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Blood transcriptome analysis
revealed the crosstalk between
COVID-19 and HIV

Cheng Yan*†, Yandie Niu † and Xuannian Wang*†

School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology of Henan
Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, Henan, China
Background: The severe coronavirus disease 2019 (COVID-19) is an infectious

disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), which has resulted in the most devastating pandemic in modern

history. Human immunodeficiency virus (HIV) destroys immune system cells

and weakens the body’s ability to resist daily infections and diseases.

Furthermore, HIV-infected individuals had double COVID-19 mortality risk

and experienced worse COVID-related outcomes. However, the existing

research still lacks the understanding of the molecular mechanism

underlying crosstalk between COVID-19 and HIV. The aim of our work was

to illustrate blood transcriptome crosstalk between COVID-19 and HIV and to

provide potential drugs that might be useful for the treatment of HIV-infected

COVID-19 patients.

Methods: COVID-19 datasets (GSE171110 and GSE152418) were downloaded

from Gene Expression Omnibus (GEO) database, including 54 whole-blood

samples and 33 peripheral blood mononuclear cells samples, respectively. HIV

dataset (GSE37250) was also obtained from GEO database, containing 537

whole-blood samples. Next, the “Deseq2” package was used to identify

differentially expressed genes (DEGs) between COVID-19 datasets

(GSE171110 and GSE152418) and the “limma” package was utilized to identify

DEGs between HIV dataset (GSE37250). By intersecting these two DEG sets, we

generated common DEGs for further analysis, containing Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) functional

enrichment analysis, protein-protein interaction (PPI) analysis, transcription

factor (TF) candidate identification, microRNAs (miRNAs) candidate

identification and drug candidate identification.

Results: In this study, a total of 3213 DEGs were identified from the merged

COVID-19 dataset (GSE171110 and GSE152418), and 1718 DEGs were obtained

from GSE37250 dataset. Then, we identified 394 common DEGs from the

intersection of the DEGs in COVID-19 and HIV datasets. GO and KEGG

enrichment analysis indicated that common DEGs were mainly gathered in

chromosome-related and cell cycle-related signal pathways. Top ten hub

genes (CCNA2, CCNB1, CDC20, TOP2A, AURKB, PLK1, BUB1B, KIF11,

DLGAP5, RRM2) were ranked according to their scores, which were screened

out using degree algorithm on the basis of common DEGs. Moreover, top ten
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drug candidates (LUCANTHONE, Dasatinib, etoposide, Enterolactone,

troglitazone, testosterone, estradiol, calcitriol, resveratrol, tetradioxin) ranked

by their P values were screened out, which maybe be beneficial for the

treatment of HIV-infected COVID-19 patients.

Conclusion: In this study, we provide potential molecular targets, signaling

pathways, small molecular compounds, and promising biomarkers that

contribute to worse COVID-19 prognosis in patients with HIV, which might

contribute to precise diagnosis and treatment for HIV-infected COVID-19

patients.
KEYWORDS

COVID-19, HIV, common differentially expressed genes, hub genes, small
molecular compounds
Introduction

The COVID-19 virus caused by the SARS-CoV-2 virus

emerged in Wuhan, China, in December 2019, resulting in a

large loss of human life all over the world and posing a serious

threat to public health, food systems and the world of work (1–

4). A recent World Health Organization (WHO) report

conducted in China showed fever, diarrhea, sore throat, dry

cough, and fatigue were listed as the most common COVID-19

symptoms, while musculoskeletal symptoms, including

arthralgia and muscular aches may also occur by infecting

coronavirus (5–9). It is common for patients suffering from

severe COVID-19 cases to suffer from acute respiratory distress

syndrome (ARDS) and respiratory failure, organ manifestations

that lead to the majority of fatalities resulting from COVID-19

(10). Due to COVID’s rapidly evolving mutant strains, the

difficulties of manufacturing vaccines, and the lack of vaccines,

the fight against COVID-19 remains highly challenging (11).

