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Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease with a

bleak prognosis. Mounting evidence suggests that IPF shares bio-molecular

similarities with lung cancer. Given the deep understanding of the programmed

cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway in cancer

immunity and the successful application of immune checkpoint inhibitors (ICIs)

in lung cancer, recent studies have noticed the role of the PD-1/PD-L1 axis in

IPF. However, the conclusions are ambiguous, and the latent mechanisms

remain unclear. In this review, we will summarize the role of the PD-1/PD-L1

axis in IPF based on current murine models and clinical studies. We found that

the PD-1/PD-L1 pathway plays a more predominant profibrotic role than its

immunomodulatory role in IPF by interacting with multiple cell types and

pathways. Most preclinical studies also indicated that blockade of the PD-1/

PD-L1 pathway could attenuate the severity of pulmonary fibrosis in mice

models. This review will bring significant insights into understanding the role of

the PD-1/PD-L1 pathway in IPF and identifying new therapeutic targets.

KEYWORDS
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1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic interstitial lung

disease characterized by chronic epithelial injury and exhausted repair capacity of the

alveolar compartment (1, 2). IPF occurs mainly in individuals over 60, with progressive

dyspnea and irreversible pulmonary function damage being the most prevalent

manifestations (1). It is estimated that the prevalence of IPF is staggering at 10-20 per

100,000 people in Western countries (3). Currently, although some newly authorized

therapeutic drugs such as Pirfenidone and Nintedanib are approved for IPF treatment
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(4–6), they only moderately attenuate lung function damage and

could not reverse disease progression or reduce case-fatality (3).

Hence, IPF is still a lethal “silent killer” and novel treatment

strategies are urgently needed to alleviate its impact on

patients’ lives.

It is well documented that interstitial lung diseases correlate

with lung cancer development. Indeed, IPF patients have a

fivefold increased risk of lung cancer development compared

with ordinary people (7). Besides, accumulating studies have

demonstrated that pre-existing IPF hurts the prognosis of lung

cancer patients regardless of anticancer modalities (8, 9).

Meanwhile, numerous studies also investigated the association

between IPF and lung cancer. For example, in a review,

Tzouvelekis et al. summarized the common pathogenic

mechanisms between IPF and lung cancer, elucidating that

they share many pathogenic similarities, including genetic and

epigenetic markers (7). Gaining insight into common molecular

characteristics between IPF and lung cancer could provide more

treatment options for these patients.

The immune homeostasis maintenance role of the

programmed cell death-1 (PD-1)/programmed death-ligand 1

(PD-L1) pathway in human diseases is well elucidated in recent

studies. On the one hand, activation of the PD-1/PD-L1

signaling pathway could regulate the intensity of immune

response in peripheral tissues and maintain immune tolerance

to self-antigens by inhibiting T cells hyperactivation and

cytokines secretion (such as IL-10 and IFN-g) (10). However,

on the other hand, in the tumor microenvironment (TME), the

PD-1/PD-L1 axis is also employed by cancer cells to escape

immunological surveillance (11). TCR signaling upregulates the

expression of PD-1 on the T cell surface, which binds to PD-L1

on cancer cells to exert negative regulatory effects and thus

impair the antitumor function of T cells (12). Therefore,

inhibiting the PD-1/PD-L1 axis has been successfully used to

reverse the immunosuppressive TME, thereby restoring the

normal antitumor effect of T cells. Given this advantage,

immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-

L1 axis have shown promising antitumor effects in various

malignancies (11).

Existing evidence identified that aside from cancer cells, PD-

L1 is also expressed on some types of immune cells (11) and

stromal cells (13–16). Interestingly, recent studies have shown

that PD-L1 is aberrantly expressed on human and mouse lung

fibroblasts. Given the increased recognition of the similarities

between lung cancer and IPF, more and more studies focused on

the role of the PD-1/PD-L1 axis in IPF and investigated the

potential therapeutic effect of PD-1/PD-L1 blockades on IPF.

Nevertheless, the conclusions are equivocal and part of the

mechanism remains unclear. In this review, we will summarize

the role of the PD-1/PD-L1 axis in IPF based on clinical studies

and animal models.
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2 PD-1/PD-L1 axis and IPF in
clinical studies

Many studies have investigated the relationship between the

PD-1/PD-L1 axis and IPF in human samples, and Table 1

summarizes their main findings. Although different methods are

applied to measure PD-1 or PD-L1 expression levels, most studies

have identified abnormal PD-1 or PD-L1 expression in the lung

tissue or peripheral blood samples from IPF patients compared

with healthy individuals. Regarding the detailed detecting

methods, immunohistochemistry (IHC) was most commonly

used to evaluate the expression levels of PD-1 and PD-L1 in the

lung samples from IPF patients (19, 22, 23, 25). For instance,

Kronborg-White and colleagues detected the cellular membrane

PD-L1 (mPD-L1) expression in the lung specimen from IPF

patients using the DAKO PD-L1 IHC 22C3 PharmDx Kit. They

found positive expression of mPD-L1 in alveolar and/or

bronchiolar epithelial cells in the lung tissue of most IPF

patients (19). However, in a small sample size study, Jovanovic

et al. found that PD-L1 was negatively expressed in fibroblasts and

myofibroblasts in lung tissue from IPF patients by IHC staining

(23). Intriguingly, they observed that mPD-L1 is overexpressed on

alveolar macrophages (23). One study applied IHC to detect the

PD-1 expression levels in lung tissue from healthy donors, IPF

patients, and lung cancer patients. The results suggested that PD-1

was significantly overexpressed in IPF and lung cancer samples

compared to healthy donors (22). Further, Habiel identified a

higher infiltration level of CD8+ cytotoxic CD28null T cells in the

lung tissue of IPF patients, and these T cells expressed higher

levels of PD-1 (26). Several studies also used immunofluorescence

(IF) (17, 27), flow cytometry (FCM) (25–27), Western blot (WB)

