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Interferons (IFNs) bind to cell surface receptors and activate the expression of

interferon-stimulated genes (ISGs) through intracellular signaling cascades.

ISGs and their expression products have various biological functions, such as

antiviral and immunomodulatory effects, and are essential effector molecules

for IFN function. ISGs limit the invasion and replication of the virus in a cell-

specific and region-specific manner in the central nervous system (CNS). In

addition to participating in natural immunity against viral infections, studies

have shown that ISGs are essential in the pathogenesis of CNS disorders such

as neuroinflammation and neurodegenerative diseases. The aim of this review

is to present a macroscopic overview of the characteristics of ISGs that restrict

viral neural invasion and the expression of the ISGs underlying viral infection of

CNS cells. Furthermore, we elucidate the characteristics of ISGs expression in

neurological inflammation, neuropsychiatric disorders such as depression as

well as neurodegenerative disorders, including Alzheimer’s disease (AD),

Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Finally, we

summarize several ISGs (ISG15, IFIT2, IFITM3) that have been studied more in

recent years for their antiviral infection in the CNS and their research progress

in neurological diseases.
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Introduction

Interferons (IFNs) are a class of antiviral cytokines that are

stimulated in response to the challenge of host defenses and are

crucial for mobilizing the immune response to pathogens in

vertebrates. Most virus-infected cells can produce IFNs, which

are secreted to bind to their receptors on autologous or other cells

and initiate a signaling cascade that leads to the induction of

hundreds of interferon-stimulated genes (ISGs) to promote

antiviral effects (1, 2). IFNs are divided into three classes (type

I, type II, and type III) based on their sequence and cellular

receptors. The type I IFN family comprises members encoded by

multiple genes, including 13 highly homologous subtypes of IFN-

a, and the other isoforms, such as IFN-b, IFN-ϵ, IFN-k, IFN-w,
IFN-t, IFN-d, and IFN-z (3–6). The type II IFN class only

contains IFN-g, while the type III IFN family consists of four

IFN-l molecules, including IFN-l1(IL-29), IFN-l2 (IL-28A),

and IFN-l3 (IL-28B), as well as IFN-l4 (7). Type I and III

IFNs are considered the classical antiviral IFNs, while type II IFN

has multiple roles in the innate and adaptive immune systems (1,

2, 7–10). Additionally, type III IFNs impact antiviral activity at

anatomical barriers, such as the blood-brain barrier (BBB) and

epithelial cell surfaces (11). Although type I and type III IFNs

induce a similar subset of ISGs, differences in cell-type specificity

and signaling kinetics result in distinct responses. In general, type

I IFNs activate a more robust and rapid ISG response, whereas

type III IFNs induce a slower response with lower levels of ISG

expression (reviewed in 2). Traditionally, IFN signaling is

involved in the induction of host defense-associated ISGs

through the Janus tyrosine kinase (JAK)/signal transducer and

activator of transcription (STAT) signal pathway (12–14). Type I

and III IFNs activate JAK1 and tyrosine kinase 2 (TYK2),

resulting in cytoplasmic STAT1 and STAT2 phosphorylation

(15). After phosphorylation, STAT1 and STAT2 dimerize and

translocate from the cytoplasm to the nucleus, forming the IFN-

stimulated gene factor 3 (ISGF3) complex with interferon

regulatory factor 9 (IRF9). ISGF3 further binds to interferon

stimulatory response elements (ISREs) and stimulates the

transcription of ISGs (16). Type II IFN activates JAK1 and

JAK2, resulting in the formation of phosphorylated STAT1

(pSTAT1) homodimers known as g-activated factors (GAF),

which translocate to the nucleus and bind to g-activated
sequences (GAS) to induce transcription of ISGs (17). Some

interferon regulatory factors (IRFs) such as IRF3 can induce ISGs

directly in the absence of IFN production or collaboratively with

other transcription factors such as IFN regulatory factor 7 (IRF7),

IRF1, and nuclear factor kappa B (NF-kB) to induce type I IFN

production (17–26). In addition, some ISGs encode factors that

are involved in the IFN production or response pathway through

positive or negative feedback loops (27, 28). For instance, the core

retinoic acid-inducible gene I (RIG-I) and melanoma
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differentiation-associated gene 5 (MDA5), members of the

mammalian RIG-I-like receptors (RLRs), are found in the

cytosol of most cell types and are powerfully activated by IFNs

in a positive feedback loop of RNA virus infection (27, 29).

Interferon-responsive activation of interferon-induced protein

with tetrapeptide repeats 1 (IFIT1, also known as ISG56)

positively regulates the expression of RIG-I, MDA5, and IFIT2

(also known as ISG54) (30). Furthermore, IFN-stimulated gene

15 (ISG15) was found to negatively regulate the IFN signaling

pathway by coupling to RIG-I (31, 32).

The IFN pathway provides essential protection to the central

nervous system (CNS) against viral infections. It is instrumental

in immune-related diseases such as allergic reactions, chronic

inflammatory diseases, autoimmune diseases, transplant

rejection, viral infections, and many more (33). For example,

mice with a deficiency in the IFN-I receptor subunit 1 (Ifnar1-/-)

are highly susceptible to various viral infections in multiple

organs, including the CNS (34–36). Ifnar1-/- mice showed

increased viral load after infection with Sindbis virus (SINV),

and increased viral load in the CNS was associated with high

susceptibility compared with wild-type (WT) mice (37). Several

fatal cases of Herpes simplex encephalitis (HSE) in newborns

were associated with defects in genes encoding signal

transduction factors of the IFN pathway, such as Toll/

interleukin-1 receptor domain-containing adaptor-inducing

interferon-b (TRIF), TANK-binding kinase 1 (TBK-1), Toll-

like receptor 3 (TLR3) or tumor necrosis factor receptor-

associated factor 3 (TRAF3). These findings demonstrated the

importance of the human IFN response to neurotropic viral

infections (38–41). In addition to participating in natural

immunity against viral infections, IFNs have been shown to

constitute key factors in the neuroinflammatory network and

make an essential contribution to the pathogenesis of

neurodegenerative diseases such as Parkinson’s disease (PD),

Alzheimer’s disease (AD), and amyotrophic lateral sclerosis

(ALS) (42–45). The IFN signaling pathway was recently

reported to be severely upregulated in AD patients and

significantly correlated with disease severity (46–48).