Acquired immunodeficiency syndrome (AIDS) is defined as less

than 200 CD4 T-cells per liter of blood or as a disease that defines

AIDS (12, 13). InfectionwithHIV causes human immunodeficiency

virus infection and acquired immunodeficiency syndrome (HIV/

AIDS) (14). The World Health Organization estimates that as of
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2021, HIV/AIDS has killed about 36.3 million people and affected

approximately 37.7 million people worldwide (15).

Previous studies showed that HIV-infected individuals had

double COVID-19 mortality risk and experienced worse COVID-

related outcomes (16–18). According to a recent study, HIV was

also an independent risk factor for both severe/critical COVID-19

at admissionand in-hospitalmortality (19). Therefore, it is essential

to explore potential molecular mechanisms and screen out

potential small molecular compounds for the treatment of HIV-

infected COVID-19 patients.

In addition, white blood cells circulating around the blood

help the immune system fight off infections and act as a first line

defense against disease-causing microorganisms. HIV infection

is characterized by CD4+ T cell depletion, CD8+ T cell

expansion, and chronic immune activation that leads to

immune dysfunction (20). COVID-19 can trigger a cytokine

storm in pulmonary tissues through hyperactivation of the

immune system and the uncontrolled release of cytokines (21).

These results indicate that blood cells may play important role in

the progression of COVID-19 in HIV-infected individuals. The

purpose of our work was to illustrate blood transcriptome

crosstalk between COVID-19 and HIV and to provide

potential drugs that might be useful for the treatment of HIV-

infected COVID-19 patients.

Herein, we identified 394 commonDEGs from the intersection

of the DEGs in COVID-19 and HIV datasets. Next, the common

DEGs were analyzed using KEGG and GO functional enrichment

analysis to identify potential biological pathways. Then, PPI

network was developed to identify hub genes that may serve as

diagnostic markers for disease. Subsequently, for the advancement

of COVID-19 and HIV clinical diagnosis and treatment, we

analyzed TFs, miRNAs on the basis of the common DEGs.

Finally, we explored possible small molecule compounds that

may be profitable for treating HIV-infected COVID-19 patients.
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Methods

Data acquisition

One COVID-19 dataset (GEO accession ID: GSE171110)

consisted of 44 COVID-19-infected whole-blood samples and 10

healthy whole-blood samples with Illumina HiSeq 2000 (22).

Another COVID-19 dataset (GEO accession ID: GSE152418)

contained 16 peripheral blood mononuclear cells samples and 17

healthy samples (23). Similarly, the HIV dataset (GEO accession

ID: GSE37250) consisted of 274 positive HIV-infected whole-

blood samples, 263 negative HIV-infected whole-blood samples.
Identification of common DEGs

The “Deseq2” package in RStudio software (version 4.1.2)

was performed to select DEGs with |Log2 Fold Change| > 0.585

and | adj.P.Val. | < 0.05 for COVID-19 datasets (GSE171110 and

GSE152418). Meanwhile, the “limma” package was used to identify

DEGs with |Log2 Fold Change| ≥ 0.1 and | adj.P.Val. | <0.001 for

HIV dataset (GSE37250). Using “venn” package in R software, we

obtained COVID-19 and HIV common DEGs.
Functional enrichment analysis of
common DEGs

The “clusterProfiler” package in RStudio software (version

4.1.2) was performed to explore the possible biological pathways

of the common DEGs with GO and KEGG enrichment analysis.

P-value < 0.05 was used for quantifying the top listed functional

items and pathways of common DEGs.
Analysis of PPI network based on
common DEGs

The interactions among proteins are represented by PPI

networks, which are crucial to understanding cell physiology in

health and disease. It is essential to understand and gain insight into

the cellularmachineprocess by examiningPPInetwork function and

its interaction with cellular machinery (24). A set of common DEGs

was also uploaded to the STRINGwebsite (https://string-db.org/) so

that the interactions among proteins could be assessed critically. The

PPI network of these common DEGs was constructed based on a

combined score larger than 0.9. Then, the PPI networks were

visualized using Cytoscape (version 3.9.1) software.
Extraction of hub genes

Using Cytoscape’s plug-in CytoHubba, we identified the top 10

hub genes by ranking them (25). Using network metrics, Cytoscape
Frontiers in Immunology 03
allows users to evaluate and identify biological network modulators