(27), and mass cytometry (20) to explore the expression pattern of

PD-1/PD-L1 axis in IPF patients. Interestingly, some studies

explored the expression levels of PD-1 and PD-L1 in the

peripheral blood of IPF patients and healthy individuals (18, 22,

23). Exploiting FCM, Wang et al. revealed that PD-1 and PD-L1

were overexpressed on the CD4+ T cells of IPF patients’ peripheral

blood (18). Similarly, Ni et al. also indicated that the percentage of

PD-1+ lymphocytes in the peripheral blood of IPF patients was

also elevated (22). However, there was no significant elevation of

PD-L1 expression level in the peripheral blood leukocytes of IPF

patients compared with healthy donors (22). Furthermore, there

were two small sample size studies detected the soluble PD-L1

(sPD-L1) plasma concentration in IPF patients (23, 24). Jovanovic

et al. applied a sandwich enzyme-linked immunosorbent assay

(ELISA) kit to detect the sPD-L1 plasma concentration in 23 IPF

patients who did not undergo surgical biopsy (23). They identified

that the serum sPD-L1 concentration of IPF patients was

significantly higher compared with healthy donors (P<0.01)

(23). Besides, another study also observed higher level of sPD-

L1 in patients with IPF compared to healthy individuals using
frontiersin.org
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ELISA (24). Taken together, these findings suggest abnormal

expression of the PD-1/PD-L1 axis in IPF patients. The PD-1/

PD-L1 pathway may contribute to the occurrence and

development of IPF. However, well-designed and prospective

studies should be conducted to make it clear since all currently

published studies are retrospectively designed and have a small

sample size.
3 PD-1/PD-L1 axis and IPF in animal
models

Numerous studies have investigated the expression pattern

and role of the PD-1/PD-L1 axis in IPF through animal models.

In this part, we will only discuss the expression disorder of the

PD-1/PD-L1 axis in IPF animal models, and its roles in IPF will

be summarized in the next section. Table 2 depicts current

studies focusing on the expression pattern of the PD-1/PD-L1

axis in pulmonary fibrosis via animal models. The intratracheal

administration of the cytotoxic drug bleomycin to C57BL/6 mice

is known to be the most commonly used murine model to

simulate the pathological process of human IPF (31). Bleomycin

contributes to fibrosis by inducing alveolar epithelial injury via

DNA cleavage, free radical formation, and deoxynucleotide

oxidizing reaction (32). Even though it could not fully reflect

the clinical characteristics and pathological process of human

lung fibrosis, it remains crucial in preclinical studies of anti-

fibrotic compounds screening and pulmonary fibrosis

mechanisms investigation (31). As mentioned before, PD-L1 is
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not only expressed on tumor cells, but can also be detected on

some types of immune cells (11) and stromal cells (13–16).

Emerging evidence has identified that PD-L1 is also expressed

on fibroblasts/myofibroblasts (17, 20, 21, 29) and mesenchymal

stem cells (MSCs) (22) in the lung from IPF patients or murine

models. In a bleomycin-induced mouse pulmonary fibrosis

model, Lu and colleagues observed that the expression level of

PD-L1 is significantly upregulated in the lung tissue (29).

Besides, they further investigated the protein expression level

of PD-L1 in primary mouse lung fibroblasts to confirm PD-L1

upregulation at the cellular level. As expected, the primary

mouse lung fibroblasts expressed a higher level of PD-L1 (29).

Consistent results were also reported in other studies (17, 20). As

a binding molecule of PD-L1 on T cells, several studies have also

detected the expression pattern of PD-1 in the bleomycin-

induced pulmonary fibrosis murine model (25, 30). Wang

et al. observed that PD-1 was significantly upregulated in the

lung tissue of the pulmonary fibrosis mice model via IHC

staining. Besides, they found that PD-1 was also overexpressed

on CD4+ T cells of peripheral blood (25, 30). Nevertheless, they

failed to quantify the PD-1 expression on T cells in the lung

tissue. Celada and colleagues revealed that PD-1 was positively

expressed on CD4+ T cells in the mice lung specimen (25). In

addition, Cui et al. found that PD-1 was upregulated on CD8+T

cells in the lung of the bleomycin chemical injury murine model,

indicating an immunosuppressive environment existed in lung

fibrosis (20).

In recent years, immunodeficient mice have become

increasingly useful as preclinical animal models for studying
TABLE 1 The expression level of the PD-1/PD-L1 in human studies.

First author PD-1/PD-L1 Patients Sample Method Cell types Expression level Ref.

Xia Guo PD-L1 IPF/normal Lung IF / Upregulation (17)

Bing Wang PD-1 IPF/normal Peripheral blood FCM CD4+ T cells Upregulation (18)

PD-L1 IPF/normal Upregulation

Sissel Kronborg-White mPD-L1 IPF/normal Lung IHC Alveolar and/or bronchiolar epithelial cells Upregulation (19)

Lu Cui PD-L1 IPF/normal Lung Mass cytometry Fibroblasts Upregulation (20)

Yan Geng PD-L1 IPF/normal Lung IF
WB
FCM

Fibroblasts Upregulation (21)

Ke Ni PD-1 IPF/normal Lung IHC / Upregulation (22)

Peripheral blood FCM T lymphocytes Upregulation

PD-L1 Peripheral blood FCM T lymphocytes No change

Dragana Jovanovic mPD-L1
sPD-L1

IPF/normal Lung IHC Alveolar macrophages Upregulation (23)

Plasma ELISA / Elevation

M Roksandic Milenkovic sPD-L1 IPF/normal Plasma ELISA / Elevation (24)

Lindsay J. Celada PD-1 IPF/normal Lung FCM Th17 cells Upregulation (25)

IHC / Upregulation

PD-L1 IHC / Upregulation

David M. Habiel PD-1 IPF/normal Lung FCM CD8+ cytotoxic CD28null T cells Upregulation (26)
frontiersi
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human diseases since they are also capable of engrafting human

tissues (21, 33–36). Some studies also employed the humanized

murine model to investigate the expression pattern and role of

the PD-1/PD-L1 axis in IPF (20–22, 26). Geng and colleagues

established a humanized murine model of pulmonary fibrosis

through intravenous injection of invasive IPF lung fibroblasts

into NOD-SCID-IL2Rgc–/– (NSG) mice (21). More severe

pulmonary fibrosis was observed in the lung of mice injected

with invasive lung fibroblasts than in mice injected with

noninvasive IPF lung fibroblasts. By performing RNA

sequencing (RNA-seq) analysis and experimental validation,

they observed that PD-L1 is significantly upregulated on the

invasive fibroblasts of the pulmonary fibrosis mice model.

