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High-risk Human papillomavirus (HPV) infections represent an important public

health issue. Nearly all cervical malignancies are associated with HPV, and a

range of other female and male cancers, such as anogenital and oropharyngeal.

Aiming to treat HPV-related tumors, our group developed vaccines based on the

genetic fusion of the HSV-1 glycoprotein D (gD) with the HPV-16 E7 oncoprotein

(gDE7 vaccines). Despite the promising antitumor results reached by gDE7

vaccines in mice, combined therapies may increase the therapeutic effects by

improving antitumor responses and halting immune suppressive mechanisms

elicited by tumor cells. Considering cancer immunosuppressive mechanisms,

indoleamine-2,3-dioxygenase (IDO) enzyme and interleukin-6 (IL-6) stand out in

HPV-related tumors. Since IL-6 sustained the constitutive IDO expression, here

we evaluated the therapeutic outcomes achieved by the combination of active

immunotherapy based on a gDE7 protein-based vaccine with adjuvant

treatments involving blocking IDO, either by use of IDO inhibitors or IL-6

knockout mice. C57BL/6 wild-type (WT) and transgenic IL-6-/- mice were

engrafted with HPV16-E6/E7-expressing TC-1 cells and treated with 1-methyl-

tryptophan isoforms (D-1MT and DL-1MT), capable to inhibit IDO. In vitro, the

1MT isoforms reduced IL-6 gene expression and IL-6 secretion in TC-1 cells. In

vivo, the multi-targeted treatment improved the antitumor efficacy of the gDE7-

based protein vaccine. Although the gDE7 immunization achieves partial tumor

mass control in combination with D-1MT or DL-1MT in WT mice or when

administered in IL-6-/- mice, the combination of gDE7 and 1MT in IL-6-/- mice

further enhanced the antitumor effects, reaching total tumor rejection. The

outcome of the combined therapy was associated with an increased frequency
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of activated dendritic cells and decreased frequencies of intratumoral

polymorphonuclear myeloid-derived suppressor cells and T regulatory cells. In

conclusion, the present study demonstrated that IL-6 and IDO negatively

contribute to the activation of immune cells, particularly dendritic cells,

reducing gDE7 vaccine-induced protective immune responses and, therefore,

opening perspectives for the use of combined strategies based on inhibition of

IL-6 and IDO as immunometabolic adjuvants for immunotherapies against HPV-

related tumors.
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Introduction

Human papillomavirus (HPV) is the most common cause of

sexually transmitted illnesses worldwide (1). Nearly all cervical

malignancies and a range of other female and male cancers, such

as anogenital and oropharyngeal, are associated with high-

risk HPV, especially HPV-16 and HPV-18. Despite the

preventability of HPV-related malignancies by prophylactic

vaccines, there is still a high global incidence, particularly in

low- and lower-middle-income countries. In this scenario,

cervical cancer is the ninth most prevalent cancer worldwide

and the fourth in terms of incidence and mortality in women (2).

The conventional treatment of cervical cancer depends on the

extent of the disease and fertility-sparing, which may include

surgery, radiotherapy, and/or chemotherapy (3–5). However,

even following usual treatments, recurrence of cervical cancer is

still prevalent (3, 6), emphasizing the need for novel curative

antitumor approaches.

Therapeutic failure is mainly attributed to the systemic and

local immunosuppression induced by the oncological disease,

which depends on tumor and host factors and involves different

inflammatory molecules (7). Interleukin-6 (IL-6) is one such

inflammatory molecule produced by many cell types, including

tumor cells. IL-6 plays a crucial role in the proliferation and

differentiation of malignant cells and it is known to be

implicated in the pathogenesis of HPV+ cervical cancer (8).

