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Promising strategy for
developing mRNA-based
universal influenza virus
vaccine for human population,
poultry, and pigs– focus on
the bigger picture

Nino Rcheulishvili , Dimitri Papukashvili , Cong Liu, Yang Ji,
Yunjiao He* and Peng George Wang*

Department of Pharmacology, School of Medicine, Southern University of Science and Technology,
Shenzhen, China
Since the first outbreak in the 19th century influenza virus has remained

emergent owing to the huge pandemic potential. Only the pandemic of 1918

caused more deaths than any war in world history. Although two types of

influenza– A (IAV) and B (IBV) cause epidemics annually, influenza A deserves

more attention as its nature is much wilier. IAVs have a large animal reservoir

and cause the infection manifestation not only in the human population but in

poultry and domestic pigs as well. This many-sided characteristic of IAV along

with the segmented genome gives rise to the antigenic drift and shift that

allows evolving the new strains and new subtypes, respectively. As a result, the

immune system of the body is unable to recognize them. Importantly, several

highly pathogenic avian IAVs have already caused sporadic human infections

with a high fatality rate (~60%). The current review discusses the promising

strategy of using a potentially universal IAV mRNA vaccine based on conserved

elements for humans, poultry, and pigs. This will better aid in averting the

outbreaks in different susceptible species, thus, reduce the adverse impact on

agriculture, and economics, and ultimately, prevent deadly pandemics in the

human population.
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Introduction

The outbreaks of influenza viruses recur annually and give

rise to worldwide health issues and economic losses (1).

Influenza has posed a global threat since the 19th century,

resulting in hundreds of thousands of deaths and millions of

severe cases annually (2). Indeed, as a zoonotic respiratory

disease, influenza has great pandemic potential and poses the

threat to humans as well as animals (3) which ultimately

increases the reassortment risk of genome segments,

transmissibility to humans, and facilitates the emergence of

new pandemics. There are four types of antigenically distinct

influenza viruses (A, B, C, and D) (4) out of which two types

are regarded as health threats. Particularly, influenza A and B

are the cause of seasonal epidemics while A provokes

pandemics. The reason for global pandemics is the biology of

influenza virus itself. Their segmented RNA genome enables

frequent antigenic changes (5–7). For this reason, the seasonal

vaccines are developed annually based on the expected

circulating strains (8) of two influenza A viruses (IAVs)–

H1N1 and H3N2, and two influenza B viruses (IBVs)–

Victoria and Yamagata lineages. Because of the strain

mismatches (9), the effectiveness is usually no more than

60% (10, 11). Conventional vaccines against influenza are

also available for veterinary use, however, they are based on

specific strains, hence, are highly strain/subtype-specific (12).

Recently, nucleic acid vaccines draw special attention.

Particularly, mRNA vaccines have been developed to be a

highly potent, cost-effective, and safe alternative to

conventional vaccines against infectious diseases (13–15).

The current coronavirus disease 2019 (COVID-19) pandemic

has demonstrated that mRNA vaccines have advantages over

nucleic acid vaccines and compared to the other types of

vaccines: their production is fast and manufacturing is cell-

free; the host cell acts as a factory to produce antigen after the

vaccination; it does not pose a risk of transportation into

the nucleus and genomic integration as after delivery into the

cytoplasm the mRNA is directly translated into the desired

antigen protein (16). Therefore, considering its promising

potential, the development of an mRNA vaccine against

influenza undoubtedly makes sense (17, 18). Importantly,

IAVs circulate not only in humans but also in a wide range

of animals out of which domestic poultry and swine pose a

significant risk for the spread of highly pathogenic strains as

well as evolving new subtypes. Similar to the human influenza

vaccines, there is no universal vaccine that could elicit

protection against all the highly pathogenic avian influenza

virus (HPAIV) strains in poultry. HPAIV epizootics have

already caused financial loss to agriculture worldwide. The

vaccination in ovo or intramuscularly (i.m.) seems to protect

the chicken from HPAIVs but these vaccines are strain-specific
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(19). Hence, the absence of broad-spectrum vaccines poses a

threat of a panzootic (20). Pigs, on the other hand, often

become “mixing vessels” for the origination of the new

pandemic influenza viruses as they have receptors for both

avian and human IAVs (12, 21), thus, their vaccination is of

great importance. Furthermore, the most serious impacts of

influenza viruses on humans emerge from the IAVs. Most

importantly, HPAIVs have already been evidenced to cross the

species barrier to infect humans (21). HPAIVs are

characterized by high mortality in poultry and in the human

population too. The HPAIVs infections have already occurred

in alerting number of humans (22–25). E.g., between the years

2003 and 2022, 865 cases of human infection with only H5N1

were reported worldwide. Out of these cases, 456 were fatal.