Besides, in a humanized mouse model in which the

researchers successfully engrafted primary human fibrotic lung

fibroblasts in NSG mice underneath the kidney capsule,

upregulation of PD-L1 was also observed on the fibroblasts in

the lung (20).

Genetically modified and silica-induced lung fibrosis murine

models were also applied to investigate the expression pattern

and role of the PD-1/PD-L1 pathway in pulmonary fibrosis.

Consistent with the PD-L1 expression level in the lung tissue of
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the bleomycin-driven pulmonary fibrosis murine model, Cui

and colleagues observed that PD-L1 was also positively

expressed in the lung of IL-6 knockout mice (20). In a silica-

induced pulmonary fibrosis mice model, the researchers adopted

multiple assays to evaluate the changes in the mRNA and

protein expression levels of PD-1 and PD-L1 in the lung (28).

They demonstrated that silica exposure resulted in altered

proportions and subtypes of T and B cells in immune organs,

as well as the abnormalities of PD-1, PD-L1, and CTLA-4

expressions on these cells, leading to an imbalanced systemic

immune homeostasis. Taken together, PD-1 and PD-L1 are

abnormally expressed on specific cell types in the lung of the

pulmonary fibrosis murine model, indicating that the PD-1/PD-L1

axis is vital in lung fibrosis occurrence and disease progression.
4 The profibrotic role of the PD-1/
PD-L1 axis in IPF

The immune regulatory role of the PD-1/PD-L1 axis in

cancer immunity has been determined. However, its role in IPF

remains controversial. The profibrotic environment of IPF is
TABLE 2 The expression level of the PD-1/PD-L1 in animal models.

First author PD-1/
PD-L1

Animal Exposure Sample Cell
types

Method Expression
level

Ref.

Youliang Zhao PD-1 6-8 weeks male C57BL/
6 mice

Silica Lung / WB
IHC
FCM
PCR

Upregulation (28)

PD-L1 Lung / Upregulation

Ye Lu PD-L1 4-6 weeks female
C57BL/6 mice

BLM Lung Fibroblasts WB
IHC

Upregulation (29)

Xia Guo PD-L1 12-16 weeks male
C57BL/6 mice

BLM Lung Fibroblasts IF Upregulation (17)

Dong Wang PD-1 8 weeks male C57BL/6
mice

BLM Lung / IHC Upregulation (30)

Peripheral
blood

CD4+ T
cells

FCM Upregulation

Lu Cui PD-L1 11-12 weeks male
C57BL/6 mice

BLM Lung Fibroblasts Mass
cytometry
IF
FCM

Upregulation (20)

JUN-induced lung
fibrosis mice

JUN Lung Fibroblasts Upregulation

IL-6 knock out mice
and wildtype

BLM Lung Fibroblasts Upregulation

NSG mice Primary human fibrotic lung fibroblasts
engraftation

Lung Fibroblasts Upregulation

PD-1 11-12 weeks male
C57BL/6 mice

BLM Lung CD8+T
cells

Mass
cytometry

Upregulation

Yan Geng PD-L1 6-8 weeks female NSG
mice

CD274high and CD274low IPF lung normal
fibroblasts injection

Lung Fibroblasts PCR
RNA-seq

Upregulation (21)

Ke Ni PD-L1 4-6 weeks Rag2-/-gc-/-

mice
BLM Lung MSC FCM Upregulation (22)

Lindsay J. Celada PD-1 7-9 weeks old C57BL/6J
mice

BLM Lung CD4+ T
cells

FCM Upregulation (25)
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shaped by proliferating cells, immune cells, stromal cells, growth

factors, and extracellular matrix (ECM) proteins (37). It

profoundly determines the onset of fibrosis and its ultimate

destiny─ control or progression (37). According to currently

published studies, the PD-1/PD-L1 pathway plays a double-

edged sword effect in IPF. On the one hand, it can trigger lung

fibrosis by interacting with multiple cell types and pathways. On

the other hand, it could maintain immune homeostasis by

interacting with the profibrotic component when fibrosis is

initiated. Herein, we will first discuss its profibrotic role in IPF.
4.1 Th17 CD4+ T cells

There are numerous studies regarding the role of T helper 17

(Th17) cells in pulmonary fibrosis (38–52), with a consensus

conclusion being made that they are profibrotic and detrimental

in IPF (3). A previous study also observed elevated

interleukin17A (IL17A), which is the typical cytokine of Th17

cells in the bronchoalveolar lavage (BALF) of IPF patients (53).

Furthermore, animal studies illustrated that IL-17A deficiency

could mitigate bleomycin and radiation-induced pulmonary

fibrosis (54, 55). Sarcoidosis is one of the common idiopathic

lung diseases. Braun and colleagues found significantly increased

PD-1+ CD4+ T cells during sarcoidosis progression, with Th17

cells being the most predominant cell types expressing PD1 (56).

They revealed for the first time the relationship between the PD-

1/PD-L1 pathway and sarcoidosis, providing insights for

subsequent studies. Hence, in 2018, Celada et al. first

investigated the role of PD-1+ CD4+ T cells in IPF and

elucidated the intrinsic mechanisms (25). By conducting

molecular, immunohistochemical, and FCM analyses of IPF

patients and murine specimens, they identified that PD-1+

CD4+ T cells (mainly Th17 subsets) promote pulmonary

fibrosis via signal transducer and activator of transcription 3

(STAT3)-mediated IL-17A and transforming growth factor–b
(TGF-b) production. Interestingly, blockading the PD-1

pathway significantly decreased STAT3, IL-17A, and TGF-b
expression levels on Th17 cells, subsequently reducing collagen

I production from fibroblasts and attenuating lung fibrosis in a

murine model. Consistent results were also verified in a later

study (30).

Previous publications demonstrated that the upregulation of

PD-1 on CD4+ T cells shaped an immunosuppressive

environment in sarcoidosis patients and was correlated with

disease aggravation in these individuals (56). Nevertheless,

Celada et al. indicated that except for the known immune

regulation role of PD-1+CD4+T cells, PD-1 upregulation on

CD4+T cells also served a profibrotic role (25). It is well

known that STAT3 could regulate PD-1 expression on T cells

in various malignancies (57, 58). An increasing body of evidence

recently suggests that PD-1 could also regulate STAT3 in

pulmonary fibrosis and sarcoidosis (25, 30). Mechanically,
Frontiers in Immunology 05
STAT3 transcription activity could be negatively regulated by

phosphatidylinositol 3kinase (PI3K) (59). This pathway may be

correlated with PD-1 manipulation of STAT3 expression in

patients with sarcoidosis since a recent study showed that

PD- 1 inhibits PI3K expression in CD4+ T cells in sarcoidosis

(60). Therefore, the overexpressed PD-1 on Th17 cells might

increase STAT3 transcription activity through indirect

inhibition of PI3K (25). Besides, there is also a possibility that

exosomes derived from Th17 cells could also regulate PD-1

expression (25).

