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Coronavirus disease 2019 (COVID-19) is an epidemic respiratory disease

caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

that can cause infections in millions of individuals, who can develop lung injury,

organ failure, and subsequent death. As the first line of host defense, the innate

immune system is involved in initiating the immune response to SARS-CoV-2

infection and the hyperinflammatory phenotype of COVID-19. However, the

interplay between SARS-CoV-2 and host innate immunity is not yet well

understood. It had become known that the cGAS-STING pathway is involved

in the detection of cytosolic DNA, which elicits an innate immune response

involving a robust type I interferon response against viral and bacterial

infections. Nevertheless, several lines of evidence indicate that SARS-CoV-2,

a single-stranded positive-sense RNA virus, triggered the cGAS-STING

signaling pathway. Therefore, understanding the molecular and cellular

details of cGAS-STING signaling upon SARS-CoV-2 infection is of

considerable biomedical importance. In this review, we discuss the role of

cGAS-STING signaling in SARS-CoV-2 infection and summarize the potential

therapeutics of STING agonists as virus vaccine adjuvants.
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Introduction

Every outbreak of coronaviruses (CoVs) with novel viral antigens has caused severe

economic and societal damage. As early as 2003, severe acute respiratory syndrome

coronavirus (SARS-CoV) caused the first major pandemic disease of the new millennium

(1). In 2012, the outbreak of a new pathogenic coronavirus, the Middle East Respiratory

Syndrome Coronavirus (MERS-CoV), occurred in the Arabian Peninsula (2). In 2019,

SARS-CoV-2 caused an infectious disease pandemic worldwide (3). To date, SARS-CoV-
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1010911/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1010911/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1010911/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1010911&domain=pdf&date_stamp=2022-12-07
mailto:liuv@henau.edu.cn
https://doi.org/10.3389/fimmu.2022.1010911
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1010911
https://www.frontiersin.org/journals/immunology


Wu et al. 10.3389/fimmu.2022.1010911
2 has infected hundreds of millions of people, and its infection

continues (4). Common symptoms of infected individuals

include respiratory symptoms, fatigue, fever, cough,

hypogeusia/hyposmia, shortness of breath, and dyspnea (5).

Furthermore, infection can cause pneumonia, severe dyspnea,

and even death (6). However, there is currently no effective and

specific treatment for diseases caused by SARS-CoV-2 (7).

To date, the genus CoVs can be subdivided into four

clusters based on genetic and serologic properties, including

Alphacoronavirus (a), Betacoronavirus (b), Gammacoronavirus

(g), and Deltacoronavirus (d) (8). SARS-CoV-2 has a broad host

range, including humans, bats, hamsters, ferrets, and other

mammals (9, 10). It has been reported that infected animals

can infect humans, leading to sustained human-to-human

transmission (11). SARS-CoV-2 is classified as the genus

Betacoronavirus, which has a positive-sense single-stranded

RNA (+ssRNA) genome of ~30 kb (12). Its genome contains

two large open reading frames (ORFs), ORF1a and ORF1ab,

which are proteolytically cleaved by main protease (Mpro,

3CLpro, or nsp5) and papain-like protease (PLpro) to form 16

nonstructural proteins (nsp1-16), four structural proteins and

eleven accessory proteins. Among them, the nsp1-16 participate

in genome replication and early transcription regulation (13).