From 2013 to date, 1,568 confirmed human cases of H7N9 have

been reported where 616 were fatal (26). According to the

world health organization (WHO), the pandemic of HPAIV

seems to be impending (21). Being the first line of defense, the

right strategy of immunization is the best available

prophylactic measure against IAVs (27). Vaccination of

poultry (28) and other vulnerable and key animals along with

humans with the universal mRNA vaccine will reduce the

excretion of IAV in infected animals as well as raise the

threshold of viral load that is necessary for its infectivity.

Consequently, it will prevent the spillover on humans and

allow to avert epidemics and pandemics. Hence, this review

addresses the differentiation of IAV and avian influenza virus

(AIV), the current situation of vaccine development,

emergence of HPAIVs, and proposes a promising strategy of

preventing future epidemics/pandemics and epizootics/

panzootics via application of universal mRNA vaccine based

on conserved elements.
Influenza viruses– classification,
structure, and emergency

There are four genera of influenza viruses in the family of

Orthomyxoviridae– Alphainfluenzavirus, Betainfluenzavirus,

Gammainfluenzavirus, and Deltainfluenzavirus. Each of these

genera comprises the species– influenza A, B, C, and D viruses,

respectively. C and D influenza viruses are not considered to be a

threat to humans as type C is not known to cause human

epidemics while type D does not infect the human population.

On the contrary, IAV and IBV are the types of concern as both of

them are the reason for seasonal epidemics that results in up to

500,000 deaths around the world annually (2). Among these two

types, IAV is the most prevalent and dangerous that is followed

by IBV. The contagiousness of IAV and IBV as well as disease

symptoms are similar in both cases. The flu symptoms include

fever, cough, sore throat, nasal congestion, fatigue, vomiting, and
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diarrhea, while the complications are pneumonia, sinus

infections, exacerbation of chronic conditions such as asthma,

heart failure, etc. (29). The general differences of IAV and IBV

are illustrated in Figure 1. Influenza viruses are negative-sense

segmented RNA-containing viruses. IAV and IBV cannot be

distinguished virtually and their genome comprises eight

segments of RNA, each is responsible for encoding two

di fferent g lycoprote ins– hemagglut in in (HA) and

neuraminidase (NA) that are protruded on the viral surface

and play a major role in viral entry and egress, respectively (30,

31); matrix (M2) ion channel protein which enables the proton

transport and balances pH across the viral envelope during the

entry into the host cell and exit (32); matrix (M1) protein

which makes the scaffold beneath the virus membrane and

helps the virus in the trafficking of the genome segments in the

cell (33, 34); RNA-dependent RNA polymerase complex

encompassing one “polymerase acidic” (PA) and two

“polymerase basic” (PB1 and PB2) subunits; nucleoprotein

(NP) that coats the viral RNA segments (4, 7); nuclear export

protein (NEP) which regulates the transport of viral

ribonucleoproteins from the nucleus and allows packaging of

progeny virions (7). Importantly, the classification of IAVs into

subtypes comes from their structure (35). Particularly, it is

based on the subtypes of surface proteins HA and NA. There

are 18 different subtypes of HA and 11 different subtypes of NA

meaning that there are potentially 198 subtypes of IAV out of
Frontiers in Immunology 03
which 131 have already been detected in nature (35). The

classification of influenza viruses along with the influenza

viruses of concern is given in Table 1.
Genetic reassortment, influenza in
poultry and pigs

