms

under ly ing the effects of ab lat ion on tumor cel ls and tumor

microenvironment. We further analyze the clinical trials testing the

combination of ablation and immunotherapies, and discuss the possible role

of immunomodulation to boost the anti-tumor effects of ablation and prevent

HCC recurrence.
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Introduction

Liver cancers rank as the sixth most common cancers and

the fourth leading cause of cancer-related death, and remain to

be one of the few human malignancies still trending upwards

worldwide (1, 2). Nevertheless, with the advance of screening

technology and increased awareness of cancer surveillance, more

and more HCC could be detected at early stage, rendering

curative therapeutics applicable. In the 2022 update of BCLC

strategy for HCC management, local ablation still plays leading

part among the recommended curative treatments for early-

stage HCC (3). A vast range of percutaneous ablation techniques

have changed over the past decades, enabling improved local

control efficacy for more and more HCC patients. Study showed

that approximately 10% of HCC tumors ≤ 2 cm developed

intrahepatic metastasis, and about 27% of these tumors

developed microvascular invasion, which leads to repeated

recurrence in many HCC patients (4). Thus, adjuvant

therapies that could prevent HCC recurrence after curative

treatment could dramatically improve the prognosis. Of note,

in the era of immunotherapy, ablative techniques are gaining

more and more attention for their capability of boosting local

and systemic immune effects, which makes combination strategy

a promising weapon for HCC treatment. Herein, we

summarized the current status and progress of various

ablation and immunotherapy for HCC, discussed the rationale

for their synergistic anti-tumor effects, and conceived the current

trends and future prospects of their combination, hoping to shed

light on future studies for ablative immunotherapy to yield a

promising new era of HCC management.

Copious ablation therapeutics are feasible in clinic practice,

among which radiofrequency ablation (RFA) remains the

backbone of local ablation for early-stage HCC. Other ablative

techniques including microwave ablation (MWA), cryoablation

and irreversible electroporation (IRE) are also available for

various HCC cases. However, more data is needed for other

ablation choices to become the mainstay treatments of HCC. By

and large, two indications for these ablative therapies are

referred by guidelines, as first pick for single, very early

tumors < 2 cm or as a substitute to resection in early-stage

single tumors ≤ 4 cm, or 2–3 tumors ≤ 3 cm (5, 6). Typically,

ablation destroys tumor by chemical, electrical or thermal

technologies. RFA, MWA, laser and high intensity focused

ultrasound (HIFU) ablation deliver focal hyper thermic injury

to tumor cells (7, 8). Cryoablation (CRA) causes hypo thermic

damage to ablated cells while IRE is a non-thermal ablative

technique that destroys cell by changing cell permeability (8).

Chemical ablations mostly use ethanol and acetic acid

injections (9).
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Effects of ablation on HCC

This section presents a brief retrospect of traditional ablative

therapies for HCC, as well as newly emerging ablative

techniques, and discusses their traditional anti-cancer effects.
Radiofrequency ablation

RFA is the most widely adopted local ablation therapies for

HCC because of its superiority to other ablative treatment in

objective response rates and overall survival (10, 11). Moreover,

survival rate of RFA is comparable to that of surgical resection in

stratified patients (12). Being repeatable, more cost-effective, and

less invasive, RFA has been recommended as the first-line

therapy for early-stage HCC by AASLD and EASL guidelines

(5, 6). Complete response rates range from 70% to 90% and a

median overall survival of ~60 months have been reported (13,

14). Percutaneous RFA is performed by direct insert of

electrodes into the tumor tissue under the guidance of

ultrasound, computed tomography (CT) or magnetic

resonance. High-frequency alternating current at 375–480 kHz

from the electrodes generates temperatures between 60°C and

100°C to yield tumor necrosis (15). Traditional monopolar RFA

is limited in tumors ≤ 2–3 cm or near vessels (16). Cytotoxic

temperatures are hard to maintain when the ablated tumor is

near large blood vessels because flowing blood would adsorb the

heat energy, which is called heat sink effect6. Innovative

techniques including multibipolar RFA are developed to

improve ablation efficacy.