Both Th17 and regulatory T cells (Tregs) have been

described as exhibiting the property of plasticity (61). Tregs

upregulate TGFb has been well documented (62). Tregs can

reacquire characteristics of Th17 cells when exposed to IL-6 with

or without IL-1b and IL-23 (61, 63). The increased IL6

production was observed in PD-1+Th17 cells from IPF

patients (25). Besides, Th17 cells that secrete intracellular and

membrane-bound TGF-b were also detected in IPF patients’

lung samples (25). Thus, it is reasonable that increased IL6

secretion caused Tregs to differentiate into Th17 subsets, thereby

increasing IL17 and TGF-b expression levels and ultimately

promoting pulmonary fibrosis (Figure 1A).
4.2 Fibroblasts/Myofibroblasts

The pathological process of IPF is intimately related to

chronic lung injury and thereby causes a chronic

inflammatory response (64). The cytokines and inflammatory

mediators produced in this process could hasten the

proliferation and differentiation of fibroblasts (64). As a result,

fibroblasts are transformed into myofibroblasts, which are

responsible for excessive proliferation, epithelial-mesenchymal

transition (EMT), ECM deposition, and ultimately resulting in

collagen overproduction in the lung (65). Recently, mounting

evidence revealed that PD-L1 is upregulated on human and

murine lung fibroblasts (17, 20, 21, 29). Most strikingly, these

studies indicated that upregulated PD-L1 on lung fibroblasts

entitled an invasive phenotype to fibroblasts, thereby promoting

IPF progression, and anti-PD-L1 monoclonal antibody (anti-

PD-L1 mAb) could reverse this effect. Thus, PD-L1 on lung

fibroblasts contributes to pulmonary fibrosis occurrence and

progression and may be a novel target for IPF treatment.

However, the underlying mechanisms need to be well elucidated.

4.2.1 p53 and FAK pathways
Recently, using RNA-seq analysis, Geng and colleagues

revealed that PD-L1 was upregulated on invasive lung

fibroblasts and was associated with the invasive phenotype of

lung fibroblasts, is regulated by p53 and focal adhesion kinase

(FAK) pathways, and drives lung fibrosis in a humanized

pulmonary fibrosis murine model (21). In vivo and in vitro

experiments have shown that the invasion ability of invasive
frontiersin.org
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lung fibroblasts and the severity of pulmonary fibrosis in mice

could be attenuated by knocking out PD-L1 in fibroblasts and

targeting PD-L1 using anti-PD-L1 mAb and FAK inhibitor.

The tumor suppressor protein p53 plays a crucial role in cell

cycle arrest, apoptosis, senescence, and innate immunity (21, 66–

70). Numerous studies have shown that the loss function of p53

is related to lung injury and IPF progression (21, 71–73).

Besides, mounting evidence also suggests that the expression

level of p53 is reduced in myofibroblasts compared to normal
Frontiers in Immunology 06
lung fibroblasts (74, 75). Emerging evidence indicated a negative

regulatory loop between PD-L1 and p53 in invasive lung

fibroblasts (21). We all know that p53 could regulate PD-L1

expression in malignancies via multiple members of microRNA

families, such as miR-34a (76), miR-200 (77), and miRNA-320a

(78). It suggests that p53 might contribute to PD-L1 regulation

in lung fibroblasts. However, although molecular experiments

have demonstrated that inhibition of PD-L1 could upregulate

p53 expression level in IPF lung fibroblasts, the underlying
B

C D

A

FIGURE 1

The profibrotic role of the PD-1/PD-L1 axis in IPF through interaction with multiple cell types and pathways. (A) PD-L1 up-regulation on Th17 T
cells promotes pulmonary fibrosis through STAT3-mediated IL-17 and TGF-b production; (B) PD-L1 up-regulation on lung fibroblasts promotes
pulmonary fibrosis via p53, FAK, Smad3, and b−catenin signaling pathways. On the one hand, PD-L1 up-regulation on lung fibroblasts may cause
myofibroblasts to apoptosis-resistance and evasion phagocytosis via macrophages by inhibiting the p53 pathway and activating the FAK
pathway, ultimately leading to excessive proliferation of myofibroblasts to trigger IPF. On the other hand, PD−L1 mediates lung fibroblast to
myofibroblast transition (FMT) through Smad3 and b−catenin signaling pathways, thus promoting pulmonary fibrosis; (C) PD-L1 up-regulation on
lung fibroblasts could induce myofibroblasts proliferation and ECM deposition through inhibiting autophagy, and eventually promotes
pulmonary fibrosis; (D) PD-L1 up-regulation on lung fibroblasts promotes pulmonary fibrosis by inhibiting adaptive immunity. JUN upregulates
the expression levels of PD-L1 and CD47 in fibroblasts and dormant macrophages. As a result, the above cells are converted into exhausted T
cells and quiescent macrophages. In this context, myofibroblasts can evade immune clearance and resist macrophage-induced phagocytosis. In
addition, JUN can also directly regulate IL-6 at the chromatin level, leading to inhibitory adaptive immune responses— primarily T cell
exhaustion and upregulation of activated Tregs. PD-1, programmed cell death 1; PD-L1, programmed death-ligand 1; IPF, idiopathic pulmonary
fibrosis; Th17, T helper 17; STAT3, signal transducer and activator of transcription 3; IL-17, interleukin-17; TGF-b, transforming growth factor–b;
FAK, focal adhesion kinase; ECM, extracellular matrix; Tregs, regulatory T cells ; TCR, T cell receptor; FMT, fibroblast to myofibroblast transition;
AKT, protein kinase B; PI3K, phosphoinositide 3-kinase; mTOR, mammalian target of rapamycin.
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mechanisms are still not well elucidated (21). A dual effect of p53

during normal wound healing has been acknowledged (78).