(26). Furthermore, receiver operating characteristic curve (ROC)

analyses based on degree algorithms were conducted on the top 10

hub genes.
Recognition of transcription factors
and MiRNAs

Proteins called TFs can bind to specific DNA sequences and

form a complex regulatory system that controls genome

expression (27). Enrichr is a web-based enrichment analysis

tool that provides different types of visual summary summaries

for gene lists (28). We used the Enrichr Transcription Factor

PPIs library to identify TFs in common DEGs and developed a

TF-gene interaction map using Cytoscape software (version

3.9.1). In addition, target gene-miRNA interaction analysis was

performed to detect miRNAs that could successfully attach to

target gene transcripts and negatively have an influence on the

expression of protein through destabilizing mature messenger

RNA and reducing corresponding translation efficiency (29).

MiRTarBase provides information about miRNA-target

interactions (MTIs) that have been experimentally validated

(30). Then, we used the Enrichr miRTarBase 2017 library to

identify miRNAs in common DEGs and developed a miRNA-

gene interaction map using Cytoscape software (version 3.9.1).
Evaluation of applicant drugs

An online resource, Drug Signatures Database (DSigDB),

connects drugs/compounds to their target genes (31). To study the

drugmolecular properties of COVID-19 andHIV,we used theDrug

Signatures Database (DSigDB) library under the Diseases/Drugs

function in Enrichr (https://maayanlab.cloud/Enrichr/enrich).
Gene-disease association analysis

The DisGeNET database contains one of the most

comprehensive collections of genes and variants associated with

human disease (32–35). Based on common DEGs, we identified

diseases and chronic health problems using DisGeNET database

under the Diseases/Drugs function in Enrichr.
Results

Identification of DEGs and common
DEGs between COVID-19 and HIV

Datasets
A flowchart was created to depict all the critical and significant

processes of our study (Figure 1). In order to investigate the
frontiersin.org
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interactions between COVID-19 and HIV, we analyzed the blood

samples downloaded from GEO database. Box plots of the gene

expression of COVID-19 and HIV datasets before and after

normalization were shown in Supplementary Figures 4-6. In the

COVID-19 dataset, we identified 3213 DEGs with|Log2 Fold

Change| > 0.585 and | adj.P.Val. | < 0.05, whereas in the HIV

dataset,we identified 1718DEGswith |Log2 FoldChange|≥ 0.1 and

| adj.P.Val. | <0.001 (Figure 2A; Supplementary Tables 1, 2).

Moreover, the volcano plots depicted DEGs of COVID-19 and

HIV, respectively (Figures 2B, C; Supplementary Tables 3, 4). Venn

diagram revealed that 394DEGswere common in bothCOVID-19

and HIV datasets (Figure 2D). According to these findings, HIV

and COVID-19 have a large number of common genes and are

closely related.
Functional enrichment analysis of
common DEGs

The GO enrichment analyses are commonly used to show

the interactions between genes and terms, whereas KEGG

enrichment analyses can illustrate the relationship between

genes and patterns of function (36). “ClusterProfiler” package

was used to discover biological features and pathways that were

enriched in this work as common DEGs. GO enrichment

analysis showed significantly enriched pathways (p-value <
Frontiers in Immunology 04
0.05), biological process (BP), cell composition (CC), and

molecular function (MF) are included. Notable pathways

among BP category were mitotic nuclear division, mitotic

sister chromatid segregation, and sister chromatid segregation.

In the CC category, the top three terms were cytosolic ribosome,

chromosome, centromeric region and chromosomal region.

Moreover, in the MF aspect, structural constituent of

ribosome, coreceptor activity, and C−C chemokine receptor

activity were the top three statistically significant GO terms

(Figures 3A, B). The top three pathways of KEGG enrichment

analysis were Coronavirus disease-COVID-19, Cytokine

−cytokine receptor interaction, and Cell cycle (Figures 3C, D).