RFA destructs HCC cells by inducing hyperthermic injury,

which causes rapid protein denaturation, cell membrane

integrity loss, mitochondrial dysfunction, and inhibition of

DNA replication (17, 18). In addition, indirect or delayed

cellular damage play important parts in tumor damage after

thermal ablation. Potential mechanisms includes induction of

apoptosis, ischemia after vascular damage, ischemia–reperfusion

injury, and release of lysosomal contents and cytokines from

tumor cells and intruding inflammatory cells to stimulate further

immune response (17).

However, high recurrence of HCC after RFA has been

reported, with a 5-year recurrence rate of 50–70%, for which

insufficient RFA (iRFA) is mainly to blame1. During RFA, three

zones could be detected in heat-ablated lesions: central zone

suffers from coagulative necrosis with temperature ≥ 50°C;

transitional zone is exposed to sublethal heat stress and

induces reversible cell damage; the surrounding liver tissue

that is unaffected by sublethal heat6. iRFA endows HCC with a

more malignant phenotype, leading to drug resistance and worse
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prognosis. Several mechanisms have been reported involved in

HCC recurrence after iRFA. Activation of b-catenin, Akt, ERK1/

2, HIF-1a/BNIP3, MAPK, and NF-kB signaling pathways as well

as inhibition of STAT3 signaling pathways have been

demonstrated to promote HCC progression after iRFA (19–

25). Besides, ceRNA-mediated mechanisms including ASMTL-

AS1/miR-342-3p/NLK/YAP axis and GAS6-AS2/miR-3619-5p/

ARL2 axis are also uncovered (26, 27). Kuang’s team recently

reported transcription and translation regulatory mechanisms

working in HCC cells after iRFA. The sublethal heat treatment

increased the level of stress-induced phosphoprotein 1 (STIP1)

and heat shock protein 90 (HSP90), and promoted the formation

of STIP1-HSP90 complex, which transferred epithelial

transcription suppressor Snail1 into nucleus to modulate

mesenchymal gene transcription (28). In addition, sublethal

heat stress increased the m6A epigenetic modification of

epidermal factor growth receptor (EGFR) and promoted its

binding with YTHDF1, which enhanced the translation of

EGFR mRNA, leading to the migration and invasion of HCC

cells (29).

Endeavors to combat iRFA have been devoted recent years.

Nanotechnology and artificial intelligence (AI) based radiomics

have advanced greatly to counter iRFA. Deep learning radiomics

improve the accuracy of imaging guided identification of

ablation tumor boundaries and the accurate preoperative

prediction of prognosis for RFA and surgery, facilitating the

optimized decision making between them for HCC patients in

early stage. Liu et al. retrospectively enrolled 419 patients

examined by contrast-enhanced ultrasound (CEUS) within 1

week before RFA or surgical resection. The nomograms

incorporating radiomics signatures and clinical variables for

progression-free survival (PFS) prediction were built. The

proposed radiomics models and nomograms yielded accurate

preoperative prediction of PFS for RFA and liver resection (30).

Jiang et al. designed a nanobubble conjugated with colony-

stimulating factor 1 receptor (CSF-1R), called NBCSF-1R, for

HCCmargin detection, facilitating the determination of ablation

margin (31). Further, the combination of systemic or

immunotherapy would be a promising sally port to overwhelm

HCC recurrence after iRFA.
Microwave ablation

MWA generates heat through electromagnetic waves with

higher frequency (900–2,450 MHz), endowing it with several

advantages over RFA, including higher temperature for larger

ablation zone, shorter ablation time, and a lower susceptibility to

heat-sink effects (32). MWA created electromagnetic field to

force the polar molecules with intrinsic dipoles including

predominantly water within the tissue to keep realigning with

the oscillating electric field (32). MWA also destroy tumor cells

via the aforementioned heat-ablated mechanisms of direct
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hyperthermic damage. However, MWA-induced pro-

inflammatory cytokines including IL-1 and IL-6 is less

compared with that from the other ablative technologies (33).