Initially suppressed, it reemerged after healing and reached its

peak after reepithelialization (79). On the contrary,

myofibroblasts emerge in response to tissue injury and

undergo apoptosis at wound closure (80). So, whether p53

determines the fate of myofibroblasts and whether gaining p53

function in myofibroblasts impacts fibrotic lung restoration?

Recently, Qu and colleagues revealed that p53 functional

restoration sensitizes lung myofibroblasts to apoptosis,

promotes the clearance of apoptotic myofibroblasts by

macrophages, and eventually results in lung fibrosis resolution

in the pulmonary fibrosis murine model (75). Therefore, PD-L1

on lung myofibroblasts may cause myofibroblasts to apoptosis-

resistance and evasion phagocytosis via macrophages by

inhibiting the p53 pathway, ultimately leading to excessive

proliferation of myofibroblasts to trigger IPF (Figure 1B).

FAK plays a crucial role in cell survival, proliferation,

migration, and adhesion. Lung epithelial cell FAK signaling

determines the ultimate destiny of lung epithelial cells and

inhibits lung injury and fibrosis. The pharmaceutical

intervention of FAK could dramatically inhibit the

proliferation of lung myofibroblasts in vitro and attenuate the

severity of lung fibrosis in IPF murine models in vivo.

Interestingly, a recent study showed a positive correlation

between PD-L1 and FAK mRNA expression levels in PD-L1-

positive triple-negative breast cancer (TNBC) (81). Taken

together, PD-L1 upregulation on lung fibroblasts aggravates

IPF by inhibiting the p53 pathway to allow myofibroblasts to

escape macrophage-induced apoptosis. Besides, it also

aggravates fibrosis by augmenting the invasive phenotype of

fibroblasts by regulating the FAK pathway (Figure 1B).

4.2.2 Smad3 and b−catenin pathways
Recently, Guo and colleagues added new evidence for how

PD-L1 on fibroblasts regulates the progression of pulmonary

fibrosis (17). In vitro and in vivo studies demonstrated that PD-

L1 is essential in the transition from fibroblast to myofibroblast,

and PD-L1 acts through both Smad3-dependent and

independent pathways to promote pulmonary fibrosis induced

by TGF-b. Smad3 is a crucial transcription factor involved in

TGF-b-induced IPF (82). Previous publications indicated that,

except for the tumor cell surface, PD-L1 is also expressed in the

nuclei of some malignancies (83, 84). Furthermore, treating

TGF-b could upregulate PD-L1 expression levels in the nuclei

of primary human lung fibroblasts. Ultimately, they identified

that PD-L1 might act as a co-transactivator of TGF-b to enhance

fibrotic marker gene expression and thus promote pulmonary

fibrosis. A previous study elucidated that upregulation of PD-L1

could promote tumor growth and progression by activating the

b-catenin pathway (85). Besides, aberrant activation of the

GSK3b/b-catenin signaling pathway has been shown to
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correlate with IPF progression (86). Guo et al. demonstrated

that b-catenin signaling was involved in the TGF-b-induced
fibroblasts to myofibroblasts transition. Furthermore, they

revealed that PD-L1 was involved in TGF-b-induced
phosphorylation and inhibition of GSK3b at Serine 9,

therefore inhibiting b-catenin degradation (17). Collectively,

they identified that PD-L1 might also mediate TGF-b-induced
fibroblasts to myofibroblasts transition through the b-catenin
signaling (17). Therefore, PD−L1 upregulation on lung

fibroblasts may promote IPF progression via Smad3 and

b−catenin signaling pathways. Mechanically speaking, the

activation of TGF-b could recruit and phosphorylate Smad3

by activating the receptor kinases. Activated Smad3 then

translocates into the nucleus, which binds with other co-

factors to activate fibrotic-related gene transcription. Besides,

the downstream Smad3 and p38 pathways of TGF-b could

upregulate the PD-L1 expression level on the lung fibroblasts.

As a result, the upregulated PD-L1 binds to Smad3 and enhances

its transcription activation of fibrotic-related genes.

Furthermore, PD-L1 also facilitates GSK3b phosphorylation at

Ser9, thus inhibiting GSK3b-dependent degradation of b-
catenin. Increased b-catenin may also contribute to TGF-b-
induced fibrotic-related gene expression through binding with

the T cell factor (TCF) transcription factor (Figure 1B).

4.2.3 Autophagy
Autophagy is a highly conserved and pivotal catabolic

process in eukaryotic cells (87, 88). It maintains the

homeostasis of the intracellular environment by forming

autophagosome vesicles, engulfing dysfunctional cytoplasm

and organelles, and forming autolysosomes to degrade the

contents of vesicles (89, 90). Autophagy disorder involves

various diseases, also including IPF (91–96). Accumulating

evidence revealed that autophagy activity was impaired in IPF,

and inhibition of autophagy could induce myofibroblast

proliferation and ECM deposition, thus leading to fibrosis (97,

98). On the contrary, pharmaceutical administration of

autophagy activators could attenuate fibrotic severity (99).

Interestingly, a recent study indicated that anti-PD-L1 mAb

significantly inhibited the invasive ability and ECM deposition of

TGF-b1-induced lung fibroblasts by downregulating the PI3K/

Akt/mTOR signaling pathway to induce autophagy (29). It is

well elucidated that PI3K/Akt signal pathway plays a pivotal role

in regulating cell growth, proliferation, motility, metabolism,

and survival (1). Most importantly, recent studies have identified

that PI3K/Akt activation significantly correlated with the

expression of the fibrotic-related gene alpha-smooth muscle

actin (a-SMA) (100). Further, it is also suggested that the

interaction between PI3K/Akt and TGF-b involves pulmonary

fibrosis formation (101). The mammalian target of rapamycin

(mTOR) is downstream of the PI3K/Akt signal pathway.

Activation of the PI3K/Akt signaling pathway could activate
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mTOR, which inhibits autophagy in myofibroblasts and

ultimately promotes the formation of pulmonary fibrosis

(102) (Figure 1C).