Activation of the IFN signaling pathway can induce the

expression of hundreds of ISGs. Although ISGs are major

antiviral effectors of the IFN response, the antiviral

mechanisms of most ISGs have not been described until

recently. The aim of this review is to provide a macroscopic

overview of the characteristics of ISGs that restrict viral neural

invasion and cellular expression of ISGs after viral infection of

the CNS, as well as the expression characteristics of ISGs in

neurological diseases (Table 1). In addition, substantial progress

has been made in our understanding of individual ISGs (ISG15,

IFIT2, IFITM3) in CNS viral infection and diseases in recent

years (Table 1), providing an essential target for the development

of novel antivirals and anti-neurological disease drugs.
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ISGs play an essential role in
restricting viral neuroinvasion
The CNS requires a complex and coordinated immune

response to prevent neurological disorders, avoid excessive

immune activation and inappropriate inflammatory response,

and protect against invading pathogens such as viruses.

Although the CNS is immune privileged and protected from

toxic substances and pathogens carried in the blood by the BBB

and the blood-cerebrospinal fluid barrier (BCSFB) (78),

neurotropic viruses are capable of infecting the CNS and
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staying there for a long time, including herpes simplex virus

type 1 (HSV-1), varicella zoster virus (VZV), Japanese

encephalitis virus (JEV), West Nile virus (WNV), measles,

rabies virus (RABV), poliovirus, and so on (79–81).

Neurotropic viruses can spread through multiple pathways to

penetrate the CNS. Some viruses can enter the CNS by infecting

host immune cells in the periphery and using these cells as

“Trojan horses” to carry them across the BBB, or the virus can

directly infect endothelial cells, disrupt the BBB, or infect

peripheral neuron axons and retrograde upward through the

mechanism of axonal transport of cellular cargo, such as through

the olfactory pathway (33, 79, 80) (Figure 1).
TABLE 1 ISGs expression in antiviral infections, neuronal localization and neurological diseases.

ISGs Produced by viruses and
related stimuli

Specifically altered in
CNS regions or cells

Neurological disorders and related models

ISG15 TMEV (49);
HIV (50, 51);
MHV-induced encephalitis
(52);

Astrocytes and endothelial cells
(49);
BMECs (50);
Microglia (51);

Post-traumatic brain injury ALS (53);
ALS, model of cerebral ischemia, model of brain injury, model of chronic neuronal
damage induced by the viral protein HIV gp120 (54);
Ataxia capillaries (A-T) (55);
Maternal immune activation (MIA) (56);
AGS (57);

MX2 HIV (50, 51);
Poly I:C (58);

BMECs (50);
Microglia (51);
Hippocampal dentate gyrus (58);

AGS (57);

Viperin HIV (51);
HSV-1 (59, 60);
LGTV (61);
TBEV (61);

Microglia (51);
Neurons and astrocytes (59, 60);

AGS (57);

CH25H HSV-1 (59, 60); Neurons and astrocytes HSE (59,
60);

Multiple sclerosis (MS) (62);

IFITM3 SARS-CoV-2 (63);
HCMV (64);

frontal cortex and choroid plexus
(65);

The aging mouse (66);
5xFAD Alzheimer’s disease mouse model (66);

OAS2 HSV-1 (59, 60); Neurons and astrocytes (59, 60);

latent RNase
(RNase L)

HSV-1 (59, 60); Neurons and astrocytes (59, 60);

PKR HSV-1 (59, 60); Neurons and astrocytes (59, 60);

IFIT1 HIV (50, 51);
VSV (67);
EMCV (67);
HSV-1 (59, 60);
JEV (68);
Poly I:C (30);
HCMV (69);
MHV (52);

BMECs (50);
Neurons and astrocytes (59, 60);
Microglia (68);
Astrocytes (30, 69);

GBP5 HIV (51); Microglia (51);

IFIT2 JEV (68);
VSV (67, 70);
WNV (71);
EMCV (67);
Sendai virus (SeV) (72);
MHV-RSA59 (73);
RABV (74, 75);
Poly I:C (30, 58);

Microglia (68);

Ifi27l2a WNV (76);

IFP35 MS (77);

IFI27 AGS (57);

IFIT3 RABV (74);
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ISGs prevent viruses from crossing
the BBB

The structural integrity of the BBB is critical to enable the

normal neurological function of the CNS and protection from

damage from inflammation, virus, and other diseases. Brain

microvascular endothelial cells (BMECs) are the structural and

functional basis of the BBB and play a critical role in maintaining

its normal integrity. One study reported that infection of BMECs

by JEV did not affect cell viability but resulted in increased

permeability of the endothelial monolayer due to inflammation

caused by JEV infection that inhibited the expression of tight

junction (TJ) proteins in BMECs, leading to enhanced BBB
Frontiers in Immunology 04
permeability (81). In vitro experiments with cultured mouse

BMECs showed that IFN-l signaling increased transendothelial

resistance, reduced viral movement across the barrier, and

modulated TJ protein localization (82). In addition, IFN-l limits

the opening of the BBB by reducing the production of

inflammatory cytokines in primary astrocytes and microglia and

inducing activation of the JAK/STAT pathway, leading to the

production of ISGs (83). Inflammation can play an indirect

antiviral role while disrupting the BBB, and in an in vitro model

of the BBB with co-culture of astrocytes and BMECs,

lipopolysaccharide (LPS) promoted the expression of type I IFN

signaling-related proteins such as STAT1, STAT2, ISG15, and

SAMHD1 in astrocytes, TNF-a and LPS also induce the
B

C A

FIGURE 1

ISGs restrict viral neuroinvasion. (A) ISGs in BMECs, which constitute the blood-brain barrier (BBB), are activated by virus and inflammation,
leading to an IFN response and activation of transcription of antiviral ISGs, followed by activation of microglia and astrocytes to release ISGs.
BMECs deliver the released ISGs to macrophages to enhance the antiviral response and restrict viral invasion. ① Neurotropic virus crosses the
BBB through “Trojan horse” strategy. ② Virus infects endothelial cells across the BBB. ③ Virus enters the CNS by destroying the BBB. (B) The virus
invades the CNS retrogradely through the olfactory pathway. The virus invades the olfactory sensory neurons through the olfactory epithelium
and retrogrades upward into the olfactory bulb (OB). Virus at OB activates neurons, microglia, and macrophages, which produces IFN response
and induces transcription of ISGs, leading to antiviral response. Long-distance signaling of IFN at the OB activates the transcription of ISGs in
the brain. (C) IFNs produced by peripheral antiviral response enter the CNS and activate the transcription of ISGs in advance and induces
transcription of ISGs, leading to antiviral response. Long-distance signaling of IFN at the OB activates the transcription of ISGs in the brain.
(C) IFNs produced by peripheral antiviral response enter the CNS and activate the transcription of ISGs in advance. Created with BioRender.com.
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production of ISGs (EIF2AK2, ADAR, TRIM25 and ISG15) in

astrocyte cultures in vitro (84). BMECs have a critical function in

the innate immunity of the BBB to human immunodeficiency

virus (HIV) infection by causing activation of TLR3 in BMECs to

induce phosphorylation of IRF3 and IRF7 (key regulators of the

IFN signaling pathway) and trigger the production of endogenous

IFN-b and IFN-l, thereby significantly inhibiting viral replication
(85). In addition, TLR3-activated human BMECs secrete

exosomes that inhibit HIV replication by transferring antiviral

factors, including several critical IFN-stimulated genes (ISG15,

IFIT1, MX2) to macrophages (50). This suggests that human

BMECs may help restore the antiviral status of HIV-infected

macrophages, which may be a defense mechanism against neural

invasion by HIV “Trojan horses” (Figure 1A).
ISGs limit viral infection in the olfactory
pathway