Compared to the normal cervix and cervical intraepithelial

neoplasia (CIN), the expression of IL-6 in cervical cancer was

considerably higher (9). Furthermore, circulating IL-6 was found

to be a risk indicator since elevated serum IL-6 levels correlate

with advanced stages of cervical cancer (10, 11). Regarding

immunomodulation, while IL-6 promotes the recruitment of

myeloid-derived suppressor cells (MDSC) into the tumor

microenvironment, it hampers Th1 lymphocytes infiltration

(12, 13), and dendritic cells activation (14).
02
The autocrine activation of IL-6 is responsible for STAT3

phosphorylation in HPV-related malignancies, particularly in

cervical cancer (15). Interestingly, the IL-6 signal loop on a self-

sustaining IL-6/STAT3/AHR axis is one of the mechanisms that

maintain the constitutive expression of the indoleamine 2,3-

dioxygenase (IDO) enzyme in tumor cells (16). IDO has gotten

attention as one of the many mediators of tumor immune escape

(17), since it degrades the essential amino acid tryptophan,

creating a tryptophan-deficient microenvironment with critical

immunological outcomes. IDO-expressing dendritic cells

mediate T-cell suppression and/or tolerance, while low

tryptophan concentration reduces T-cell-mediated responses

by inhibiting T-cell proliferation and activation (18, 19).

Importantly, cervical cancer expresses one of the highest

amounts of IDO (20–22), and both IL-6 and IDO are negative

prognostic markers in patients diagnosed with this neoplasm (8,

23), highlighting the IDO/IL6 axis as an important self-

immunoregulatory network in cervical cancer. Consequently,

blocking or inhibiting IL-6 signaling pathways may provide an

interestingly therapeutic target to re-sensitize cancer cells

to immunotherapies.

Regarding biotechnology breakthroughs, immunotherapy

either based on passive administration of monoclonal antibodies

or active immunization with vaccines has become a powerful ally

to fight cancer. Immuno-oncological treatments aim to boost the

immune system to recognize and attack cancer cells, as well as

target immunosuppressive checkpoints to restore an

immunological effector milieu (24). Over the last years, our

group developed vaccines based on genetic fusions of HSV-1

glycoprotein D (gD) and HPV-16 oncoproteins aiming to treat

HPV-related tumors and demonstrated the promising antitumor

effects associated with combined adjuvant therapies in tumor-

bearing mice (25–27). Our present study reports the testing of

therapeutic adjuvant strategies focusing on IL-6 and IDO in

combination with a protein-based (gDE7) antitumor vaccine.
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Material and methods

Tumor cell line and culture conditions

The TC-1 cell line (28) was kindly provided by Dr. T.C. Wu

from John Hopkins University in Baltimore, MD, USA. The TC-

1 cells were cultured as previously described (27) and harvested

at 90% confluency for subculture procedures, in vitro

experiments, and in vivo assays. As a quality control, the

expression of the oncoprotein E7 was confirmed by RT-PCR

(data not shown), and cells were frequently tested for the

absence of Mycoplasma spp.
IL-6 secretion and gene expression assays

The TC-1 cells were seeded in 6-well cell dishes (1,5x105/

well) and cultured in RPMI 1640 medium supplemented with

10% of fetal bovine serum (FBS) (R10) until reaching 50-60%

confluency. Next, cells were treated with a fresh R10 medium

containing 1mM of 1-methyl-D-tryptophan (D-1MT), 1-

methyl-L-tryptophan (L-1MT), or 1-methyl-DL-tryptophan

(DL-1MT) and incubated for 24 hours at 37°C and 5% CO2.

In the control group, only R10 medium was added. Cell culture

supernatant was collected for cytokine measurement by BD™

Cytometric Bead Array (CBA) kit (#560485, BD Biosciences).