These results suggest that these common DEGs have strong

relationships with cell cycle, which may lead to a more effective

treatment for COVID-19 and HIV.
PPI network and hub genes extraction of
common DEGs

A comprehensive analysis of these common DEGs between

COVID-19 and HIV was conducted using STRING to explore

protein-protein interactions. Figure 4 illustrates the interactions

between the common DEGs in HIV and COVID-19. As shown

in Figure 5, top 10 hub genes were ranked according to their

scores, which were identified using degree method based on the
FIGURE 1

The entire workflow diagram of our research.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1008653
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yan et al. 10.3389/fimmu.2022.1008653
results of PPI network in Cytoscape, including CCNA2, CCNB1,

CDC20, TOP2A, AURKB, PLK1, BUB1B, KIF11, DLGAP5,

RRM2. Next, ROC analysis was conducted for HIV and

COVID-19, respectively. Area under curve (AUC) values for

all hub genes in the HIV dataset were greater than 0.616,

whereas AUC values for all hub genes in the COVID-19

dataset were greater than 0.973 (Supplementary Figures 2, 3).

According to these results, it is potential to develop novel

targeted therapies against COVID-19 by targeting these

hub genes.
Construction of regulatory networks

There are two types of gene expression regulators: transcription

factors (TFs) andmiRNAs. TFsmodulate transcription by binding

the promoter regions, whereas miRNAs regulate post-

transcriptional gene expression (37). Analysis of interactions
Frontiers in Immunology 05
between TFs and miRNAs revealed that 165 TFs and 2466

miRNAs coordinate these common DEGs, indicating that they

cooperate heavily. As shown in Figure 6, the top ten TFs were

ranked according to their P values, including ILF3, RAD21, ILF2,

TP53, CCNE1, E2F4, E2F1, HDAC8, ESR1, andHSF1. The top ten

miRNAs were also ranked by their P values, containing hsa-miR-

193b-3p, hsa-miR-192-5p, hsa-miR-215-5p, hsa-miR-146a-5p,

hsa-miR-10a-5p, hsa-miR-216b-5p, hsa-miR-212-3p, hsa-miR-

34a-5p, hsa-miR-1260b, and hsa-miR-23b-5p (Figure 7). These

findings indicated that there was strong relationship between

common DEGs and TFs, miRNAs.
Identification of candidate drugs

As shown in Figure 8, top ten drugs were ranked according

to their P values (LUCANTHONE, Dasatinib, etoposide,
B

C D

A

FIGURE 2

Visualization the number of common differentially expressed genes between two datasets, COVID-19 (GSE171110 and GSE152418) and HIV
(GSE37250). (A) Comparing the number of differentially expressed genes between COVID-19 and HIV. (B) The volcano plot of differentially
expressed genes in COVID-19 datasets. (C) The volcano plot of differentially expressed genes in the HIV dataset. (D) Venn diagram showing the
overlap of differentially expressed genes between COVID-19 and HIV.
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Enterolactone, troglitazone, testosterone, estradiol, calcitriol,

resveratrol, tetradioxin), which were identified from the

DSigDB library in Enrichr based on P-value. These potential

small molecular compounds might serve as therapeutic targets

and treatment for COVID-19 and HIV.
Identification of disease association

It has been shown that various diseases are linked and must

have at least one or more genes in common (38). Based on

DisGeNET library in Enrichr, we screened out five diseases that

has strong relationship with common DEGs, including

malignant neoplasm of breast, breast carcinoma, malignant

lymphoma, lymphocytic, intermediate differentiation, diffuse,

nasopharyngeal carcinoma, and leukemia (Supplementary
Frontiers in Immunology 06
Figure 1). These results indicated these diseases have

something in common with HIV and COVID-19.
Discussion

A growing number of studies have demonstrated possible

connections between various diseases in recent years.