Among all types of influenza viruses, IAVs are the most

prevalent (36, 37), associated with sporadic pandemics, and have

the largest animal reservoir (37, 38). Particularly, wild aquatic

birds are a large source of IAVs. All known IAV subtypes are

found in birds except for H17N10 and H18N11 which have only

been detected in bats (39). Usually, the low pathogenic AIV

(LPAIV) and HPAIV do not cause any symptoms in wild birds

while HPAIV is lethal for domesticated birds (40). Influenza as

bird flu was first described in 1978 in northern Italy. It was

reported as a highly mortal contagious disease in poultry and

was called the “fowl plague”. In the 20th century, it was known

that this plague was induced by the virus and later demonstrated

to be IAV (39, 40). The extreme divergence of IAVs arises from

two major mutational mechanisms that are antigenic drift and

antigenic shift. The first implies the accumulation of small

mutations that lead to changes in the surface glycoproteins.

The latter denotes major abrupt changes caused by a direct jump

from an animal strain to humans or the genomic reassortment of
FIGURE 1

Illustrated schematic differences between IAV and IBV. The trimeric HA (deep purple) and tetrameric NA (magenta) are present as protruded
glycoproteins. IAV, influenza A virus; IBV, influenza B virus, HA, hemagglutinin; NA, neuraminidase.
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RNA segments between two or more influenza strains in the

same cell resulting in new HA and/or NA glycoproteins and new

unpredictable characteristics (41, 42). Antigenic drift gives rise

to seasonal epidemics while antigenic shift emerges the

pandemics (43). The names of pandemic influenza strains are

generated according to the species where this genomic

rearrangement takes place. This is the reason why the

pandemic H1N1 was called swine flu in 2009– the pig played

the role of mixing vessel for swine, human, and avian viruses (4,

12, 41, 44). On the other hand, except for the important role of

the pigs in the adaptation of IAVs to humans and other

mammals, their infection itself causes a huge economic loss in
Frontiers in Immunology 04
pig production worldwide (45). The currently circulating strains

H1N1, H3N2, and H1N2 are also called swine flu (45). The

schematic illustration of these two processes is given in Figure 2.
Common flu vs. avian flu– IAV vs.
AIV

Kennedy Shortridge– Professor Emeritus at the University of

Hong Kong spent his life studying influenza viruses and

demonstrated that most of the IAVs, including pandemic H1,

H2, and H3 subtypes could be isolated from healthy poultry,
FIGURE 2

Schematic illustration of antigenic drift and shift in IAVs. In the left panel antigenic drift is demonstrated which results in small changes in viral
glycoproteins. In the right panel, two forms of antigenic shift are exemplified. Upper panel: direct jump of IAV strain from an animal to a human.
Down panel: More complex form of antigenic shift– two different IAV strains infect the same animal (pig) which becomes a “mixing vessel” and
genetic reassortment takes place. The “mixing vessel” then can transmit the new strain of IAV to another species, e.g., humans. IAVs, influenza
A viruses.
TABLE 1 Classification of influenza viruses and subtypes of concern.

Genus

Alphainfluenzavirus Betainfluenzavirus Gammainfluenzavirus Deltainfluenzavirus

Species

Influenza A virus Influenza B virus Influenza C virus Influenza D virus

Subtypes Lineages Do not cause human epidemics Usually do not cause illness in human

H1N1
H1N2
H2N2
H2N3
H3N1
H3N2

H5Nx
H7N1
H7N7
H7N9
H9N2

Victoria Yamagata
The highly pathogenic subtypes (HPAIVs) of concern are marked in bold.
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meaning that the poultry remained apparently healthy, without

manifestation of any clinical signs. Additionally, he postulated

that southern China created the optimal environment for

interspecies transmission where pigs and ducks lived near

humans in the area of rice farms (46). Indeed, H5N1– the

most well-known strain of HPAIV was first isolated from a

farmed goose in Guangdong Province, China in 1996. This was

also corroborated via the first human infection of H5N1 in Hong

Kong in 1997 with a ~60% mortality rate from the live poultry

markets while the poultry itself remained apparently healthy

(46). Since then, sporadic spillovers have been reported around

the world that account for approximately one thousand infected

people with H5 and H7 subtypes since 1997 (47).