Recently, several studies have revealed subtle crosstalk

between PD-L1 and autophagy in cancer cells (103, 104). In

mouse melanoma and human ovarian cancer, tumor cell-

intrinsic PD-L1 upregulates mTOR complex 1 signaling to

inhibit autophagy and sensitizes tumor cells to clinically

available autophagy inhibitors (103). Meanwhile, another

study demonstrated that autophagy regulates PD-L1

expression in gastric cancer through the p62/SQSTM1-NF-kB
pathway (104). In vitro and in vivo studies indicated that

inhibition of autophagy upregulated the expression of PD-L1

in gastric cancer cells. Hence, there might be an interaction

between PDL1 expression on myofibroblasts and autophagy in

IPF, and they could be novel biomarkers and therapeutic targets

in IPF diagnosis and treatment. Besides, more relevant studies

are warranted to make this clear.

4.2.4 Inhibition of adaptive immunity
Adaptive immunity has been shown to orchestrate existing

fibrotic responses, and various subsets of T cells are enriched in

fibrotic lungs (20). In a recent review, Shenderov and colleagues

demonstrated that immune dysregulation served as a driver of

IPF, and several cell types were involved in this process (3). They

indicated that M2 macrophages, Th17 cells, CD8+T cells, and

possibly Tregs promote fibrosis, while Th1 and tissue-resident

memory (TRM) CD4+ T cells appear to be protective (3).

Besides, there is growing evidence that increased levels of

activated Tregs infiltration are associated with disease

progression in pulmonary fibrosis (105–107). As an essential

immune checkpoint molecule, the immunosuppressive role of

PD-L1 in cancer immunity is elucidated. In a recent publication,

Cui et al. revealed that fibroblasts PD-L1 also elicit adaptive

immunity dysfunction in the transcription factor JUN inducted

pulmonary fibrosis murine model (20). By employing a single-

cell protein screening approach in human and murine fibrotic

lungs, JUN expression in fibroblasts increased IL-6 expression

and secretion, which plays pivotal roles in adaptive and innate

immunity. Besides, JUN expression in fibroblasts also

upregulated the expression levels of PD-L1 and CD47,

suggesting that these two immune regulatory pathways are

dysregulated in IPF. Surprisingly, they identified that blockade

of PD-L1, CD47, and IL-6 significantly alleviated the severity of

pulmonary fibrosis not only in bleomycin-induced pulmonary

fibrosis mice model but in IL-6 knockout and humanized NSG

mice models. CD47 is a crucial molecule that mediates

malignant cells or impaired cells to resist phagocytosis (108,

109). JUN expression in lung myofibroblasts directly controls

the promoters and enhancers of CD47 and PD-L1. The direct

consequence is increased expression of these immune-

checkpoint proteins in fibroblasts and dormant macrophages.
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Therefore , these immunomodulatory pathways are

hyperactivated. As a result, in the fibrotic environment, T cells

and macrophages become exhausted and quiescent. In this

context, myofibroblasts could evade immune clearance and

resist macrophage-induced phagocytosis. In addition, JUN

could also directly regulate IL-6 at the chromatin level, which

results in the inhibitory adaptive immune response─ chiefly T-

cell exhaustion and upregulation of activated Tregs. Ultimately,

pulmonary fibrosis initiates and continues to worsen in this

vicious circle (Figure 1D).
5 The immune regulatory role of the
PD-1/PD-L1 axis in IPF

As mentioned in the previous section, current evidence

indicates that the PD-1/PD-L1 pathway has dual effects in the

IPF─ profibrotic and immune regulatory roles. We have

discussed the profibrotic role of the PD-1/PD-L1 pathway in

IPF initiating and disease progression. Here, we will review its

immune regulatory role in IPF.
5.1 CD28null T cells

Although the exact role of the immune system in the

development and progression of IPF is currently under debate,

existing evidence suggests that this disease is associated with the

hyperactivation of immune-related pathways (26, 110) and

aberrant infiltration of some subsets of immune cells (111).

Clinical investigations have demonstrated abnormal infiltration

of T cells in the lung tissue of patients with IPF (22, 112).

Currently, the phenotype of T cells in IPF is not well

characterized (26). It has been reported that one or more co-

stimulatory molecules, such as CD28 and ICOS receptors, are

absent on the surface of T cells in the peripheral blood of IPF

patients (113, 114). Furthermore, several studies have shown

that CD28null T cell abundance in T cells is associated with the

bleak prognosis of these individuals (113, 114).

CD28null T cells are antigen-experienced memory T cells

present in the pathological process of various diseases (26).

These cells have been observed to share similar phenotypes

with CD8+ cytotoxic T cells (115, 116). In a recent study, Habiel

and colleagues identified that the populations of CD8+ CD28null

T cells in explanted lung cellular suspensions from IPF patients

were significantly elevated than normal donor lungs (26). In vivo

study indicated that IPF CD28null T cells may promote

dexamethasone-resistant lung fibrosis. Besides, they observed

that intravenous administration of CD28null-enriched T cells

purified from IPF lung explants could induce severe lung

remodeling by targeting alveolar type II epithelial cells or by

modulating surfactant protein C production by these cells in
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humanized NSG mice model. Most importantly, FCM and

transcriptional analysis detected higher levels of PD-1 and

CTLA-4 on CD28null cytotoxic T cells relative to CD28+

cytotoxic T cells. Furthermore, it showed that PD-L1 was

overexpressed on structural cells in IPF lungs compared to

normal lung samples. Interestingly, anti-CTLA-4 or anti-PD-1

mAb intervention significantly exuberated the severity of

pulmonary fibrosis in humanized NSG mice. Therefore, IPF

CD28null T cells may serve as a profibrotic component in lung

fibrosis, but the immune checkpoint molecules CTLA-4 and PD-

1 appear to limit this effect.
5.2 Mesenchymal stem cells

MSCs are multipotent stromal cells in multiple human tissues

and are characterized bydifferentiating intomesodermal lineage cells

(117, 118). Human MSCs have immunomodulation capacities and

have been proven to regulate the activity and function of major

immune cell populations, includingTcells (22, 119).As such, human

MSCs have brought light to cell therapy and tissue regeneration in

many diseases, also including pulmonaryfibrosis (22, 120). Recently,

Ni et al. observed that lymphocytes, especially CD8+ T cells, were

overactivated at the early stage of bleomycin administration in a

humanized NSG pulmonary fibrosis mice model (22). At the late

stage, myofibroblasts were activated and accompanied by ECM

deposition and lung reconstruction, suggesting the occurrence of

IPF. Most strikingly, humanMSCs intervention could attenuate the

severity of pulmonary fibrosis and improve lung function via

inhibiting bleomycin-induced T cell infiltration and pro-

inflammatory cytokine production in the humanized mice model.