Numerous neurotropic viruses enter the CNS through

infection of peripheral nerves, including olfactory neurons and

sensory or motor neurons (86). WNV can enter the CNS by

infecting sensory nerve endings or olfactory neurons or through

the bloodstream (87). RABV and poliovirus transmit from

muscle to somatic motor neurons in the spinal cord via the

neuromuscular junctions (NMJs) (88). Olfactory pathways play

an important role in the invasion of viruses into the CNS via

peripheral nerves (Figure 1B). Detje et al. found that blocking the

type I IFN pathway promoted the spread of vesicular stomatitis

virus (VSV) from the olfactory bulb (OB) to the entire CNS,

while local IFN response in the OB effectively controlled viral

invasion of the CNS (89). IFN-induced viperin limits the

replication of Langat virus (LGTV) in the OB in a region-

specific manner (61). Long-range signaling of IFN-b released

from infected neurons at the OB after VSV and cytomegalovirus

(CMV) infection of the nasal mucosa upregulated the expression

of ISGs in uninfected brain regions (90). Similar results were

obtained from another investigation, which shows that after

intranasal VSV infection, IFN expressed at the OB enters the

brain to activate IFIT2 transcription in advance to act as an

antiviral agent (67). The accumulation of microglia around the

OB and their expression of ISGs form a natural immune barrier

that is instrumental in limiting the spread of VSV in the CNS

and preventing fatal encephalitis (91) (Figure 1B).
ISGs are activated before viruses invade
the CNS

Viral infections rapidly induce IFN in the periphery, which

serves to protect most tissues from viral pathogenicity (92).

Peripherally induced IFN response can induce ISGs in the brain.

Peripheral IFN-a that crosses the BBB directly activates IFN-a/b
Frontiers in Immunology 05
receptor (IFNAR) signaling in microglia, leading to the

upregulation of multiple ISGs (93, 94). As mentioned above,

long-range signaling of IFN released from infected neurons at

the OB after viral infection of the nasal mucosa upregulated the

expression of ISGs (IFIT2, IFIT3, OAS, and MX1) in uninfected

brain regions (67, 90). Lukasz et al. reported that adolescent mice

injected with the viral mimic poly I:C significantly increased the

expression of ISGs (IFIT2, PRKR, MX2, and IRF7) in the

hippocampal dentate gyrus (58). Collectively, these findings

suggest that early activation of ISGs in the CNS plays a crucial

role in limiting viral infection of the CNS (Figure 1C).
Antiviral response in the CNS: Cells,
ISGs, and mechanisms

The vast majority of cell types in the CNS, comprising

neurons, astrocytes, oligodendrocytes, CNS-associated

macrophages (CAMs), ventricular epithelial cells, and vascular

endothelial cells, are responsive to IFN (95). Activation of

astrocytes and microglia in the brain has an essential role in

the innate immune response of the CNS to viral infection (96,

97). Different immune cells in the CNS respond to various viral

stimuli. Microglia monitor the local environment and rapidly

respond to widespread inflammatory stimuli, while astrocytes

function as immune response cells and produce large amounts of

inflammatory mediators (98). For example, during infection

with Taylor mouse encephalomyelitis virus (TMEV), protein

levels of ISG15 were elevated mainly in astrocytes and

endothelial cells, whereas the protein levels of protein kinase R

(PKR) were predominantly increased in microglia/macrophages,

oligodendrocytes and neurons (49). Murine hepatitis virus

(MHV) is a neurotropic coronavirus, and astrocytes and

microglia produce type I IFNs (IFN-a and IFN-b), as well as

interleukin (IL-6), TNF-a, IL-12, IL-1a, and IL-1b during

experimental MHV infection in mice (99). HSV encephalitis

(HSE) is a severe CNS infection caused primarily by HSV-1 and

occasionally by HSV-2. Following infection with HSV-1, TLR2

and TLR4 are induced to activate simultaneously, and in turn,

TLR2 forms a dimer with TLR1, or TLR6, which then induces

IFN-b in neurons and IFN-a in astrocytes, and these IFNs

subsequently induce the expression of ISGs such as viperin,

CH25H (cholesterol-25-hydroxylase), oligoadenylate synthase2

(OAS2), latent RNase (RNase L), PKR, and IFIT1 (59, 60).
Microglia

Microglia, a major source of type I IFNs, exert direct

antiviral effects by producing type I IFNs to stimulate the

expression of ISGs or act indirectly on other cells through type

I IFNs to activate the corresponding signaling pathway (100).

Microglia express various pattern recognition receptors (PRRs),
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including TLRs, RNA-sensing RLRs, and cytosolic DNA sensors