The structural proteins include membrane (M), nucleocapsid

(N), envelope (E), and spike (S), which are common to all

coronaviruses (14). Accessory proteins of SARS-CoV-2 consist

of ORF3a, ORF3b, ORF3c, ORF3d, ORF6, ORF7a, ORF7b,

ORF8, ORF9b, ORF9c and ORF10 (15). Based on previous

research, efficient replication and population transmission of

SARS-CoV-2 suggests that the virus can effectively circumvent

the human innate immune responses (16). In particular, SARS-

CoV-2 lineages have diverged into highly prevalent variants,

such as Delta (B.1.617.2), which are easier to spread and

potentially aggravate the severity of respiratory diseases and

reduce the effectiveness of COVID-19 vaccines (17). Therefore,

it is essential to reveal the roles of SARS-CoV-2 in innate

immunity. The innate immune system is the first line of

immunological defense for rapidly eliminating viruses. Pattern

recognition receptors (PRRs) are key parts of the innate immune

system against viruses, as they detect viral pathogen-associated

molecular patterns (PAMPs) (18). A significant factor of host

response to viral infections largely depends on the initial

activation of PRRs by viruses, primarily by viral DNA or RNA

(19). The signaling pathways activated by PRRs result in the

expression of proinflammatory cytokines to recruit immune cells

and type I as well as type III interferons (IFNs), thereby inducing

interferon-stimulated genes (ISGs), which are powerful virus

restriction factors to establish the antiviral state (20). Cyclic

GMP-AMP synthase (cGAS) is a cytosolic PRR that can

recognize cytosolic nucleic acids, including dsDNA (21). The

recognition of dsDNA by cGAS produces cyclic GMP-AMP

(cGAMP). cGAMP is subsequently recognized by stimulator of

interferon genes (STING, also nominated as MITA/MYPS/
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ERIS), which exits the endoplasmic reticulum (ER) and

translocates to the Golgi, where STING triggers type I IFNs

and proinflammatory responses (22–24). In the absence of viral

infection, cGAS-STING signaling plays an important role in

auto immune d isease s , an t i tumor ac t i v i t y , cancer

immunotherapy, tissue disorder regulation, autoinflammation

and so on (25). Upon viral infection, STING also acts as a

scaffold protein for TANK-binding kinase 1 (TBK1) and IRF3

and links them to the MAVS complex in mitochondria.

Moreover, STING activation is critical for the stimulation of

IRF3 activity (26). Hence, upon activation, STING forms dimers

that assemble with MAVS, TBK1 and IKKϵ, leading to IRF3

activation and subsequent induction of IFNs. In addition,

STING activation also leads to the induction of autophagy

responses, resulting in a strong inhibitory effect against

infections which are caused by a variety of microbial

pathogens (27). Liu et al. found that STING contains LC3

interacting regions (LIRs) and mediates autophagy through

direct interaction with LC3 (28).

Furthermore, the cGAS-STING pathway is basically induced

by leaked mitochondrial DNA, microbial DNA, extranuclear

chromatin, cytosolic micronuclei, and aberrant chromosomal

DNA (29, 30). Thus, recognition of cytosolic dsDNA mediated

by cGAS-STING signaling leads to the induction of type I

interferon, which plays an important role in innate immunity

against cytosolic pathogens. Zhou et al. reported that SARS-

CoV-2 facilitates intercellular fusion via the S protein, resulting

in the shuttling of chromatin DNA from the nucleus and

eventually activating the cGAS-STING pathway (31). However,

Lv and others speculated that SARS-CoV-2 may cause

mitochondrial damage, leading to a build-up of mtDNA in the

cytoplasm (32). Then, the cGAS-STING pathway is activated by

raised mtDNA leakage. It was interesting to determine how

SARS-CoV-2, a single-stranded positive-sense RNA virus,

triggered the cGAS-STING signaling pathway. Nevertheless,

the role of the cGAS-STING pathway triggered by SARS-CoV-

2 is still unknown. This review provides insights into the

response of cGAS-STING signaling pathways to SARS-CoV-2

infection and suggests potential therapeutic drugs for SARS-

CoV-2. The therapeutic targeting of cGAS-STING signaling may

provide a novel approach to treat autoimmune and

inflammatory diseases.
cGAS-STING pathways induced by
SARS-CoV-2

Multiple lines of evidence have indicated that the

cytoplasmic DNA sensor cGAS-STING recognizes dsDNA

viruses, but also plays a critical role in RNA virus infection,

either by directly recognizing characteristics of virus or by

detecting cellular DNA released from mitochondria or nuclei
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in responding to cellular stress (33). Mdkhana et al. reported that

STING could play an important role in SARS-CoV-2 infection

by inducing the type I IFN response (Figure 1) (32, 34, 35).

Although rapid induction of type I IFNs limits virus

propagation, a sustained increase in the levels of type I IFNs

in the late phase of the infection is associated with aberrant

inflammation and poor clinical outcome (36). Evidence shows

that the cGAS-STING pathway is a critical determinants of

aberrant type I IFN responses in COVID-19 (37). Application of

STING inhibitor suppressed STING activation, thereby reducing

severe lung inflammation induced by SARS-CoV-2 and

improves disease outcome (32, 36). cGAS-STING activation

leads to increased inflammation and pathogenesis in infected

patients and mice in COVID-19 (36). Neufeldt et al. found that

SARS-CoV-2 infection activates the cGAS-STING pathway,

which leads to induction of proinflammatory cytokines
Frontiers in Immunology 03
mediated via nuclear factor kB (NF-kB) pathway and this

response can be controlled with STING inhibitors (33).