Interactions between different diseases are therefore a highly

promising field that needs to be investigated in the future (23, 39,

40). There have been dramatic deaths worldwide due to COVID-

19, which has presented a major challenge to public health, the

food system, and the workforce. HIV is a member of the family

Retrovirae within the genus Lentivirus (41), which has a wide-

ranging impact on individuals’ health, households, communities,

and nations’ economic and social well-being (42). People living
B

C D

A

FIGURE 3

GO and KEGG functional enrichment analysis of the common differentially expressed genes between COVID-19 and HIV. (A) The bubble graphs
of GO enrichment analysis. (B) Circle diagram of GO enrichment analysis. (C) The bar graphs of KEGG enrichment analysis. (D) Circle diagram of
KEGG enrichment analysis.
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FIGURE 4

COVID-19 and HIV common differentially expressed genes in the PPI network.
FIGURE 5

Identification of the top 10 hub genes ranked by their scores. In the middle circle, the 10 central genes represent the top 10 hub genes ranked
by their scores and their interactions with other common DEGs.
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with HIV have badly compromised immune system. The recent

studies showed that patients living with HIV had a higher risk of

SARS-CoV-2 infection and mortality risk from COVID-19 than

people without HIV (19, 43–45). HIV was identified as an

independent risk factor for both severe-type and critical-type

COVID-19 (46). However, the molecular mechanisms that

contribute to worse COVID-19 prognosis in patients with HIV

are still unclear. In this study, we downloaded COVID-19

datasets (GSE171110 and GSE152418) and HIV dataset

(GSE37250) from GEO database. Next, we performed

differential analysis on COVID-19 and HIV datasets,

respectively. Then, by intersecting these two DEG sets, we

generated common DEGs for further analysis, and identified

10 hub genes ranked according to their scores (CCNA2, CCNB1,

CDC20, TOP2A, AURKB, PLK1, BUB1B, KIF11, DLGAP5, and

RRM2) using degree method. Hub proteins could be used for the

development of therapeutic intervention. Cyclin A2 (CCNA2)

regulates the cell cycle and contributes to tumor growth (47).

Cyclin B1 (CCNB1) is a crucial mitosis initiator and controller

(48). CDC20 is a well-known regulator of cell division,

regulating chromosome segregation during mitosis (49). The

mitotic chromosome condensation is established by

topoisomerase IIa (TOP2A), a core component of mitotic
Frontiers in Immunology 08
chromosomes (50). Aurora kinase B (AURKB) has been

identified in Caco-2 cells as a DEG of SARS-CoV-2 (51). The

Polo-like Kinase 1 (PLK1) is an essential enzyme in mitosis,

which initiates, maintains, and completes it (52). Moreover,

knockdown of BUB1B caused acute chromosomal

abnormalities as well as impaired chromosome alignment (53).

A kinesin called KIF11 is responsible for intracellular vesicle

transport and mitosis, as well as being overexpressed in tumors

(54). DLGAP5, a gene mapped to chromosome 14q22.3, plays an

important role in cancer formation (55). During DNA

replication, RRM2 is essential for synthesis of Deoxynucleoside

triphosphate (dNTP) in S phase of cell cycle (56).

As previous studies indicated that lower CD4 count in

people living with HIV strongly correlated with increased odds

of SARS-CoV-2 positivity (46). These data highlight the urgent

need for mechanism studies to better illustrate how HIV-

associated immunocompromise influences infection

acquisition and clearance. In this study, we conducted GO and

KEGG analyses to examine the association between COVID-19

and HIV. GO analysis was performed using the “clusterProfiler”

package for three types of BP, CC, and MF. The BPs of these

common DEGs were primarily enriched in mitotic nuclear

division, mitotic sister chromatid segregation, and sister
FIGURE 6

The top 10 transcription factors ranked according to their P values and their interactions with common differentially expressed genes. In this
network, the red circles represent transcription factors with the top 10 lowest P values in the network, while the blue circles represent common
differentially expressed genes correlated with transcription factors.
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FIGURE 7

The top ten microRNAs with the top 10 lowest P values and their interactions with common differentially expressed genes. In this network, the
pink circles represent miRNAs with the top 10 lowest P values, while the orange diamonds represent common differentially expressed genes
correlated with miRNAs.
FIGURE 8