that are important for virus defense. PRRs recognize viral-

associated molecular patterns and induce type I IFN

expression in microglia (27, 101). Cyclic GMP-AMP synthase

(cGAS) binds to cytoplasmic dsDNA in microglia to produce

cyclic GMP-AMP (cGAMP), which activates downstream

stimulator of interferon genes (STING) and ultimately

activates the transcription factor IRF3. In turn, IRF3 stimulates

type I IFN production, and the resulting type I IFNs bind to the

heterodimeric receptor IFNAR to initiate a signaling cascade,

promote nuclear translocation of heterodimeric STAT1/2, and

facilitate transcriptional activation of multiple ISGs (59, 60, 67,

90, 99). Depletion of CNS microglia via CSF1R inactivation has

higher viral loads in mice infected with WNV (TX02 strain) or

VSV, with increased mortality and viral tissue loads, indicating

that microglia are critical for restricting virus transmission (102,

103). The phagocytic activity of microglia recruited via

purinergic receptor P2Y12 signaling around infected neurons

play an important role in CNS antiviral immunity. Analysis of

temporal lobe specimens from patients with HSV-1 encephalitis

reveals that there are approximately 1–3 activated microglia

around each HSV-1-positive neuron and that P2Y12-positive

microglia processes extend to HSV-1-positive cells (104). In

addition, the number of microglia recruited to infected neurons

was significantly reduced in a P2Y12-deficient mouse model

(104). Studies have shown that microglia are the main producers

of type I IFNs in viral infections of the CNS. Further studies

found that in the mouse model of VSV encephalitis, the infected

microglia were found to produce type I IFNs, which caused both

infected and uninfected microglia to upregulate the expression

of IRF7 and activate innate immunity, thus limiting the trans-

synaptic transmission of VSV (105). Microglia also induce IFN

and ISG expression by regulating the HSPA8/DNA-PK pathway

independently of STING (106). Although phagocytosis of

foreign pathogens by microglia is an essential component

of neuroprotective immune defense to ensure the function of

healthy neurons, excessive microglia activation leads to

uncontrolled inflammation that exacerbates neuronal death,

causing damage to brain tissue and cells (68, 107). In mice

infected with JEV, microglia activation led to uncontrolled

inflammation and neuronal death (108). JEV can promote

viral replication by infecting microglia and upregulating miR-

146a gene expression, inhibiting NF-kB activity, blocking the

antiviral JAK/STAT signaling pathway, and downregulating

antiviral ISGs (IFIT1 and IFIT2) (68). Phosphorylation of IFN

regulators (IRF3 and IRF7) and STAT1/3 are inhibited in HIV-

infected microglia, which suppresses the expression of several

key anti-HIV ISGs (ISG15, IFIT1, GBP5, MX2, and viperin)

(51). Taken together, these findings suggest microglia play an

essential role in antiviral defense of the CNS and contribute to

explaining how the virus invades microglia and results in a

persistent infection.
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Astrocytes

Astrocytes have essential and significant functions in

synaptic plasticity, regulation of the BBB, and maintenance of

CNS homeostasis (109, 110). In viral infections, astrocytes play a

key role in host defense by supporting a functional BBB,

regulating glutamate homeostasis, and engaging in innate and

adaptive immune response to viral infections (111). Recent

studies have shown that microglia induce astrocytes

proliferation through the expression of pro-inflammatory

cytokines, including IL-1b, TNF, and IFN-g (112, 113). During
viral infection, astrocytes detect molecular changes in their

extracellular environment and neighboring cells. Compared

with microglia, astrocytes have low basal mRNA levels of

PRRs and ISGs, and poorly induced Ifn-b mRNA following

infection, but the upregulated various mRNAs in the IFN-a/b
pathway of astrocytes to a higher extent than microglia,

suggesting that the response of astrocytes to infection is

delayed but stronger compared with that of microglia (114).

Genetic astrocyte-specific deletion of the type I IFN receptor

IFNAR in a mouse model of viral infection led to an increase of

BBB permeability (115). Further studies revealed that abolition

of astrocytic IFN-a/b signaling was followed by uncontrolled

virus transmission and fatal encephalomyelitis, demonstrating

the importance of the inducible IFN signaling pathway within

astrocytes in limiting viral infection of the CNS (114). Imaizumi

et al. reported that poly I:C upregulated the expression of IFIT2

and IFIT1 in astrocytes via the TLR3/IFN-b pathway and that

the expression product IFIT1 positively regulated the expression

of IFIT2, RIG-I, and MDA5 to enhance antiviral response (30).

In addition, RNA interference (RNAi) knockdown of interferon-

induced protein 35 (IFI35) resulted in a decrease in expression of

poly I:C-induced IFN-b, pStat1, Rig-1, Cxcl10, and Ccl5,

indicating that IFI35 may negatively regulate the astrocyte

TLR3/IFN-b/pSTAT1/RIG-I/CXCL10/CCL5 axis and may

partially regulate the innate immune response of astrocytes

(116). Recent studies of CNS complications due to enterovirus

71 (EV71) infection have shown that in infected astrocytes,

phosphorylated and non-phosphorylated STAT3 competes with

STAT1 for binding to KPNA1, inhibits nuclear import of

pSTAT1 and hinders the formation of the ISGF3 complex,

leading to suppression of downstream ISG expression (117).

Knockdown of STAT3 attenuated the suppressed IFN-mediated

antiviral response to EV71 infection and led to a reduction

in viral replication, demonstrating the role of STAT3 in

maintaining the balance of inflammatory response in

astrocytes and antiviral response in the CNS during infection

(117). Borna disease virus (BDV) is a non-hemolytic RNA

neurotropic virus, and replication of this virus is effectively

blocked in transgenic mice expressing mouse IFN-a in

astrocytes (118). Another study showed that rapid type I IFN

response protected astrocytes from virus-induced cytopathic
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effects upon infection with flavivirus, tick-borne encephalitis

virus (TBEV), JEV, WNV, and Zika virus (ZIKV), thus limiting

the spread of these viruses (119). In addition, type I and type III

IFN-independent antiviral pathways were found to be involved

in the control of astrocytes during ZIKV infection (120). In

summary, the intrinsic structural antiviral response of astrocytes

combined with rapid induction of type I IFNs is instrumental in

protecting astrocytes and inhibiting viral replication in the

CNS (121).
Neurons

Like microglia and astrocytes, neurons express multiple

PRRs, produce innate immune cytokines such as type I IFNs

following viral infection, and respond to cytokine stimulation to

inhibit viral replication and increase cell survival (122–125).

Previous studies have shown neuronal upregulation of key

antiviral effector molecules and other ISGs in response to

neurotropic virus infection, but the neurons produce a limited

amount of IFN and express fewer ISGs compared with microglia

(126). Delhaye et al. identified approximately 16% of IFN-

producing cells corresponding to neurons, but only 3% of

infected neurons produced IFN after infecting mice with two

neurotropic viruses that primarily infect neurons (La Crosse

virus and Theiler virus) (122). ISGs suppress viral replication by

directly interrupting the viral life cycle or by stimulating the

production of antiviral factors in infected and adjacent cells, but

the effects vary considerably in different regions of the brain

(127). Further studies have shown that the induction and

response to ISGs vary considerably in diverse neuronal

populations. In transgenic mice expressing IFN, the expression

of typical IFN response marker MX1 was higher in CA1 and

CA2 neurons in comparison with CA3 neurons in the

hippocampal region (118). Lucas et al. discovered that the

IFN-a-inducible protein 27 like 2A (Ifi27l2a), which is

upregulated in the cerebellum, brainstem, and spinal cord after

WNV infection, limits viral infection in these regions but not in

other neurons and cells, implying that Ifi27l2a contributes to

WNV innate immune restriction in certain cell types and tissue-

specific manner (76). Furthermore, following LGTV infection in

the CNS, the activity of viperin, an interferon-inducible protein

that inhibits replication, effectively limits LGTV replication in

the OB and brain but does not inhibit virus replication in the

cerebellum (128). Viperin also reduced TBEV replication in

primary cortical neurons and astrocytes in vitro, but not in

cerebellar granule cell neurons (61).