Neufeldt et al. observed colocalization between STING and

SARS-CoV-2 N protein in infected cells, and Rui Y et al.

showed interactions between STING and ORF3a, both

suggesting viral proteins play a direct role in manipulating the

cGAS-STING pathway (33, 38).
Current understanding of SARS-CoV-2
ORFs in cGAS-STING pathways

Host responses to viral infection are dependent on

mitochondrial functions (39). Manipulation of host

mitochondria by ORFs of SARS-CoV-2 can lead to leakage of

mtDNA into the cytoplasm, activate mtDNA-triggered
FIGURE 1

The contributing role of STING in innate responses against SARS-CoV-2 infection. SARS-CoV-2 suppresses the components of cGAS-STING
pathway, resulting in inhibiting the synthesis and release of various proinflammatory cytokines and type I IFNs.
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inflammasomes and inhibit innate and adaptive immunity (40).

Indeed, mtDNA is a proinflammatory damage associated

molecular pattern (DAMP) and has a pathogenic role in a

variety of inflammatory diseases (41). SARS-CoV open reading

frame-9b (ORF9b) localizes to the mitochondrial membrane

(42). Viral genome mutations commonly exist, but mutation

coldspots may serve as conservative diagnostic and therapeutic

targets in ORF9b, and no mutations were detected in ORF9b

from publicly available data (43). SARS-CoV ORF9b is a unique

accessory protein with a novel fold that can form a dimeric tent-

like b structure with an amphipathic surface and a central

hydrophobic cavity which binds lipid molecules encoded by an

another ORF within the N gene (44).

Gao et al. reported that SARS-CoV-2 ORF9b inhibits type I

IFN response through its central portion of ORF9b occupying

the deep pocket in the C-terminal domain (CTD) of TOM70,

which is a 70-kDa membrane-anchored adapter that relays

antiviral signaling from MAVS to TBK1/interferon regulatory

factor 3 (IRF3) (45). In addition, ORF9b inhibits RIG-I-MAVS

antiviral signaling through its N-terminus by interrupting K63-

linked ubiquitination of IKKg, which is the NF-kB essential

modulator (46). Once the virus enters the host cell, ORF9b can

directly manipulate mitochondrial function to escape host cell

immunity and promote virus replication and COVID-19 disease.

Furthermore, SARS-CoV-2 ORF9b impairs the induction of type

I and III IFNs by targeting several components of the cGAS-

STING signaling pathways (47). Confocal microscopy analysis

reveals that SARS‐CoV‐2 ORF9b colocalized with mitochondria,

whereas partially localized to the ER via interaction with STING

(47). The transfection of the SARS‐CoV‐2 ORF9b plasmid

significantly decreased the phosphorylation of TBK1, which

phosphorylates IRF3, and this phosphorylation results in the

translocation of IRF3 into the nucleus to induce the production

of types I and III IFNs and other proinflammatory cytokines

(47). Similarly, SARS‐CoV‐2 nsp5, nsp6, nsp13 and N protein

were reported to inhibit the phosphorylation of TBK1 (48–52).

Nevertheless, SARS-CoV-2 M protein induces TBK1

degradation through K48-linked ubiquitination, thereby

significantly inhibiting the production of IFNs (53–56).

Interestingly, host factor USP22 can also regulate human

intestinal epithelial cells (hIECs) to secrete type III IFNs and

SARS‐CoV‐2 infection. Karlowitz et al. found that USP22

controls basal and 2’3’-cGAMP-induced STING activation,

and serves as central regulator of basal IFN-l secretion (57).

USP22-deficient human intestinal epithelial cells are protected

against SARS-CoV-2 infection, viral replication, and the

formation of virus particles, in a STING-dependent manner.

Likely to ORF9b, ORF10 targets STING to antagonize IFN

activation (58). Overexpression of ORF10 inhibits cGAS-

STING induced IRF3 phosphorylation, translocation, and

subsequent IFN induction. Moreover, ORF10 also prevents the

ER-to-Golgi trafficking of STING by anchoring STING in the

ER. Therefore, these findings suggested that SARS‐CoV‐2 ORFs
Frontiers in Immunology 04
acts as a negative regulator of antiviral immunity, thereby

modulating the cGAS-STING pathway.