Several trials found comparable treatment efficacy of MWA to

RFA by reporting similar primary endpoint and local tumor

progression at 2 years (33). However, phase III data is needed for

recommending this treatment in early-stage HCC with high level

of evidence.
Irreversible electroporation

IRE works through non-thermal manner. It delivers short

electric pulses of high-voltage field current between two

inserted electrodes and punches the cellular bilipid

membrane to induce cell apoptosis (34). Its non-thermal

mechanism lowers the risk of heat injury to the adjacent

tissue. For this, heat sink effect poses little influence on the

efficacy of IRE ablation. Therefore, IRE is better suitable for

HCC located at risk anatomical position. Jean-Charles Nault

et al. treated 58 patients with IRE and reported a complete

ablation rate of 92%, and 70% of the cases got tumor

progression-free survival at one year (35). In general, IRE

could be an alternative for HCC not suitable for thermal

ablation. Similar as WMA, large cohorts of patients with

longer follow-up are needed to evaluate the long-range

treatment efficacy of IRE.
Other ablative techniques

Real world data is limited for other ablative techniques to

date, including cryoablation, laser ablation and phototherapy. A

multi-center RCT comparing RFA and CRA observed

comparable results in overall survival and tumor-free survival

while a retrospective study with large cohort reported greater

advantage of CRA in HCC-specific survival in comparison to

RFA (36, 37). Phototherapy including photodynamic

therapy (PDT) and photothermal therapy (PTT) is a novel

and promising cancer therapy. Phototherapy destroys

tumor cells through photochemical or photophysical

effects (38). Nevertheless, these techniques are way far from

recommendation in daily clinical practice.
Effects of ablation on tumor
immune microenvironment

Accumulating studies have demonstrated the effect of

ablation in shaping the immune microenvironment. Tumor

neoantigen, cytokines and danger-associated molecular

patterns (DAMPs) induced by ablative therapies are
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recognized as the source of immune activation (7, 39). Besides,

ablation will also trigger physiological wound healing response

that regulates and maintains immunological tolerance

towards the damaged tissue (39). Different ablative therapies

triggered various immune responses in the tumor immune

microenvironment.
Immune responses induced by RFA

Among all the ablation therapies, RFA has been the most

widely used percutaneous ablation in early-stage HCC. To

investigate the dynamic changes of systemic immunity in HCC

patients after RFA treatment, Rochigneux et al. collected PMBCs

of 80 patients on the day before (D0), day after (D1) and month

after RFA, and detected the frequencies and phenotypes of

different immune cells. They found that an early dynamic (D0/

D1) of activated NKp30+ natural killer (NK) cells was associated

with decreased recurrence, while a late dynamic (D1/M1) of

immature CD56bright NK cells and altered PD-L1+myeloid-

derived dendritic cells (DCs) correlated with increased

recurrence (40). Another study also showed that RFA treatment

stimulated NK cell activation and differentiation, and the number

of NK cells with high level of activatory NK receptors and

enhanced cytotoxicity were significantly increased in peripheral

blood of HCC patients after RFA treatment (41). In addition,

CD4+ and CD8+ T cell response induced by ablation correlated

with clinical outcomes (42, 43). Although RFA could enhance

various tumor-associated antigens (TAA) -specific T cell

responses which contributed to improved recurrence-free

survival, this effect was not sufficient to prevent HCC recurrence

completely due to the short lifetime of TAA-specific T cells (44,

45). In addition, the number of TAA-specific T cells was inversely

correlated with the frequency of CD14+HLA-DR-/low monocytic

myeloid-derived suppressor cells (M-MDSCs), suggesting the

immunosuppression in tumor immune microenvironment (44).

Similarly, another study showed that in post-RFA recurrent HCC,

polymorphonuclear myeloid-derived suppressor cells (PMN-

MDSCs) were accumulated in the tumor microenvironment to

suppressed CD8+T cells, providing the immunosuppressive soil

for tumor progression (46). Mechanistically, RFA-mediated

heat treatment-induced methyltransferase 1 (METTL1)

overexpression, which subsequently translationally upregulated

transforming growth factor-beta 2 (TGF-b2) to induced PMN-

MDSCs and suppressed CD8+T cell proliferation (46).

In addition to cytotoxic lymphocytes, accumulating studies

have shown that ablation treatment could induce DC infiltration in

tumor and activate DCs to evoke anti-tumor immune responses

(47–49). Increased serum levels of tumor necrosis factor-alpha

(TNF-a), interleukin-1b (IL-1b), interferon-gamma (IFN-g), and
IL-2 were also observed, while the levels of Th2 cytokines including

IL-4, IL-6 and IL-10 were markedly decreased (50, 51).
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Vascular endothelial growth factor (VEGF) is an angiogenic

factor that regulates angiogenesis by inducing proliferation,

migration and permeability of endothelial cells. It has been

reported that VEGF was increased in HCC patients after RFA

treatment (52). VEGF also play a immunoregulatory role in

tumor microenvironment by inducing MDSCs, regulatory T

cells (Tregs), and mast cells, and inhibiting T cell function,

differentiation and activation of DCs (53, 54).
Immune responses induced by other
ablation therapies

As for other ablation therapies, cryoablation could induce

inflammatory and coagulative responses in liver (55).