Mutations in human TLR3 are essential in the development

of human HSV-1 encephalitis (129–131). TLR3 deficiency

impairs the cell-autonomous defense of IPSC-derived cortical

neurons and oligodendrocytes against HSV-1 infection, but not

that of trigeminal ganglion (TG) neurons, owing to TLR3

control of ISG mRNA expression levels induced in human
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neurons (132–134). It has also been reported that neurons at

different developmental stages express different levels of ISGs in

response to viral infection. During LACV-infected encephalitis,

both LACV-infected neural precursor cells and mature neurons

undergo apoptosis, but neuronal maturation increases the

susceptibility of neurons to LACV-induced apoptosis because

mature neurons express less ISGs compared to neural precursor

cells (135). Unlike the CNS, the antiviral response of peripheral

neurons, such as the dorsal root ganglion (DRG), is more

dependent on the dual action of antiviral ISGs and autophagy

activation. DRG produces only a small number of type I IFNs

and does not effectively induce the production of ISGs (136).
Oligodendrocytes

Oligodendrocytes have been shown to be less responsive to

IFN in compar i son wi th microg l ia (137) . Mouse

oligodendrocytes have lower basal expression levels of PRRs,

IFN-a/b, ISGs, and kinases and transcription factors essential

for IFN-a/b signaling and displayed a later expression of ISGs by
comparison to microglia. Despite the fact that infection increases

the expression of ISGs in both cell types, oligodendrocytes have a

more limited expression profile and absolute mRNA levels

compared with microglia. This limited antiviral response is

associated with the inability to upregulate IkB kinase (IkappaB

kinase or IKK) and IRF7 transcripts, both of which are required

for amplification of the IFN-a/b response (138).
Expression of ISGs in neurological
diseases

ISGs in neuroinflammation-related
diseases

Upregulation of ISGs is associated with neuroinflammation-

related diseases, including neuroinflammatory diseases such as

multiple sclerosis (MS) (62) and neurodegenerative diseases such

as AD (46), PD (139), and ALS (54). MS patients have elevated

concentrations of the bile acid precursor 25-hydroxycholesterol

(25-HC) in the cerebrospinal fluid (CSF), possibly as a result of the

upregulation of the ISG CH25H in macrophages (62). 25-HC is

mainly synthesized from cholesterol by CH25H, and has been

shown to modulate inflammatory response and oxidative stress in

normal or pathological nervous systems (140, 141). Wang et al.

reported that ISG15 positively correlated with the degree of

neuronal damage in an animal model of ALS with no obvious

signs of inflammation, a model of cerebral ischemia, a model of

brain injury induced by cortical shocks, and a mouse model of

chronic neuronal damage induced by the viral protein HIV gp120,

with high and significantly elevated ISG15 levels in areas of
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neuronal damage (54). This suggests that ISG15 may be a reliable

biomarker of pathological changes in the CNS (54). Mutations in

the ATM gene contribute to ataxia capillaries (A-T), a rare

neurodegenerative and immunodeficiency disorder characterized

by cerebellar ataxia capillaris, immunodeficiency, radiosensitivity,

and cancer susceptibility. Studies have shown that in A-T, the level

of ISG15 is significantly higher in the cerebellum than in the brain

(55). In glucosylceramidase1 (GBA1) deficient mice (which causes

Parkinson’s disease alpha-synuclein pathology), IFN-b levels are

elevated in neurons, and ISGs are elevated in microglia (139).

IFP35 is significantly upregulated in patients with untreated MS,

demonstrating that IFP35 expression levels predict disease

outcome and treatment response in MS (77). TLR3, which is

primarily activated in innate immunity due to viral infection and

induces the production of downstream ISGs (142), has also been

found to be activated in alcohol-induced brain injury (143, 144).

McDonough et al. reported TLR4-dependent upregulation of ISGs

in ischemia/reperfusion-inducedmicroglia (145). Meanwhile, in an

AD model, activated microglia express ISGs, and the microglia are

centered around amyloid-b (Ab) plaques and accumulate in an

age-dependent manner (46). Intracerebral injection of

recombinant IFN-b activated microglia and eliminated

complement C3-dependent synapses. Conversely, selective IFN

receptor blockade effectively reduced ongoing microglia

proliferation and synapse loss in AD models, demonstrating that

ISGs are associated with a reduction in synapses (46). Aicardi-

Gtières syndrome (AGS) is a severe inflammatory disease

mimicking congenital infection with significant IFN production,

characterized by chronic CSF lymphocytosis and elevated IFN-a
levels, which can lead to severe neurodevelopmental disorders,

spastic dystonia, and abnormal tetraplegia (146). ISGs, such as

ISG15, viperin, and IFI27, are consistently elevated in patients with

AGS, and these elevated ISGs are highly correlated with disease

onset and progression (57). Mutations in adenosine deaminase

(ADAR1) are crucial mechanisms for the development of AGS. In

ADAR1-mutant mice, the expression of ISGs in neurons and

microglia is selectively activated in a patchy manner, and the

expression of Isg15 in brain neurons with ADAR1 mutation is

upregulated (147). It has also been reported that conditional

deletion of ADAR1, specifically in mouse neural spinal cells,

leads to overall peripheral nerve depigmentation and myelin loss,

and that upregulation of ISGs precedes these defects, suggesting

that ISGs may be involved in the production of such defects (148).

Collectively, these studies have, in part, revealed a complex

relationship between the IFN signaling pathway and

neuroinflammation-related diseases.
ISGs in neuropsychiatric disorders

In recent years, evidence has accumulated to show that ISGs

play an important role in psychiatric symptoms caused by CNS
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disorders. Studies have shown an intrinsic link between type I

IFN therapy and severe neuropsychiatric disorders, mainly

major depression (149). Considerable evidence suggests that

type I IFN is associated with psychiatric disorders, and that

the production of type I IFNs as a result of TLR4 induced IRF3

activation and TLR7 induced IRF7 activation may be closely

associated with IFN-mediated psychiatric disorders (93).

Infant onset of RNaseT2-deficient leukoencephalopathy leads

to cystic brain injury, multifocal white matter changes, brain

atrophy, and severe psychomotor impairment. Rnaset2-/-

mice exhibit upregulation of ISGs and IFNAR-I-dependent

neuroinflammation (150). HIV-associated neurocognitive

disorders (HAND) also show an upregulation of ISG15 (151).