Open reading frame-3a (ORF3a), a highly conserved

coronavirus protein, is the largest accessory protein of SARS-

CoV-2, which locates on the plasma membrane and

endomembranes, including lysosomes, endosomes, Golgi, and

endoplasmic reticulum (ER), and disturbs with ion channel

activities in host plasma and endomembranes (59). ORF3a is

involved in virus replication and release, autophagy blockade,

proapoptotic activity, promotion of lysosomal exocytosis, and

inflammasome activation (15, 60, 61). Rui et al. reported that

ORF3a mediated the activation of cGAS-STING function and

possessed a certain inhibitory effect on nuclear accumulation of

NF-kB p65 (38). Furthermore, ORF3a could interact

independently with the N-terminal and the C-terminal

fragment of STING, a truncated STING mutant lacking both

the N- and C-terminal regions failed to interact with ORF3a,

indicating that ORF3a participates in regulating the production

of type I and III IFNs (38). In addition, ORF3a was capable of

suppressing the activity of STING activated by STING agonists

(38). Notably, SARS-CoV-2 ORF3a can also inhibit STING

function in human, mouse, and chicken (38). Thus, ORF3a-

mediated inhibition of cGAS-STING may be due to the

inhibition of STING, rather than cGAS. However, Su et al.

discovered that SARS-CoV-2 ORF3a can interact with STING

and disrupt the STING-LC3 interaction, thus effectively blocking

cGAS-STING-induced autophagy but not IRF3-type I IFN

induction (62). STING contains LC3 interacting regions and

mediates autophagy through direct interaction with LC3 (28).
Proteases of SARS-CoV-2 in cGAS-STING
pathways

Similar to ORF3a, 3CLpro-mediated suppression of cGAS-

STING may be due to the inhibition of STING rather than

cGAS, and suppresses cGAS-STING-mediated p65 nuclear

accumulation (38). 3CLpro forms a dimer with two monomers

(residues 1-306), and each one has three domains (domains I, II

and III) (63). Although the monomeric state of 3CLpro is

inactive, the homodimeric state formed by the dimerization of

two monomers is active (64). Rui et al. found that 3CLpro

possessed the ability to suppress immune responses induced by

both the RLR and cGAS-STING pathways (38, 65). The ability of

cGAS-STING to activate NF-kB signaling was inhibited more

effectively by 3CLpro than was that triggered by downstream

factors in the cGAS-STING pathway such as IKKa, IKKb,
TBK1, p65 and IKKϵ (38). Immunoprecipitation indicated that

3CLpro bound to STING and specifically inhibited the K63-

linked ubiquitylation of STING to impair the STING functional

complex assembly and downstream signaling (38). Similar to

ORF3a, various vertebrate STINGs, involving humans, mice,

and chickens, could be suppressed by 3CLpro of SARS-CoV-2
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(38). These findings show that SARS-CoV-2 3CLpro may target

the conserved features of vertebrate STING molecules. Another

protease of SARS-CoV-2, PLpro, is a potent inhibitor of cGAS-

STING function, which could significantly reduce K63-

ubiquitination of TBK1 for suppressing IFNs production and

signaling (66).
Spike protein of SARS-CoV-2 in cGAS-
STING pathways

The spike (S) protein of SARS-CoV-2 is composed of two

subunits, S1 and S2, which plays a key role in the receptor

recognition and cell membrane fusion process. Several lines of

evidence have indicated that SARS-CoV-2 facilitates

intercellular fusion via the spike (S) protein. Ren et al.

reported that viral infection could induce syncytia formation

within cells expressing ACE2 and the SARS-CoV-2 S protein,

leading to the production of micronuclei (67). cGAS recognizes

chromatin DNA shuttled from the nucleus resulting from

intercellular fusion upon SARS-CoV-2 infection, which results

in a high level of activation of cGAS-STING signaling and

induces a type I interferon (IFN) response (31, 68).