Interestingly, study also found that elevation of circulating

PD-L1/PD-1 in hepatitis B (HBV)-associated HCC patients

after cryoablation correlated with poor prognosis (56). MWA

significantly increased CD3+T cells, CD4+T cells and IL-2 in

peripheral blood of HCC patients one month after treatment. In

addition, IL-4 and IL-10 levels were decreased after MWA,

indicating that MWA relieved immunosuppression in HCC

patients (57). Besides, MWA increased T helper 17 cells

(Th17) in HCC patients, and high frequency of circulating

Th17 cells was associated with tumor recurrence (58). Study

also found that the tumor-specific T cell response against TAAs

was more frequent in patients with a long-time remission (> 1

year) after MWA compared to patients suffering from an early

relapse, and correlated with improved PFS (59). Irreversible

electroporation not only effectively eliminated HCC but also

prevented tumor recurrence (60). On the one hand, IRE induced

tumor cell necrosis and release of DAMPs including adenosine

triphosphate (ATP), high mobility group box 1 (HMGB1) and

calreticulin to stimulate anti-tumor immunity. On the other

hand, IRE also alleviated immunosuppression by reducing Tregs

and PD-1+ T cells (60).

Substantial evidence phenotypically showed that ablation

induced immune cell changes and differential inflammatory

cytokines and chemokines expression in peripheral blood or

tumor microenvironment. In addition, ablation induces both

protective anti-tumor immune response and immune tolerance.

However, most studies have not yet explored the underlying

mechanisms. It’s conceivable that DAMPs or inflammatory

cytokines or chemokines induced by ablation may play the

pivotal role in reshaping the immune microenvironment.

Indeed, a few mechanistic studies reported that ablation affects

the immune microenvironment indirectly through the

regulation of cytokines or chemokines expression by residual

tumor cells (46, 60). However, the complex regulatory network

by ablation awaits further investigation in the future. Currently,

e fforts have been focused on developing adjuvant

immunotherapy to synergistically shift the equilibrium out of
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inhibitory immune modulation and elicit sustainable immune

response against tumor.
Combination of ablation and
immunotherapy

All ablation modalities generate tumor debris in situ, which

provides antigen depot also known as cancer vaccine to

stimulate immature DCs and naïve T cells that evoke

antitumor immunity (7, 39). However, immune responses

induced by ablative treatment are incapable of evoking robust

sustainable immune effects. In addition, tumors evolved to create

an immunosuppressive tumor immune microenvironment

favorable for tumor progression. Developing approaches that

counteract the immunosuppressive microenvironment

potentially boost ablation-induced anti-tumor immune

response (39).

Immunotherapy, either unleashes the own immune system

or adoptively transfers cytotoxic cells to fight cancers provides

the rationale for combination therapy. Different immune

strategies have been tested in many studies, including adoptive

cell therapy, immune checkpoint inhibitors (ICI), cytokines, etc.

Currently, immunotherapies have been mostly used in advanced

diseases, it’s also reasonable to use them in curative and adjuvant
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setting. Many clinical trials have been launched to investigate the

safety and efficacy of combination of ablation and

immunotherapy in HCC (Table 1).
Adoptive cell therapy

Adoptive cell therapy is an immunotherapy that uses

autologous immune cells which are modified or activated to

evoke anti-tumor immunity and eliminate tumor cells.

Cytokine-induced killer cells (CIK), tumor-infiltrating

lymphocytes (TIL), chimeric antigen receptors (CAR)-T cells,

DC vaccines are common forms of adoptive cell therapy.

CIK cells are a heterogeneous population of effector T cells,

which come from patients’ peripheral blood mononuclear cells

and can be expanded in vitro. CIK alone has been developed as

cancer immunotherapy as it exhibits major histocompatibility

complex (MHC)-unrestricted, safe, and effective anti-tumor

activity (61). In the recent years, CIK has also been

investigated as adjuvant therapy in treatment of HCC.