In addition, ISGs may be involved in neuronal and synaptic

regulation. The upregulation of inflammatory cytokines induced

by maternal immune activation (MIA) promotes ISG15

expression in the offspring’s brain, leading to neuronal

dendritic lesions and depression-like behavior (56). In the

hippocampus, ISG15 and Ubiquitin-specific peptidase 18

(USP18) mediate IFN-a-induced reduction in neurogenesis

through upregulation of ISGylation-associated proteins UBA7,

UBE2L6, and HERC5 (152). Adolescent mice injected with the

viral mimic poly I:C had significantly increased expression of

ISGs (IFIT2, PRKR, MX2, and IRF7) in the hippocampal dentate

gyrus and exhibited behavioral deficits of impulse inhibition and

impaired recognition of novel objects (58). In summary,

upregulation of ISGs in the CNS may regulate various cellular

functions and processes, such as neuronal survival and synaptic

pruning, in a brain region-dependent manner (94).
The roles of individual ISGs in CNS
viral infections or neurological
diseases

To date, type I IFNs remain the most potent, broad-

spectrum antiviral agents. The treatment of IFN to cells

induces a large set of ISGs that can prevent infection with

many viral pathogens. There are currently more than 300

recognized ISGs, but the exact mechanisms of inhibiting virus

replication have been identified only in a small subset of ISGs.

Detailed mechanistic investigation of the functions of individual

ISGs is complicated by the difficulty in dissecting particular

processes in virus replication independently of one another. The

responses of individual ISGs to different viral infections in

different organs may also vary, and there are limited in-depth

studies on the effects of individual ISGs on the nervous system.

With continuous research in this field, the role of ISGs and their

mechanisms are being elucidated. The following subsections

summarize several representative ISGs found in viral infections

and neurological diseases in recent years.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1008072
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lang et al. 10.3389/fimmu.2022.1008072
ISG15 and ISGylation for the regulation
of neurological diseases

As mentioned above, Wang et al. found that ISG15 positively

correlated with the degree of neuronal injury in animal models

of ALS with no obvious signs of inflammation, a model cerebral

ischemia, a model of cortical shock-induced brain injury, and a

mouse model of chronic neuronal injury caused by the viral

protein HIV gp120, with low levels of ISG15 in unaffected areas

and high levels of ISG15 in neuronal injury areas. In patients

with ALS, elevated levels of ISG15 and ISGylation in the CSF

were significantly higher in post-traumatic brain injury ALS

compared with those in non-traumatic brain injury ALS (53). It

is suggested that ISG15 may be a reliable biomarker of

pathological changes in the CNS (54). In cells with mutations

in ATM kinase, conjugated ISG15, but not the free form,

antagonizes targeted degradation of the ubiquitin pathway,

which may lead to progressive neurodegeneration in A-T

patients (153). C-Type Lectin Domain Containing 16A

(CLEC16A) has been shown to function in autophagy/

mitochondrial autophagy and Clec16 knockdown leads to an

inflammatory neurodegenerative phenotype similar to spinal

cerebellar ataxia in mice. In the whole-body inducible

knockout of Clec16a mice model, Clec16a expression was

negatively correlated with IGS15 expression, and the

expression of ISG15 in neuronal tissues was upregulated,

suggesting that ISG15 may be a link between Clec16a and

downstream autoimmune inflammatory processes (154).

ISG15 binds to a number of key proteins and affects various

pathophysiological processes in the CNS. After traumatic brain

injury, ISG15 is rapidly elevated and binds covalently to myosin

l ight cha in k inase (MLCK) , which may promote

phosphorylation of the myosin light chain by MLCK and

conversion of F-actin to stress actin, which is involved in BBB

destruction by disrupting TJs, thus aggravating brain edema

(155). IFN-b inhibits the MAPK signaling pathway and

attenuates mechanical nociceptive hyperalgesia by elevating

both free and conjugated ISG15, an effect that is increased in

ubp43-/- mice lacking the key de-binding enzyme (156).

Upregulation of MIA-induced inflammatory cytokines

promotes ISG15 expression in the offspring brain, leading to

neuronal dendritic lesions and depressive-like behavior through

a mechanism of ISG15 inhibiting the ubiquitination of Rap2A by

NEDD4 (an E3 ubiquitin ligase that ubiquitously inhibits Rap2A

activity, leading to dendritic growth and depoliticization), thus

inducing Rap2A accumulation (56). In contrast, upregulation of

NEDD4 abolishes ISG15-induced dendritic damage (56). In a

model of acute inflammation established by LPS-stimulated

microglia, increased ISGylation maintained the stability of

STAT1 and promoted a sustained immune response during

inflammation (157).
Frontiers in Immunology 09
IFIT2 specifically limits neurological viral
infections

Interferon-induced proteins with tetratricopeptide repeats

(IFIT) are prominent ISGs, induced following type I IFN- or

IRF3-dependent signaling, contribute to the antiviral defense of

cells by binding directly to viral RNA or by binding to eukaryotic

initiation factor 3 (eIF3) and preventing eIF3 from initiating the

viral translational process (158). The human IFIT gene family

generally consists of four members: IFIT1, IFIT2 (ISG54, p54),

IFIT3 (ISG60, p60), and IFIT5 (ISG58, p58), whereas the mouse

IFIT gene family encodes for three relevant genes: IFIT1, IFIT2

and IFIT3 (ISG49, p49), which are induced during IFN signaling

pathway, viral infection or other PAMP recognition and have

critical roles in host antiviral defense (159, 160). IFIT1 had an

antiviral effect in human cytomegalovirus (HCMV)-infected

human astrocytes isolated from the fetal brain, but not in

HELFs (human embryonic lung fibroblast cells) (69). Recent

studies have shown that IFIT2 primarily limits viral infection and

protects mice from severe morbidity and mortality following

infection with RABV (75), lethal VSV (67, 70), WNV (71), and

Sendai virus (SeV) (72). IFIT2 acts as an antiviral in the CNS in

several ways. Both VSV and EMCV infections cause

neuroinvasive disease and induce IFN-b, IFIT1, and IFIT2 in

the brain. However, IFIT2 only prevents VSV invasion of the

brain and not EMCV invasion of the brain, suggesting that the

antiviral response of IFIT2 in the CNS is virus-specific (67). In

Ifit2-/- mice, effective VSV viral replication was restricted to the

brain, and the absence of IFIT2 did not affect viral titers in other

organs such as the liver or lungs, suggesting that IFIT2 can limit

VSV invasion of the nervous system (67). InWNV-infected CNS,

viral titers were higher in Ifit2-/- mice compared with those in

WT mice only in the OB, cerebral cortex, brainstem, cerebellum,

and spinal cord, and in cells with knockdown of IFIT2, increased

WNV infection was observed only in cerebellar granule cells and

dendritic cells, but not in macrophages, fibroblasts, or cortical

neurons (71). Overall, these data suggest that IFIT2 has a crucial

role in limiting viral infection in specific regions of the brain and

in specific cell types. In experiments with RABV infection of the

CNS, IFIT2 exerted antiviral effects predominantly at the level of

viral replication and not as a mechanism to restrict viral entry/

exit or transport of RABV particles via axons (75). Furthermore,

IFIT2 can be involved in antiviral response by inducing and

enhancing innate immunity. In neurotropic coronavirus MHV-

RSA59 infection, IFIT2 promoted viral clearance by facilitating

microglia activation and recruitment of NK1.1 and CD4 T cells to

the brain (73). Further studies have shown that IFIT2 and IFIT3

function in a complementary and synergistic manner to restrict

RABV in mouse-derived neuroblastoma cells (74). In MHV-

induced encephalitis, IFIT2 is a positive regulator of IFNa/b
expression rather than a direct antiviral mediator, with Ifit2-/-
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mice showing significantly reduced expression of IFN-a/b and

the downstream ISG mRNAs (Ifit1, Isg15, and Pkr) (52).
The role of IFITM3 in CNS infection and
Alzheimer’s disease