To expound on the terms IAV and AIV, it should be

mentioned that technically, they are the same. AIV belongs to

IAV but more commonly is used to denote the influenza viruses

that infect birds and display symptoms. The symptoms and

complications of IAV in humans and poultry are listed in

Table 2. Based on their pathogenicity, AIV strains are divided

into two types– LPAIV and HPAIV. Although it has been

postulated that the influenza viruses have caused human and

animal infections since ancient times (48, 49), the worst

pandemic in the world is the so-called Spanish flu which killed

40 to 100 million people worldwide (5, 50, 51) exceeding the

death toll during the world war II– the deadliest war in the

world. On the other hand, if we consider that H1N1 which is

LPAIV was the reason for the mentioned pandemic, we can only

imagine what can be the outcome if H5N1 or other HPAIVs

spread in the human population massively. Furthermore, the

outbreaks in poultry and pigs have caused economic losses. The

H5N1 has already given a clear warning of its emergence and to

increase pandemic preparedness (21). Initially, H5N1 in

chickens caused only mild symptoms, such as reduced egg

production and ruffled feathers in poultry, hence, it escaped

detection. But after a long time of circulation among poultry, it

has become HPAIV with 100% lethality within 48 h after

infection (21). Fortunately, when the spillover of H5N1

happened in 1997, killing all the chickens in the markets
Frontiers in Immunology 05
halted the spread of HPAIV to humans. However, it is just a

matter of time before the outbreak takes place again. Indeed, in

2013, another HPAIV H7N9 was transmitted to humans and

caused hundreds of deaths since then. Notably, there are other

HPAIVs– H5Nx such as H5N6 (52–54), and H5N8 that infect

poultry, and inter-species transmission to humans has already

occurred (43). Until now, among all the HPAIVs, H5Nx and

H7N9 are perceived to pose the highest danger.
Timeline of pandemic IAVs

Pandemics affect the world population in multiple ways.

Except for the direct influence on the health and lives of the

people, a severe pandemic has a negative impact on all sectors of

the economy, including agriculture, manufacturing, rapid price

increases, shortages of goods, etc. Hence, pandemics have more-

less similar outcomes as the World Wars (55). Evidently, the

likelihood of pandemics has been increasing over time along

with increased urbanization, global travel, and enhanced

exploitation of the natural environment (56). Apparently, this

tendency is going on and intensifying over time which also

increases the risk of more pandemics. Recent examples are the

currently ongoing COVID-19 pandemic caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) (57), the

monkeypox virus outbreak in 2003 which originated from

contact with pet prairie dogs (58, 59), and the current multi-

country outbreak of the monkeypox (60) when in July 2022

WHO declared it a global health emergency (61).

History has been capturing the circulation and emergence of

IAVs since the pandemic of H1N1 in 1918, although the actual

story of IAVs has begun long before 1918. Following the so-

called Spanish flu, the next IAV pandemic emerged in 1957 via

the spreading of H2N2 in Asia due to the reassortment between

avian and human genes of the virus. In 1968, H2N2 was followed

by the H3N2 emergence which is called the Hong Kong

pandemic (62). In 1977, H1N1 reemerged in Russia (63)

which was followed by the swine flu pandemic in 2009. The
TABLE 2 Common flu vs. avian flu, symptoms and complications in humans, poultry, and pigs.

Humans Poultry Pigs

Symptoms Fever
Cough
Sore throat
Nasal congestion
Fatigue
Vomiting/diarrhea

General decrease in activity
Reduction of appetite
Wet eyes
Excessive flock huddling
Ruffled feathers
Decrease in egg production
Coughing

No symptoms
Fever
Coughing/sneezing
Discharge from nose
Eye redness

Complications Pneumonia (viral and/or bacterial)
Ear infections
Sinus infections
Exacerbation of chronic conditions

Blueness of the head area
Fluid in the comb and wattles
Legs bleeding underneath the skin
Sudden death

Refusal to eat
Breathing difficulties
Depression
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precursor gene (avian-human-swine) segments have circulated

in pigs for over 10 years and, as a result, H1N1/2009 was

generated in swine via multiple reassortments over time (64).