Identification of potential drugs.
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chromatid segregation. The process of chromosome segregation

is crucial to the cell cycle (57). SARS-CoV-2 infection may

modulate several proteins involved in inflammatory responses

and chromosomal segregation (51). The CCs of these common

DEGs were mainly enriched in cytosolic ribosome, chromosome,

centromeric region and chromosomal region. The MF results

indicated that these common DEGs were primarily enriched in

structural constituent of ribosome, coreceptor activity, and C−C

chemokine receptor activity. Cancer, developmental disorders,

and virus infections all affect ribosome production, which is

universally important in biology (58). Virus relies solely on

polypeptide synthesis by ribosomes to produce polypeptide

molecules (59, 60). Coronavirus disease-COVID-19, Cytokine

−cytokine receptor interaction, and Cell cycle were the top 3

KEGG pathways. In a cell cycle, a specific sequence of events

takes place such as cell division, DNA replication, nuclear

membrane rupture, spindle formation, and preparation for

chromosome segregation (61). A large number of studies have

shown that viral replication and survival are facilitated by viruses

regulating host cell cycle processes (62–65). Identifying

significant gene ontology and molecular pathways improved

our understanding of the mechanism for how HIV infection is

a risk factor for increased mortality from COVID-19.

We also explored the relationships between TFs, miRNAs and

common DEGs. MiRNAs, which are small non-coding RNAs

with 20-24 nucleotides, are known to suppress the expression of

target genes via binding to complementary target sites in the 3’

untranslated region of mRNA post-transcriptionally (37). In

many biological processes, miRNAs regulate target genes, and

some of these genes may promote cancer or suppress tumor

growth (66). A TF is a protein that binds specific DNA sequences

to regulate transcription and gene expression (67). In many

biological processes, TFs play a key role by binding specific

sequences of genes, for example, regulating gene transcription,

controlling metabolism, and influencing immunity (68). The top

10 TFs ranked by their P values were ILF3, RAD21, ILF2, TP53,

CCNE1, E2F4, E2F1, HDAC8, ESR1, and HSF1. The top ten

miRNAs ranked according to their P values were hsa-miR-193b-

3p, hsa-miR-192-5p, hsa-miR-215-5p, hsa-miR-146a-5p, hsa-

miR-10a-5p, hsa-miR-216b-5p, hsa-miR-212-3p, hsa-miR-34a-

5p, hsa-miR-1260b, and hsa-miR-23b-5p. HIV infection is

promoted by ILF3 and ILF2 via direct interaction with the

vRNA (69). The ILF3 suppresses HIV-1 innate sensing as well

as other PAMPs that stimulate TLR7/8 and cGAS (70). Inhibition

of HDAC does not enhance HIV spread ability, since it does not

increase HIV infection susceptibility in peripheral blood

mononuclear cells (71). TP53 regulates viral replication and

induces G2 cell cycle arrest by interacting with HIV-1 viral

infectivity factor (72). The estrogen receptor-1 (ESR-1) regulates

HIV-1 latency based on the results of unbias shRNA library

screening (73). HSF1 plays an important role in HIV

transcription and HIV latent reactivation (74). Among all the

miRNAs, SARS-COV infection has been linked to hsa-miR-193b-
Frontiers in Immunology 10
3p (75) in studies, the effect of other miRNAs for COVID-19 and

HIV need to be further explored.

Moreover, we conducted gene-disease analyses to identify

common DEGs associated with diseases. According to the

results, common DEGs are associated with various types of

diseases in HIV and COVID-19, including malignant neoplasm

of breast, breast carcinoma, malignant lymphoma, lymphocytic,

intermediate differentiation, diffuse, nasopharyngeal carcinoma,

and leukemia. It has been recognized for more than 100 years

that aneuploidy is a hallmark of tumorigenesis (76). Human

cancer is characterized by chromosomal instability, which is

associated with poor prognosis, metastasis, and therapeutic

resistance (77). Studies showed COVID-19 was highly related

to a variety of neoplasms, including mammary, colonic,

stomach, and prostatic neoplasms (25). This was consistent

with our above results. As a result of the severe nature of

cancer and compromised immunity, COVID-19 patients were

at a higher risk of dying (78).