The IFN-inducible transmembrane proteins (IFITMs) form a

small family of IFN-inducible proteins and have two

transmembrane structural domains. The IFITMs were shown to

inhibit the cellular entry step of many enveloped viruses such as

influenza A, dengue, Ebola, and SARS coronavirus (161). The

human IFITM family consists of four proteins, IFITM1, IFITM2,

IFITM3 and IFITM5, located on chromosome 11, among them

IFITM1, IFITM2 and IFITM3 are well-known ISG proteins (162).

IFITMs disrupt the entry of multiple enveloped viruses, and play a

role in the transport of viral particles to lysosomes for degradation

(163). SARS-CoV-2 infection was recently shown to increase

IFITM3 protein expression (63), and in severe SARS-CoV-2

cases, IFITM3 levels are elevated in the frontal cortex and

choroid plexus (65). IFITM3 may prevent pathogenesis by

limiting early replication and transmission of a-virus in the brain

and spinal cord (164). In patients with Rasmussen encephalitis (RE)

caused by infection with HCMV viruses, IFITM3 was detected in

the neurons of brain tissue, and there was colocalization of HCMV

and IFITM3, suggesting that HCMV infection may induce IFITM3

expression in neurons and that IFITM3 can effectively inhibit

HCMV infection and participate in the immune response to

HCMV infection in RE brain tissue (64). Further studies found

that the IFITM3 single nucleotide polymorphism (SNP) rs12252

correlated with the severity of disease caused by viral infection (165–

167). The rs12252-Cmutant protein IFITM3ND21 was not flexible

enough to effectively prevent the fusion of the virus with the

endocytic membrane, which in turn reduced the ability of the

immune system to defend against viral infection. Wang et al. found

that subjects carrying IFITM3 rs12252 CC genotype were at

increased risk of developing RE and were associated with rapid

progression of RE disease (64). In addition, the rs12252-C allele was

recently reported to be associated with disease severity in patients

with SARS-CoV-2 (168). In conclusion, the IFITM3 rs12252-C

allele is strongly associated with the severity of some viral infectious

diseases (169).

IFITM3 mRNA expression in the cortex and hippocampus is

significantly positively correlated with age (ranging from 20

years to 70 years) in humans, according to genotype-tissue

expression cohorts (66). IFITM3 protein levels, Ab production

(Ab42 and Ab40), and the amount of active IFITM3-g-secretase
were increased in the aging WT mouse brains (66). IFITM3

expression is upregulated in astrocytes and microglia in the

brains of the 5xFAD Alzheimer’s disease mouse model, and

IFITM3 mRNA and IFITM3 protein are expressed in neurons

(66). Pro-inflammatory cytokines (IFN-a or IFN-g, IL-6, and IL-
1b) increase Ab production in neurons and astrocytes by
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increasing the formation of IFITM3 protein and active

IFITM3-g-secretase complexes (66). Recently, SARS-CoV-2

has been reported to increase IFITM3 protein (63), and

IFITM3 levels are elevated in the frontal cortex and choroid

plexus in severe SARS-CoV-2 cases (65). Hur et al. concluded

that different inflammatory conditions, such as viral infection

and aging, can induce the release of pro-inflammatory cytokines

from astrocytes and microglia, which in turn elevate the

expression of IFITM3 in neurons and astrocytes, and IFITM3

binds to active g-secretase complexes, increasing Ab production

and increasing the risk of AD (66).

Conclusion

This review highlights the ISGs involved in resisting the

neurotropic viral invasion of the CNS and the mode of activation

of these ISGs in viral-infected CNS cells. Furthermore, the

expression characteristics of ISGs in the development of CNS

disorders are discussed. At last, we summarize in detail several

mechanisms of action of individual ISGs in the CNS that have been

more studied in recent years. The IFN signal pathways induce

hundreds of ISGs to exert antiviral and other physiopathological

effects. ISGs are a large family, andmanymore are still waiting to be

identified. Most studies have focused on ISG as a marker of

activation of the innate immune response to IFN, whereas the

mechanisms of ISG in the pathophysiological response of the CNS

remain unclear and need to be investigated in depth. Thus this

review summarizes the current research on ISGs in CNS and

indicates possible directions for future research. With the

development of technologies such as CRISPR-Cas9 gene editing

as well as genome-wide RNA-seq and deep proteomics (170),

research on the antiviral effects of individual ISG, as well as its

other functions in CNS diseases, is expected to evolve rapidly. An

improved understanding of the functions of individual ISGs will

facilitate the development of ISG-based therapies. Consequently,

ISGs may exhibit promise as potential clinical biomarkers as well as

therapeutic targets.
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25. Marié I, Durbin JE, Levy DE. Differential viral induction of distinct
interferon-alpha genes by positive feedback through interferon regulatory factor-
7. EMBO J (1998) 17:6660–9. doi: 10.1093/emboj/17.22.6660

26. Fujita T, Reis LF, Watanabe N, Kimura Y, Taniguchi T, Vilcek J. Induction
of the transcription factor IRF-1 and interferon-beta mRNAs by cytokines and
activators of second-messenger pathways. Proc Natl Acad Sci USA (1989) 86:9936–
40. doi: 10.1073/pnas.86.24.9936

27. Goubau D, Deddouche S, Reis e Sousa C. Cytosolic sensing of viruses.
Immunity (2013) 38:855–69. doi: 10.1016/j.immuni.2013.05.007

28. Sadler AJ, Williams BRG. Interferon-inducible antiviral effectors. Nat Rev
Immunol (2008) 8:559–68. doi: 10.1038/nri2314

29. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell
(2010) 140:805–20. doi: 10.1016/j.cell.2010.01.022

30. Imaizumi T, Numata A, Yano C, Yoshida H, Meng P, Hayakari R, et al.
ISG54 and ISG56 are induced by TLR3 signaling in U373MG human astrocytoma
cells: possible involvement in CXCL10 expression. Neurosci Res (2014) 84:34–42.
doi: 10.1016/j.neures.2014.03.001