In the meantime, the major spillover events of two HPAIVs–

H5N1 and H7N9 took place in 1997 and 2013, respectively. The

timeline of IAVs which already caused pandemics and IAVs

with pandemic potential is given in Figure 3. This chronology

demonstrates that it is only a matter of time before a future

pandemic will occur. It can be emerged by the accumulation of

mutations or genetic reassortment.
Previous efforts of developing a
universal influenza vaccine

The best approach for the prevention of influenza infection

is vaccination. Being a global burden due to its high mutation

and genetic reassortment capacity, efforts on developing

advanced and more universal vaccines for the influenza virus

is always ongoing. Since 1938 when the first monovalent IAV

vaccine was developed, research on improving the immunization

strategy is in the process (65). The current influenza vaccines are

quadrivalent and based on two strains of IAV and two strains of

IBV as described above. Despite the sufficient safety of the

current annually formulated vaccines, they elicit only

moderate or low efficacy (65). This is conditioned by the strain

mismatches between the circulating strain and the strain which

is used for the formulation of the vaccines annually. Currently,

the seasonal influenza vaccines are formulated based on the

expected IAV and IBV circulating strains for the coming year

(8). The current seasonal conventional vaccine technology is

egg-based, cell-based, or recombinant. Available conventional

vaccines for poultry are based on the following five technologies:
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The whole AIVs are grown in embryonated chicken eggs which

are then chemically inactivated and adjuvanted, HA DNA

vaccines, HA protein vaccines or virus-like particles which are

produced in insect cells, defective-replicating alphaviruses with

H5 gene of AIV, and live virus vectors expressing HA of AIV

based on recombinant technologies (e.g., recombinant

Newcastle disease virus and Fowl-pox virus) (66). The

influenza vaccines for pigs are also based on traditional–

inactivated or killed virus-based technology (67, 68).

Apparently, all these conventional vaccines are based on

specific strains and are highly strain or subtype-specific.

Developing the partially or truly universal influenza vaccine

that would elicit broad protection remains a big challenge.

Currently, there is a number of studies on potentially universal

influenza vaccines with promising results in preclinical (69, 70)

and clinical development (71–73), however, the universality of

the vaccines is limited to subtypes or strains. The ongoing efforts

on developing universal vaccines are based on the conserved

elements. Indeed, Skarlupka et al., have demonstrated that the

influenza vaccine based on the conserved NA elicited protection

in BALB/c mice after the challenge (69). Lo et al., have

immunized BALB/c mice intranasally with a recombinant

adenovirus expressing the conserved NP and M2 antigens of

IAV and showed that the vaccine induced a protective and long-

lasting immune response (70). Moreover, Nachbagauer et al.,

performed a randomized, multicenter, placebo-controlled,

observer-blind clinical trial to evaluate the immune responses,

safety, and immunogenicity of chimeric HA-based vaccine

(NCT03300050). The principle of the immunization strategy

was to vaccinate the subjects with pre-existing H1 immunity

using HA containing H1 head and H1 stalk domains as a prime

dose. The second dose of vaccine contained the same stalk but

H8 head, while the additional booster dose contained the same
FIGURE 3

Schematic illustration of pandemic IAVs and IAVs with the pandemic potential. IAV, influenza A virus.
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HA stalk but H5 head. This way, the chimeric HA-based vaccine

induced high anti-HA-stalk IgGs. As the stalk of HA is highly

conserved compared to the head domain, it elicited broad

reactivity. Vaccination induced a strong, long-lasting, and

broad immune response (73). Freyn et al., showed the broad

protection induced by the nucleoside-modified mRNA-LNP

vaccine based on conserved antigens (HA stalk, NA, NP, and

M2) from a viral challenge (10). Evidently, the universality of the

influenza vaccines is mainly based on the conservancy of the

antigens. However, the protection range of the vaccine

candidates developed in previous studies is still limited to

specific strains.
Towards developing the universal
influenza vaccine– design of
potentially universal influenza
vaccine based on conserved
elements