Ultimately, they revealed that thePD-1/PD-L1pathwaymediated the

alleviation of pulmonary fibrosis by human MSCs.

Human MSCs only play a constitutively immunomodulatory

role with proper licensing from the inflammatory environment,

especially in vivo (121). In the humanized pulmonary fibrosis mice

model, the pro-inflammatorymicroenvironment during pulmonary

fibrosis, characterized by high inflammatory cytokines production

and high infiltration of CD8+ T cells, could maintain the immune

regulatory ability of humanMSCs (122). In response, humanMSCs

might express immunomodulatory factors to restrict the profibrotic

effect to the lung (22). As one of themost crucial inhibitory immune

checkpoints expressedonTcells, oncePD-1 is engagedwith its ligand

PD-L1, it can inhibit thePI3K/Aktpathway and the phosphorylation

of ZAP70 and PKCq and subsequently suppress T cell activation by

inhibiting TCR signaling (123). As mentioned before, PD-L1 is also

expressed on MSCs. Ni and colleagues demonstrated that PD-1 is

significantly overexpressed on T cells in the humanized pulmonary

fibrosis mice model, while PD-L1 is highly expressed on activated

MSCs (22). Besides, they observed that the interaction of PD-1 and

PD-L1 was involved in the immunosuppression of IFN-g-licensed
humanMSCsonTcell activation in vitro.Hence, PD-L1upregulated

on humanMSCs could engage with PD-1 on the CD8+T cells in the
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profibrotic environment of the lung, subsequently delivering an

inhibitory signal to the immune system to limit CD8+T cells’

hyperactivation and pro-inflammatory cytokines secretion.

However, there are still some issues that deserve our attention.

First, although in vitro study indicated that human MSCs have an

anti-fibrotic role in IPF via the immunomodulatory role of thePD-1/

PD-L1axis,whether thePD-1/PD-L1axis is involved inhumanMSC

immunoregulation in vivo remains unclear. Second, the above study

showed thathumanMSCsonlybring therapeutic benefits at the early

stage of pulmonary fibrosis. Third, the profibrotic environment is

complicated and shaped by multiple cell types and factors. The

author only highlighted the role of PD-L1 on human MSCs.

However, the fact is that PD-L1 is also expressed on other cells in

the lung of IPFpatients andmurinemodels (such asmyofibroblasts).

Taken together, the PD-1/PD-L1 axis participates in ameliorating

pulmonary fibrosis by human MSCs in the humanized pulmonary

fibrosis mice model. Considering the complexity of the fibrotic

environment in IPF and the administration time of human MSCs,

relevant studies should be performed to address the above problems.
6 Is it rational to target the PD-1/
PD-L1 axis for IPF treatment?

Studies in individuals with IPF and mouse models suggest

that the PD-1/PD-L1 axis has a more predominant profibrotic

role than its immunomodulatory role in IPF. Thus, numerous

preclinical studies were conducted to investigate the feasibility of

treating IPF by targeting the PD-1/PD-L1 axis in mice models

(20, 21, 25, 26, 28, 29). The majority of studies identified that

blockade of the PD-1/PD-L1 axis using PD-L1 mAb could

attenuate the severity of pulmonary fibrosis in mice models.

Interestingly, as we mentioned before, IPF and lung cancer share

common bio-molecular characteristics, and the PD-1/PD-L1

axis is one of the common pathways between them. Recently,

one study investigated the therapeutic role of pirfenidone

combined with PD-L1 blockade in the pulmonary fibrosis-lung

cancer mice model (124). They observed that this combination

treatment significantly facilitated the infiltration of immune

cells, delayed tumor growth, and improved the prognosis of

the mice. Most excitingly, combination therapy attenuated the

pulmonary fibrosis of the mice. Therefore, combining anti-

fibrotic agents with ICIs may bring potential benefits for IPF.

Nevertheless, not all combination therapies are beneficial for

relieving pulmonary fibrosis, and sometimes it could be

hazardous. For instance, human MSCs contribute to

immunomodulatory and are employed in IPF treatment in

many preclinical studies (125). However, the combination of

human MSCs and PD-1/PD-L1 inhibitors should be avoided

since animal studies implicated that the administration of PD-1/

PD-L1 inhibitors could reverse the anti-fibrotic role of human

MSCs (22).
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Although current studies indicated that the PD-1/PD-L1 axis

plays a crucial role in promoting IPF, this does not imply that ICIs

targeting the PD-1/PD-L1 pathway could become a new strategy for

treating IPF in clinical practice. The progression of fibrosis is

determined by a dynamic balance between anti-fibrotic and

profibrotic mediators within a microenvironment composed of

diverse cellular subtypes (20). According to current studies, PD-L1

downregulation on fibroblasts could relieve pulmonary fibrosis

through multiple pathways. However, the subsequent immune

response due to T cell hyperactivation might break this balance.

Up to now, the role of immune cells and immune cell activation in

IPF remains controversial (26). However, increased CD8+ T cells in

the lung and the airway of IPF patients were found to correlate with

severe pulmonary function damage (126, 127). Most importantly,

current clinical trials revealed that anti-PD-1/PD-L1 agents increase

the risk for severe and potentially life-threatening adverse effects in

cancer patients (128). Among them, the incidence of immune

checkpoint inhibitor-associated pneumonitis is staggering at 3% to

10% in cancer patients (128). It is worth noting that pre-existing

pulmonaryfibrosis is a commonly recognized risk factor for immune

checkpoint inhibitor-associated pneumonitis (129). Therefore,

targeting the PD-1/PD-L1 axis to mitigate pulmonary fibrosis

might be a novel insight into IPF treatment. However, there is still

a longway togobeforefindinganoptimalbalancebetween immunity

activation and PD-L1 degradation.
7 Conclusion and prospects

Despite the advances in IPF pathogenic mechanism and

treatment that have been achieved in recent decades, it is still a

lethal disease and needs novel therapeutic strategies to be

developed. In recent years, with the discovery of bio-molecular

similarities between IPF and lung cancer and the role of the PD-

1/PD-L1 axis in cancer immunity, more and more studies have

begun to focus on the role of the PD-1/PD-L1 axis in IPF. In

vitro and in vivo studies demonstrated that the PD-1/PD-L1 axis

plays a more predominant profibrotic role than its immune

regulatory role in IPF by interacting with multiple cell types and

pathways. Most murine studies indicated that blockade of the

PD-1/PD-L1 axis could attenuate pulmonary fibrosis and

improve the prognosis of pulmonary fibrosis mice. Although

the pathogenesis of IPF remains largely unknown, the current

findings imply that the PD-1/PD-L1 pathway might be a

candidate therapeutic target for IPF treatment in the future.