Furthermore, cytoplasmic chromatin-cGAS-STING pathway,

contributes to IFN and pro-inflammatory gene expression

upon cell fusion (31). However, phosphorylation of the

transcriptional regulator IRF3 and the encoding of type I IFN,

were reduced in cGAS-deficient fused cells (68). Therefore, these

results suggested that the potential role of cGAS in cell-cell

fusion from SARS-CoV-2.
Therapeutic drugs targeting STING

A previous study provided evidence that STING activation

represents a prospective therapeutic treatment to control SARS-

CoV-2 (Table 1) (69). Several recent studies have shown that

STING agonists interfere in SARS-CoV-2 infection by regulating
Frontiers in Immunology 05
the type I IFN response (69, 75). In order to reveal antiviral

innate immune agonists to block SARS-CoV-2 infection, Li et al.

conducted high-throughput screening and identified

endogenous STING agonists, cyclic dinucleotides (CDNs), as

antiviral agents against SARS-CoV-2 (69). Due to the low

potency of CDNs and poor drug quality, potent small

molecule STING agonists have been exploited, such as diABZI

(76–78). Li et al. examined the small molecule STING agonist

diABZI and detected that it can effectively inhibit SARS-CoV-2

infection of various strains, including the South African variant

B.1.351, through transiently stimulating IFN signaling (69).

Notably, diABZI can impair viral replication in primary

human bronchial epithelial cells and in mice in vivo.

Therefore, this STING agonist could be utilized as a new

therapeutic strategy against COVID-19. Similarly, Humphries

et al. described a diamidobenzimidazole compound, diABZI-4,

which activates STING and is highly potent in restricting SARS-

CoV-2 replication in cells and animals (70). diABZI-4 blocked

SARS-CoV-2 replication in lung epithelial cells. Intranasal

delivery of diABZI-4 leaded to a rapid short-lived activation of

STING, contributing to transient proinflammatory cytokine

production and lymphocyte activation in the lung, which is

related to suppression of viral replication (70). Hence, diABZI-4

possesses a wide range of protective effects against respiratory

SARS-CoV-2 infections. In addition, it was found that there are

several new cGAS-STING activators, such as colloidal

manganese salt (Mn jelly, Mn J), CF501, mucoadhesive

nanoparticles, and IAPA (indirect-acting pan-antiviral) agents,

which provide new ideas for anti-SARS-CoV-2 therapy (71–74).

To prevent infection, disease, or transmission of SARS-CoV-

2, effective vaccines are considered essential to reduce further

morbidity and mortality (79). For nearly a century, Aluminum-

containing adjuvants have been utilized to boost immune

responses in the billions of doses of vaccines. Along with the

evolution of the biocompatible platforms of peptide, protein and

biomembrane, the stability of STING agonists has been

improved (80). So far, only a few adjuvants have been

approved for humans use, of which aluminum-containing
TABLE 1 Potential therapeutic strategy for targeting STING in SARS-CoV-2.

Name Therapeutic
strategy

Description

diABZI STING agonist Significantly suppresses SARS-CoV-2 infection (69);

diABZI-4 STING agonist Stimulates STING and is highly effective in inhibiting SARS-CoV-2 replication (70);

CF501 STING agonist Vaccine to resist the current epidemic SARS-CoV-2 and its variants (71);

mucoadhesive
nanoparticles

STING agonist The intranasal delivery system loaded with cGAMP potently boosted the immunogenicity of the spike vaccine in the
respiratory tract (72);

IAPA agents STING agonist Boosts the immune system through STING while blocking essential inflammation-related proteins such as caspase-1
and TNF-a (73);

Mn J STING agonist Mn J was made to serve not only as an immune enhancer but also as a delivery system to activate humoral and cellular
immune responses (74);
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adjuvant is the only one widely used (81). However, the