Adjuvant therapy using cytokine-induced killer cells are

derived from peripheral blood mononuclear cells (PBMCs) of

HCC patients and activated by IL-2 and anti-CD3 antibody. To

test the safety and feasibility of combination of RFA and

adjuvant autologous RetroNectin activated killer (RAK) cells, 7
TABLE 1 Clinical trials evaluating the combination of ablation and immunotherapy in HCC.

Trial ID Phase Study population Drug Recruitment
status

NCT03847428 III patients with HCC who are at high risk of recurrence after curative hepatic
resection or ablation

durvalumab in combination with
bevacizumab or durvalumab alone

Active, not
recruiting

NCT04150744 II advanced HCC RFA +PD-1 immunosuppressant
(carrizumab) or carrizumab alone

Recruiting

NCT03337841 II HCC before and after curative surgery or ablation Pembrolizumab Unknown

NCT03753659 II HCC patients who are candidates for local ablation via either RFA or MWA or
brachytherapy

Pembrolizumab or TACE Recruiting

NCT03630640 II advanced HCC treated by curative electroporation Nivolumab Active, not
recruiting

UMIN000026648 II HCC patients who showed a complete response after resection or RFA Nivolumab Completed

NCT03383458 III HCC patients who have undergone complete resection or have achieved a
complete response after local ablation, and who are at high risk of recurrence

Nivolumab Active, not
recruiting

NCT03867084 III HCC patients who have undergone complete resection or complete local ablation Pembrolizumab Recruiting

NCT04102098 III HCC patients who have undergone complete resection or have achieved a
complete response after local ablation, and who are at high risk of recurrence

atezolizumab plus bevacizumab Active, not
recruiting

NCT02821754 II HCC or Biliary Tract Carcinomas (BTC) Durvalumab + Tremelimumab Active, not
recruiting

NCT04220944 I Unresectable HCC treated with MWA combined with simultaneous TACE Sintilimab Recruiting

NCT03939975 II advanced HCC pembrolizumab or nivolumab or
JS001

Completed

NCT03864211 I/II unresectable HCC Toripalimab Active, not
recruiting

NCT04652440 II HCC Tirelizumab Recruiting

NCT01853618 I/II advanced HCC Tremelimumab Completed
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HCC patients were recruited in the trial. RAK cells were

transfused to primary HCC patients intravenously after RFA.

During a seven-month follow-up, no severe adverse events,

recurrences or deaths were observed, suggesting the feasibility

and safety of the combined therapeutic strategy to prevent HCC

recurrence (62). In 2008, Weng et al. launched a clinical trial

which recruited 85 HCC patients after transcatheter arterial

chemoembolization and RFA. Autologous CIK cells were

transfused to patients via hepatic artery. After infusion, CD3+,

CD4+, CD56+, CD3+CD56+ cells, and CD4+/CD8+ ratio were

significantly increased, resulting in a reduction of HCC

recurrence (63). A study in Korea recruited 230 patients with

HCC treated by surgical resection, radiofrequency ablation, or

percutaneous ethanol injection, and patients were administered

with control or CIK therapy respectively. The median time of

recurrence-free survival was significantly improved from 30.0

months to 44 months (64). In another clinical trial, 62 patients

diagnosed with HCC were treated with RFA alone or combined

with CIK. The combination of sequential CIK with RFA

improved progression-free survival, and reduced Hepatitis C

(HCV) viral load in some patients (65). Consistently, a similar

clinical trial also showed that autologous CIK cells after RFA

treatment prolonged the RFS of HCC patients (66). These

positive clinical results suggested the potential of this

combined treatment in prevention of HCC recurrence (65).

The DC and T cell adoptive transfer have also been studied

in HCC. In a phase II clinical trial, Peng et al. investigated the

combination of neoantigen-based DC vaccination and adoptive

T-cell transfer as adjuvant therapy after RFA or surgical

resection of HCC patients. This combination therapy

successfully induced neoantigen-specific immunity and

prolonged disease-free survival in responders without severe

side effects, indicating that neoantigen-based combination

immunotherapy is feasible, safe, and has the potential to

reduce HCC recurrence after curative treatment (67).
Immune checkpoint inhibitor

The development of ICIs has revolutionized the treatment of

cancers and provides unprecedented extension of patient

survival. Immune checkpoints are common part of the

immune system which regulate T cell activity. ICIs achieved

great success in treating various types of solid and liquid

malignancies. ICIs work by releasing the inhibitory brakes of T

cells and also activating other innate and adaptive immune cells,

which orchestrate an effective immunity to eliminate tumors

(68). Many studies have reported the positive results of ICIs as

the first-line treatment in advanced cancers. And increasing

studies have been investigating the efficacy of ICIs as

combination with curative treatment (listed in Table 1).