Although we comprehensively summarized the role of the

PD-1/PD-L1 axis in IPF for the first time and provided potential

insights into this field, the following issues need to be well

investigated in future studies. First, despite the majority of

published studies illustrating that the PD-1/PD-L1 axis serves

a profibrotic role in IPF and pharmaceutical intervention of this

pathway could alleviate pulmonary fibrosis, all results were

obtained based on murine studies, and the evidence from
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clinical studies remains lacking. Besides, it is growing

recognized that cytokine IL-6 plays a crucial role in

pulmonary fibrosis (130). Meanwhile, the preclinical study

demonstrated that the blockade of IL-6, CD47, and PD-L1

together could ameliorate pulmonary fibrosis by increasing

phagocytosis of profibrotic fibroblasts and by eliminating

suppressive effects on adaptive immunity (20). As we know, a

clinically tested blocking antibody against IL-6 is available, and

the Food and Drug Administration (FDA) approved it for

rheumatoid arthritis and acute cytokine release syndrome

treatment (130, 131). Many pharmaceutical companies also

developed reagents to target both CD47 and PD-L1 immune

checkpoint molecules, and a growing number of studies are also

conducted to evaluate the therapeutical potential of antibodies

that target CD47 and PD-L1 in various malignancies (132–137).

How about the effect of IL-6 antibody combination with CD47

and PD-L1 ICIs in patients with IPF or lung cancer combined

with IPF? Clinical studies could be designed to answer this

question. Furthermore, both PD-1 and PD-L1 exist in two

forms: membrane bound (mPD-L1) and soluble (sPD-L1)

forms (138, 139). Recent studies reported that sPD-1 and sPD-

L1 could be detected in the plasma or serum of patients with

lung cancer (138, 140, 141). Meanwhile, sPD-L1 was associated

with the prognosis and treatment response in lung cancer (138,

140, 141). To our regret, there were only two small sample size

studies reported the abnormal elevation of sPD-L1 in the serum

of IPF patients. Hence, large scale prospective studies could be

designed to detect the expression levels of sPD-L1 and sPD-1 in

IPF patients and explore their prognostic significance in these

patients. Second, IPF is a highly complex disease, and multiple

factors participate in its occurrence and progression. For

instance, it is well documented that lung macrophages and its

subpopulations play pivotal roles in pulmonary fibrosis

pathogenesis (142–145). Recently, Hartley and colleagues

investigated PD-L1 signaling in macrophages and the effects of

PD-L1 antibody treatment on tumor-associated macrophages

(TAM) responses (146). They elucidated that PD-L1 delivers a

constitutive negative signal to macrophages, resulting in an

immune-suppressive cell phenotype. Treatment with PD-L1

antibodies reverses this phenotype and triggers macrophage-

mediated antitumor activity. However, there was only one study

directly reported the role of the crosstalk between the PD-1/PD-

L1 pathway and lung macrophages in the pathogenesis of

pulmonary fibrosis in our review (20). Hence, more relevant

studies could be designed to provide more insights into this field.

Besides, the contributions of diverse cell populations in the lung

to pulmonary fibrosis pathogenesis are poorly understood.

Recently, as an innovative technology, single-cell RNA

sequencing (scRNA-seq) has been adopted to investigate the

transcriptome heterogeneity of different cell types in many

diseases (147), also including IPF (20, 145, 148–157). Taking

advantage of genomics technology, especially the advances of

scRNA-seq in recent decades, relevant studies could be designed
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to confirm the role of the PD-1/PD-L1 axis in IPF, identify the

involved cell populations, and clarify the underlying regulatory

mechanisms. Third, we identified that the PD-1/PD-L1 axis

plays a more predominant profibrotic role than its immune

regulatory role in IPF. It appears that lung fibroblast/

myofibroblast PD-L1 upregulation is at the core of this

process. Therefore, is there a role of PD-L1 degradation in

treating IPF? Until now, genetic knockout strategies, including

RNA interference (RNAi), antisense oligonucleotides, and

CRISPR/Cas9 are the most explored methods to decrease

cellular protein levels (158). Recently, chemical knockout

strategies have emerged as promising approaches because of

their improved efficacy and reduced side effects (158). Among

them, as a novel therapeutic strategy to target traditionally

“undruggable” proteins, proteolysis targeting chimeras

(PROTACs) have been widely used to deplete a protein of

interest (35, 159–161). Recently, Cotton and colleagues

designed an antibody-based PROTACs (AbTACs) that could

induce the lysosomal degradation of PD-L1 in multiple cancer

cell lines by recruiting the membrane-bound E3 ligase RNF43

(159). Nevertheless, targeted degradation of membrane PD-L1 is

still challenging for PROTACs. To overcome this bottleneck,

Wang et al. recently developed a novel strategy that could

achieve precise degradation of the membrane protein PD-L1

in cancer cells by using enzyme-instructed self-assembly (EISA)

and surface-induced self-assembly (158). Inspired by the

successful applications of the targeted protein degradation

technology in this field, is it feasible to use these strategies to

selectively degrade PD-L1 in lung fibroblasts/myofibroblasts for

IPF treatment? We think relevant preclinical studies could be

designed to verify its feasibility. Furthermore, with the rapid

development of material science today, especially the insightful

understanding of nanomedicine, many nano-drugs and

nanotechnologies are developed for disease diagnosis and

treatment (162–165). In this context, many approaches and

designs have been developed to target the PD-1/PD-L1 axis in

tumors to improve the efficacy of immunotherapy (166). Many

active agents such as antibodies, peptides, siRNAs, miRNAs, and

small molecules have been routinely incorporated into various

nanosystems for therapeutic, targeting, or diagnostic purposes
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(166, 167). Given the crucial role of the PD-1/PD-L1 pathway in

IPF, will it be a feasible strategy to apply the above

nanomedicines or methods for treating IPF? It will be

challenging and needs a long way to go.
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