31. KimM-J, Hwang S-Y, Imaizumi T, Yoo J-Y. Negative feedback regulation of
RIG-I-Mediated antiviral signaling by interferon-induced ISG15 conjugation. J
Virol (2008) 82:1474–83. doi: 10.1128/JVI.01650-07

32. Du Y, Duan T, Feng Y, Liu Q, Lin M, Cui J, et al. LRRC25 inhibits type I IFN
signaling by targeting ISG15-associated RIG-I for autophagic degradation. EMBO J
(2018) 37:351–66. doi: 10.15252/embj.201796781

33. McGavern DB, Kang SS. Illuminating viral infections in the nervous system.
Nat Rev Immunol (2011) 11:318–29. doi: 10.1038/nri2971

34. Kochs G, Bauer S, Vogt C, Frenz T, Tschopp J, Kalinke U, et al. Thogoto
virus infection induces sustained type I interferon responses that depend on RIG-I-
Like helicase signaling of conventional dendritic cells. J Virol (2010) 84:12344–50.
doi: 10.1128/JVI.00931-10

35. Mrkic B, Pavlovic J, Rülicke T, Volpe P, Buchholz CJ, Hourcade D, et al.
Measles virus spread and pathogenesis in genetically modified mice. J Virol (1998)
72:7420–7. doi: 10.1128/JVI.72.9.7420-7427.1998

36. Dhondt KP, Mathieu C, Chalons M, Reynaud JM, Vallve A, Raoul H, et al.
Type I interferon signaling protects mice from lethal henipavirus infection. J Infect
Dis (2013) 207:142–51. doi: 10.1093/infdis/jis653

37. Ryman KD, Klimstra WB, Nguyen KB, Biron CA, Johnston RE. Alpha/Beta
interferon protects adult mice from fatal sindbis virus infection and is an important
frontiersin.org

https://doi.org/10.1159/000495172
https://doi.org/10.1016/j.immuni.2019.03.025
https://doi.org/10.1016/j.immuni.2019.03.025
https://doi.org/10.1038/nrc.2016.14
https://doi.org/10.1038/nrc.2016.14
https://doi.org/10.1016/bs.ircmb.2019.06.001
https://doi.org/10.1016/bs.ircmb.2019.06.001
https://doi.org/10.1111/j.0105-2896.2004.00204.x
https://doi.org/10.1111/j.0105-2896.2004.00204.x
https://doi.org/10.1111/j.1582-4934.2005.tb00353.x
https://doi.org/10.1111/j.1582-4934.2005.tb00353.x
https://doi.org/10.12688/f1000research.12450.1
https://doi.org/10.1016/j.it.2018.08.008
https://doi.org/10.4110/in.2018.18.e33
https://doi.org/10.1016/j.cytogfr.2009.02.004
https://doi.org/10.1016/j.immuni.2015.07.001
https://doi.org/10.1016/j.immuni.2015.07.001
https://doi.org/10.1146/annurev-immunol-032713-120231
https://doi.org/10.1146/annurev-immunol-032713-120231
https://doi.org/10.1016/j.coviro.2011.10.008
https://doi.org/10.1016/j.coviro.2011.10.008
https://doi.org/10.1016/j.coviro.2015.02.003
https://doi.org/10.1016/j.coviro.2015.02.003
https://doi.org/10.1016/j.immuni.2012.03.013
https://doi.org/10.1038/nri3581
https://doi.org/10.1016/S0021-9258(17)32200-7
https://doi.org/10.1016/S0021-9258(17)32200-7
https://doi.org/10.1016/j.cytogfr.2018.10.003
https://doi.org/10.3389/fimmu.2018.02542
https://doi.org/10.3389/fimmu.2018.02542
https://doi.org/10.1016/j.molcel.2018.07.009
https://doi.org/10.1016/j.chom.2013.04.015
https://doi.org/10.1007/s00335-018-9755-6
https://doi.org/10.1016/j.tim.2017.01.001
https://doi.org/10.3390/ijms20071620
https://doi.org/10.1093/emboj/17.22.6660
https://doi.org/10.1073/pnas.86.24.9936
https://doi.org/10.1016/j.immuni.2013.05.007
https://doi.org/10.1038/nri2314
https://doi.org/10.1016/j.cell.2010.01.022
https://doi.org/10.1016/j.neures.2014.03.001
https://doi.org/10.1128/JVI.01650-07
https://doi.org/10.15252/embj.201796781
https://doi.org/10.1038/nri2971
https://doi.org/10.1128/JVI.00931-10
https://doi.org/10.1128/JVI.72.9.7420-7427.1998
https://doi.org/10.1093/infdis/jis653
https://doi.org/10.3389/fimmu.2022.1008072
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lang et al. 10.3389/fimmu.2022.1008072
determinant of cell and tissue tropism. J Virol (2000) 74:3366–78. doi: 10.1128/
JVI.74.7.3366-3378.2000

38. Casrouge A, Zhang S-Y, Eidenschenk C, Jouanguy E, Puel A, Yang K, et al.
Herpes simplex virus encephalitis in human UNC-93B deficiency. Science (2006)
314:308–12. doi: 10.1126/science.1128346

39. Herman M, Ciancanelli M, Ou Y-H, Lorenzo L, Klaudel-Dreszler M,
Pauwels E, et al. Heterozygous TBK1 mutations impair TLR3 immunity and
underlie herpes simplex encephalitis of childhood. J Exp Med (2012) 209:1567–82.
doi: 10.1084/jem.20111316
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Glossary

IFN Interferon

ISGs Interferon-stimulated genes

CNS Central nervous system

BBB Blood-brain barrier

JAK Janus tyrosine kinase

STAT Signal transducer and activator of transcription

ISGF3 IFN-stimulated gene factor 3

TYK2 Tyrosine Kinase 2

IRF9 Interferon regulatory factor 9 (IRF9)

ISREs Interferon stimulatory response elements

GAF g-activated factors

GAS g-activated sequences

IRFs Interferon regulatory factors

NF-kB Nuclear factor k B

RIG-I Retinoic acid-inducible gene I

MDA5 Melanoma differentiation-associated gene 5

RLRs RIG-I-like receptors

IFIT1 Interferon-induced protein with tetrapeptide repeats 1

WT Wild-type

SINV Sindbis virus

HSE Herpes simplex encephalitis

TRIF Toll-interleukin-1 receptor domain-containing adaptor-inducing
interferon-b

TBK-1 TANK-binding kinase 1

TLR3 Toll-like receptor 3

TRAF3 Tumor necrosis factor receptor-associated factor 3

AD Alzheimer's disease

PD Parkinson's disease
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