Although molnupiravir, paxlovid, and remdesivir are approved

by FDA for the treatment of COVID-19, at this time there is no

evidence to suggest that any particular antiretroviral therapy agent

improves or worsens COVID-19 clinical outcomes in PLHIV, or

can be used for prevention of SARS-CoV-2 infection (79).

Developing a safe and effective drug for the treatment of HIV-

infected COVID-19 patients still has a high priority. In this study,

we identified a variety of chemical compounds and drugs that could

potentially treat COVID-19 and HIV, including LUCANTHONE,

Dasatinib, etoposide, Enterolactone, troglitazone, testosterone,

estradiol, calcitriol, resveratrol, tetradioxin. A TOP II inhibitor,

Etoposide, prevents intracellular replication of the structural

proteins of SARS-CoV-2 while rescuing COVID-19’s cytokine

storm (80, 81). There was an early, nondurable clinical benefit

associated with immediate etoposide treatment in adults with

Kaposi sarcoma and HIV infection (82). The kinase signaling

pathway inhibitor Dasatinib is effective against SARS-CoV (83),

HIV replication could also be suppressed by Dasatinib by blocking

reverse transcription and integration (84, 85). It has been found that

troglitazone inhibits SARS-CoV-2 NSP9, which is crucial for viral

replication (86). According to increasing evidence, Estradiol

participates in the regulation of HIV infection (87), and shows a

significant improvement regarding fatality in COVID-19 (88). A

recent study found that resveratrol significantly reduced HIV-1

infection in CD4 T cells by cutting off the production of reverse

transcripts (89). The use of calcitriol as a treatment for COVID-19

has recently been proposed (90). It has been shown that testosterone

reduces COVID-19 levels by inhibiting proinflammatory cytokines,

increasing antiinflammatory cytokines, modulating immune system

and attenuating oxidative stress and endothelial dysfunction via its

action on inflammatory cytokines (91). A deficiency of testosterone

might contribute to HIV-associated lipodystrophy, or be involved

in its pathogenesis (92).

Actually, blood cells are adiverse groupof immune cells that act

as a first line defense against infections and disease-causing
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microorganisms. Commonly, People living with HIV who have a

CD4+ cell count below 200 are at high risk of developing serious

illnesses (93). Consistently, a significant decrease in CD3+ T cells,

CD4+ T cells, CD8+ T cells and natural killer cells in PBMCs

indicates the severity ofCOVID-19 patients compared tomoderate

patients (94). To the best of our knowledge, the molecular blood

biomarkers for HIV-infected COVID-19 patients are not reported

yet. In this study, the top ten hub genes ranked according to their

scores (CCNA2, CCNB1, CDC20, TOP2A, AURKB, PLK1,

BUB1B, KIF11, DLGAP5, and RRM2) were analyzed by ROC

analysis. All these hub genes in the cohort HIV have an AUC value

above 0.616 as a result of our analysis, while in the cohort COVID-

19 these hub genes had AUC values above 0.973. The discovery of

these molecular blood biomarkers may provide new insights into

HIV-infected COVID-19 patients’ diagnosis, care, and treatment.

In summary, our study had many advantages. Firstly, we

utilized blood samples of COVID-19 and HIV from GEO

database to identify hub genes, which may play crucial roles in

the occurrence and development of COVID-19 and HIV.

Secondly, we clarified the interactions between CVOID-19 and

HIV, which could provide novel insights into the molecular

mechanism underlying viral infection with COVID-19 and HIV.

Thirdly, we screened out ten candidate drugs ranked by their P

values, which might serve as biomarkers for the treatment of

COVID-19 and HIV patients.

However, despite the strength of our study, there are several

limitations. Firstly, we just derived the research data from the

GEO public database. Secondly, the biological functions of hub

genes as well as the effectiveness and safety of candidate drugs

should be confirmed through basic experiments or clinical trials.

Thirdly, the molecular mechanism of COVID-19 and HIV are

required to be further investigate.
Conclusion

In this study, we provide potential molecular targets, signaling

pathways, smallmolecular compounds, and promising biomarkers

that contribute to worse COVID-19 prognosis in patients with

HIV,whichmight contribute toprecise diagnosis and treatment for

HIV-infected COVID-19 patients.
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