The abovementioned information rationalizes the need for a

universal vaccine. Therefore, the development of a relatively or

truly universal vaccine that will protect the population, the

poultry, and swine from the IAV infection is indeed necessary

(74). Hence, this type of vaccine could significantly decrease the

inter-species transmission risk and advance protection. As IAV

is characterized by an extremely high mutation rate, the

development of a vaccine that is based on the conserved

epitopes of IAV antigens, including the most important strains

(H1N1, H2N2, H3N2, H5N1, H7N9) would be rational. On the

other hand, considering the recent advancement of nucleic acid

vaccines, especially mRNA vaccines (14, 15, 75–77) the

formulation of a potentially universal IAV vaccine based on

mRNA technology seems reasonable. Indeed, there are mRNA

vaccines under development against IAVs (H10N8 and H7N9)

that elicit strong humoral immunity in clinical trials

(NCT03076385 and NCT03345043) (78, 79).

mRNA technology has proved its advantageous properties

including favorable safety, low-cost manufacturing, high

potency, and rapid development during the current COVID-

19 pandemic (14, 15, 75–77). Indeed, the broad application of

mRNA-based therapeutics makes an immeasurable

advancement for human well-being (17). Since the landmark

experiment of Robert Malone and colleagues in 1987 who mixed

mRNA with the synthetic cationic lipid incorporated into

liposome and observed that the transfection in NIH 3T3

mouse cells and the protein expression was successful (80), it

took decades of research until finally, the emergency

authorization of mRNA vaccine took place in 2020 for

COVID-19 pandemic. During this time, several key

achievements were attained that played a crucial role in the

development of mRNA-based technology. One of these events
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was biochemist Katalin Kariko’s work in the 1990s which served

the transformation of mRNA into a drug platform. In 1997, she

with immunologist Drew Weissman tried to develop an mRNA

vaccine against the human immunodeficiency virus (HIV) but

resulted in strong inflammatory reactions in mice. Later they

developed an excellent strategy for mRNA development via

altering the part of mRNA– nucleoside modification which

allowed mRNA to escape the innate immune response and

increase translational capacity (81). The current COVID-19

mRNA vaccines– BNT162b2 and mRNA-1273 developed by

BioNTech/Pfizer and Moderna, respectively, incorporate the

modified nucleobase N1-methylpseudouridines (Ys) that

enhance immune evasion, protein production, and overall

effectiveness (82). Although there was no approved mRNA

vaccine until COVID-19 emerged, nowadays, effective mRNA

vaccines are used worldwide and unquestionably represent a

landmark in vaccine history. The simplicity and time-

effectiveness of the mRNA platform among a number of

advantages make it a favorable strategy that will solve number

of issues related to infectious and non-infectious diseases. For

the design of mRNA vaccine, first, the viral antigen(s) should be

selected reasonably. The open reading frame (ORF) of the

selected antigen will be used in the design of mRNA vaccine.

In order to increase the immunogenicity of the vaccine, other

immunogen might be adjoined to the mRNA construct. Except

for the ORF, the mRNA construct consists of 5’ and 3’

untranslated regions (UTRs), poly-adenosine (poly-A) at the 3’

end which increases the stability of mRNA, and a 5’-cap which

provides protection from the degradation and helps ribosomal

recruitment (82). Plasmid DNA expressing the gene of interest is

synthesized and transformed into DH5a competent E. coli strain

for amplification. Then it is extracted, purified, and linearized

before in vitro transcription (IVT) of mRNA is conducted.

When protein expression after cell transfection is validated, a

delivery system should be applied before the i.m. immunization

of experimental animals. The current mRNA COVID-19

vaccines are encapsulated in lipid nanoparticles (LNPs) (13).