nanoparticle manganese (nanoMn) adjuvant (also known as

STING agonists) have been shown to promote antigen

presentation, virus-specific memory T-cell development and

host-adaptive immunity, making it an optimum adjuvant for

protein-based COVID-19 subunit vaccines (Table 2) (84). Zhang

et al. reported that the nanoMn adjuvant is the most effective in

strengthening immunogenicity or immune responses of SARS-

CoV-2 protein-based subunit vaccines (86). Moreover, a novel

STING agonist, CDGSF, as an adjuvant immunization with

SARS-CoV-2 S protein, causes extremely high antibody titers

and a strong T-cell response, overcoming the shortcomings of

aluminum-containing adjuvants (85). In addition, the vaccine-

stimulating immune response of the respiratory tract is

significant in controlling SARS-CoV-2 transmission and

disease development (87). Mucoadhesive nanoparticles were

utilized to convey SARS-CoV-2 S protein into the nasal tracts

of mice (72). Moreover, An et al. reported that NanoSTING as

the adjuvant for intranasal vaccination of S protein trimeric or

monomeric form elicited robust serum neutralizing antibodies

and T-cell responses (82). The administration of the S protein

together with cGAMP resulted in a strong stimulatory effects on

antibody responses in the respiratory tract (88, 89). Moreover,

the induced antibodies can neutralize the wild-type and Delta

variant strains of SARS-CoV-2 (72). The data showed that

STING agonists had a strong adjuvant effect on the

immunogenicity of the S protein (74). In general, these

findings underlined the adjuvant potential of the STING

agonist in the SARS-CoV-2 vaccine. STING can be activated

rapidly and transiently by STING agonists, which stimulate IFNs

signaling instantaneously (69, 70). Nevertheless, for STING

vaccine adjuvants that cause durable humoral and cellular

immune responses, it is noteworthy to avoid the deterioration

of the disease caused by excessive inflammation (71).

Aberrant activation of STING could exacerbate

inflammatory disease that has been linked to severe COVID-

19. Similarly, severe disease symptoms induced by SARS-CoV-2

are often associated with high levels of pro-inflammatory

cytokines, IFNs and low antiviral responses, which can cause
Frontiers in Immunology 06
systemic complications. Neufeldt et al. reported that SARS-CoV-

2 directs a cGAS-STING mediated, NF-kB-driven inflammatory

immune response in human epithelial cells that likely

contributes to inflammatory responses seen in patients (33). In

addition, Lv et al. found that cGAS-STING mediated immune

dysregulation is associated with age (32). Macrophages with

shortened telomeres, exhibited hallmarks of cellular senescence,

mitochondrial distress, abnormal activation of STING, which

predisposed mice to severe viral pneumonia during commonly

mild infections. Therefore, limiting STING activation leads to

decrease inflammatory responses and decreased pathogenesis,

suggesting that STING can be used as a therapeutic target to

inhibit severe disease symptoms caused by SARS-CoV-2.
Discussion

The roles of the STING signaling pathway in the process of

SARS CoV-2 infection have been reported. It is understood that

SARS-CoV-2 ORF9a or ORF3 damaged type I and III IFNs by

targeting several constituents of the cGAS-STING signaling

pathways, thus promoting virus replication. On the other

hand, protease of SARS-CoV-2, 3CLpro can inhibit STING

and destroy the assembly of the STING complex and

downstream signal transduction. Recently, it was reported that

the upstream signal molecule of STING, cGAMP, which is an

immune-stimulating molecule produced by cGAS, can be used

as an adjuvant of the COVID-19 vaccine. cGAMP loading of

virus-like particles (VLPs) containing the SARS-CoV-2 S protein

increases S-specific antibody titers. Hence, cGAMP-loaded VLPs

have great potential as a vaccination platform. This suggests that

the upstream signaling molecules of STING may participate in

the process of innate immune resistance to viruses through the

STING pathway. Most importantly, a timely optimum cGAS-

STING response could provide protection against SARS-CoV-2

infection. The use of STING agonists such as diABZI exerts a

beneficial effect by transiently stimulating IFN signaling

triggered by cGAS-STING upon sensing SARS-CoV-2

infection. Therefore, a thorough understanding of the
TABLE 2 Potential vaccine adjuvants targeting STING of SARS-CoV-2.

Name Therapeutic strat-
egy

Description

NanoSTING vaccine adjuvant NanoSTING as the adjuvant for intranasal vaccination of S protein trimeric or monomeric form (82);

cGAMP-ternary adjuvant
system

vaccine adjuvant A novel ternary adjuvant system with Alum/STING agonist 3,3’-cGAMP/poly(I:C) (83);

nanoMn vaccine adjuvant Enhances cellular uptake and sustained release of Mn2+ in a pH-sensitive manner, thereby enhancing IFN
response (84);

CDGSF vaccine adjuvant CDGSF as an adjuvant immunization with SARS-CoV-2 S protein (85);
STING, stimulator of interferon genes; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; cGAMP, cyclic GMP-AMP; IAPA, indirect-acting pan-antiviral; TNF-a, tumor
necrosis factor-alpha; poly(I:C), TLR3 agonist; nanoMn, nanoparticle manganese; IFN, interferon; Mn J, colloidal manganese salt; S protein, spike protein.
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interrelationship between STING and SARS-CoV-2 is highly

significant for designing treatment and preventive strategies.
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