In some trials, positive clinical results have been observed in

advanced HCC patients who received cytotoxic T-lymphocyte-
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associated protein 4 (CTLA4) blockade (Tremelimumab)

combined with RFA, accompanied by remarkably reduced

HCV viral load. In addition, the combined treatment increased

CD8+T cells infiltration in tumor (69). However, some of these

patients also received cryoablation and/or transarterial

chemoembolization (TACE). In another study, it showed that

RFA induced anti-tumor immune response which was strongly

enhanced by CTLA4 blockade, contributing to long-lasting

tumor protection (70). For advanced HCC patients, anti-PD-1

(programmed cell death protein 1) antibody is one of the

second-line therapies after sorafenib failure. Lyu et al. found

that additional ablation increased response rate with tolerable

toxicity and improved survival in these patients (71). Many trials

are still under investigation and results of these trials will be

public within the next few years.

In preclinical model, Huang et al. reported that the

combination of MWA and anti-PD-1 antibody significantly

ameliorated distant tumor growth and elevated Th1 cytokines

in peripheral blood in mouse HCC model (72).
Other immunotherapies

Multiple studies also investigated the efficacy of other

adjuvant immunotherap ies af ter ab la t ion . CpG B

oligonucleotides, a toll like receptor 9 agonists, has been tested

in a rabbit VX2 hepatoma model. It showed that RFA alone

could induce the secretion of Th1 cytokines, while CpG

treatment increased IL-8 and IL-10 levels. In addition, the

combination of CpG and RFA significantly reduced tumor

burden and even prevented subsequent tumor metastasis, and

thus improved survival (73).

Several chemokines were also used in cancer treatment for

their ability to attract immune cells such as DC and cytotoxic T

cells to augment anti-tumor immunity. It was reported that RFA

alone could not only eradicate the treated ipsilateral tumors, but

also inhibited the growth of contralateral non-RFA-treated

tumors with increased T-cell infiltration. Additional injection

of ECI301 (an active variant of CC chemokine ligand 3) after

RFA significantly augmented RFA-induced anti-tumor immune

responses and increased CCR1-expressing CD11c+ cells in

peripheral blood and tumors. Deficiency of CCR1 impaired

the accumulation of CD11C+, CD4+ and CD8+ cells in tumors,

indicating that ECI301 augmented tumor-specific immune

responses through CCR1-mediated DC accumulation in

tumor (74).
Perspective/conclusive remarks

The therapeutic strategies of HCC are evolving rapidly. The

rationale for combination of ablation and immunotherapy is

sound. Ablation promotes production of proinflammatory
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cytokines and antigens, which activated anti-tumor immunity.

Tyrosine kinase inhibitors (TKIs) or immunotherapies, which

modulates the tumor microenvironment by increasing effector T

cell infiltration and decreasing immunosuppressive cells, further

enhances anti-tumor immune response.

However, some issues need to be further investigated,

including the timing of ICB administration, biomarkers that

could predict therapeutic effects and management of adverse

events. Immune profiling after ablation is essential for

development of combination therapies that boost anti-tumor

immunity (75).

In the recent years, various types of immunotherapies have

come to the stage of HCC treatment, such as Lymphocyte-

activation gene 3 (LAG-3), T cell Ig and ITIM domain (TIGIT)

or T cell immunoglobulin domain and mucin domain-3 (TIM-

3) blockade, chimeric antigen receptor T cell (CAR-T) therapy,

adoptive cell therapies using NK cells, NKT cells, or gd T cells,

oncolytic virotherapy, cancer vaccines, etc (76, 77). These novel

therapeutic strategies also show great potential to synergize with

ablation in the treatment of primary and metastatic HCC.

Increasing clinical trials are actively underway and may offer a

paradigm shift in the management of HCC.
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