Ultimately, mRNA is delivered to the target cells where it does

not need to be transported into the nucleus, instead, it is directly

translated into the cytoplasm, eliminating the risk of genomic

integration (16). The body itself becomes a bioreactor of the

immunogen that saves time for vaccine production. Moreover, it

is degraded by the normal cellular processes and its in vivo half-

life can be regulated by modifications and delivery methods (14).

mRNA can have a certain self-adjuvant effect and induces

favorable humoral and cellular immune responses (83). Owing

to the capacity to encode any protein of interest, it can

recapitulate the expression of the desired influenza antigens

similar to the viral infection. Hence, fast, cell-free

manufacturing process and production along with safety,

efficacy, cost, and time-effectiveness (83) along with other

features make mRNA vaccines prominent among nucleic acid

and conventional immunization strategies. It is noteworthy that
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currently there are excellent immunoinformatics tools available

to find the conserved sequences in the selected viral antigens

(84–86). After the selection of the appropriate conserved amino

acid sequences, they can be used to find the epitopes that contain

conserved sequences or predict the epitopes on the immune

epitope database (IEDB) (87). After the design of the mRNA

vaccine which contains the selected conserved epitopes of IAV

antigens, the final construct can be optimized by including

preferable linkers to adjoin the epitope sequences (88–92), 3’

and 5’ UTRs (93), in silico analysis and immune simulation can

be performed to predict the immunogenicity, allergenicity,

protectiveness, binding capacity to the host receptors, and

other necessary features of the vaccine (91, 94–106). In vivo

study will eventually validate the proposed potentially universal

mRNA vaccine against all or selected subtypes of IAVs.

Immunization of the human population, poultry, and pigs

with the same potentially universal influenza vaccine might

elicit protective immunity against various strains of IAVs and

eliminate the need for seasonal re-formulation of vaccines.

Remarkably, the universal influenza virus vaccine candidates

that are based on conserved elements of viral antigens including

a stalk of HA (73), NA (69), NP, and M2, are currently in clinical

and preclinical development (72). The additional reason and

motivation for developing the universal vaccine candidate based
Frontiers in Immunology 08
on mRNA technology are the successful and effective application

of current mRNA vaccines against COVID-19 (75–77).

Evidently, effective mRNA vaccines represent a milestone in

vaccinology and their application for the development of a

potentially universal influenza vaccine candidate based on

conserved epitopes seems reasonable. The schematic

illustration of the strategy for the development of the universal

influenza vaccine is shown in Figure 4.
Summary

Even though much of the work has already been done for the

preparedness for influenza outbreaks, the set goals seem to be short-

term, and works across many fields lack the focus on the wider

picture. The realignment of vaccination strategies as proposed here

will work for the common well-being of the human population and

animals in terms of pandemic and panzootic prevention.

Undoubtedly, it is surpassing to prevent disease in healthy

populations than to make an effort to treat disease in an already

sick population. Here, we provide the rationale for a potentially

universal immunization strategy for overcoming IAV infections in

the human population, poultry, and pigs as well as for averting

crossing the species barrier. The proposed strategy will aid in
A

B C

FIGURE 4

Steps towards developing universal mRNA IAV vaccine. (A) Steps that are necessary to gradually achieve the universality of the influenza vaccine.
The deeper green color of the box represents the increasing universality of the vaccine. The box with the red outline corresponds to the
strategy proposed in this manuscript. Step I– enhanced durability of the influenza vaccine can be achieved by the immunization with nucleic
acid and protein vaccines with a prime-boost regime. Step II– a vaccine which will be effective against H1 and H3 subtypes can be based on
headless HA and/or M2 ectodomain due to the conservancy of these antigens. Step III– the development of a more universal influenza vaccine
that is effective against group 1 (G1) and group 2 (G2) IAVs can be based on conserved elements such as conserved epitopes of selected
antigens. Step IV– The development of a universal influenza vaccine effective against all the IAVs can be achieved using the conserved
elements. This type of vaccine will be possibly applicable to the human population, poultry, and pigs. Step V – The truly universal vaccine
development implies the use of conserved elements with broad protection among all IAVs and IBVs. (B) Influenza virus antigens suggested for
the selection for developing the universal mRNA IAV vaccine that can be used for the human population, poultry, and pigs. (C) Schematic
illustration of immunization strategy using mRNA vaccine encoding the conserved elements of IAVs to eliminate the viral shedding and crossing
the species barrier. IAV, influenza A virus; IBV, influenza B virus; HA, hemagglutinin; NA, neuraminidase; NP, nucleoprotein; M2e, matrix 2 ion
channel ectodomain.
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advancing the universal vaccine development against IAVs and, at

least, will abate the incidence of interspecies spillover events.
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