Stained samples were acquired by LSR Fortessa™ (BD

Biosciences) flow cytometer and data were analyzed using

FlowJo software (TreeStar).
Mice strains and tumor cell
line implantation

Female wild-type (WT) C57BL/6 mice (6-8 weeks old) were

purchased from the Faculty of Veterinary Medicine and

Zootechnics of the University of São Paulo (USP). Male or

female (on demand) IL-6 gene knocked mice (IL-6-/-) were

supplied by the animal facility unit of the Department of

Immunology of the University of São Paulo. Animals were

allowed free access to water and food and provided with a 12h

light/dark cycle, at 20-26°C temperature. Mice experiments were

performed under approved protocols by the ethics committee

for animal experimentation (protocol number CEUA

8572030918) and followed the standard rules approved by the

National Council for Control of Animal Experimentation

(CONCEA). The TC-1 cells were harvested at 90% confluency

and transplanted into mice as previously described (27), at a

concentration of 1x105 cells/100µL/animal on day 0 (D0). Mice

were considered tumor-bearing when tumors became palpable

(7-10 days) and were euthanized when tumors reached 15mm in

diameter or if they showed signs of distress (grimace scales).
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Mice gDE7-based immunotherapy and
IDO inhibitors (1MT) treatment

The therapeutic gDE7-based vaccine was administered

following a regimen of two subcutaneous immunizations at a

week interval, as previously described (27). Each dose contained

30 µg of the gDE7 protein, diluted in PBS, in a total volume of

100 µL, and inoculated at the right rear flank region of mice.

Animals were immunized with gDE7 seven (D7) and fourteen

(D14) days after TC-1 cell engraftment (D0). Treatment with

oral administered D-1MT or DL-1MT began two days (day 9 -

D9) after the first gDE7 immunization and lasted four weeks

until day 36 (D36) for mice treated every day with 1MT

(Figure 1A) or until day 37 (D37) for mice treated every other

day with 1MT (Figure 1B). The D-1MT and the DL-1MT were

administered to the animals at 8mg animal-1 every day or 10 mg

animal-1 every other day, dissolved in a mixture of 0.5% tween-

80, 0.5% methylcellulose in sterile Milli-Q water, being

administered 100µL/animal per gavage.
The antitumor effect assessment

The single or combined treatment outcome was evaluated by

tumor mass volume, mice survival, and tumor-free mice. Tumor

volume was plotted up to day 44 (D44). The “monitoring

endpoint” of each group could be different since we chose as

the “endpoint data” a survival rate of at least 80% of each mice

group. Both survival and tumor-free mice were assessed up to

day 60 (D60). The formula 1/2 [(length)^2 × width] was used to

determine tumor volume.
Intracellular cytokine staining

Intracellular IFN-g staining was performed in peripheral

blood samples collected in heparin-containing vials 7 days (day

21 – D21) or 14 days (day 28 – D28) after the last gDE7

immunization (D14). Cells were treated with ACK lysing

buffer to remove red blood cells. The lysis was quenched by

adding an R10 medium to the samples. Immunological cells

were incubated overnight at 37°C and 5% CO2 in 96-well U-

bottom plates (Corning) in RPMI 1640 medium supplemented

with 10% FBS, 2 mM L-glutamine, 1 mM sodium pyruvate

(Gibco), 1% non-essential and essential amino acid solution (v/

v) (Gibco), 1% vitamin solution (v/v), in the presence of

brefeldin A 10 mg mL-1 (GolgiPlug BD Biosciences), IL-2 (5 ng

mL-1; Sigma), with or without the stimulation of the CD8-

specific E7 peptide (49RAHYNIVTF57; GeneScript; 1,5mg/mL

(29). After the incubation period (10 to 12 hours), cells were

stained with anti-CD8-APC mAb (#553035, Biolegend), fixed,

and permeabilized using Cytofix/Cytoperm kit (#555028, BD
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Biosciences), and stained with anti-IFN-g-PE mAb (#5058808,

Biolegend). Finally, samples were acquired on an LSR Fortessa

flow cytometer (BD Biosciences) and analyzed using the forward

scatter (FSC)/side scatter (SSC) parameters for the doublet

exclusion gate, following the percentage of CD8+ IFN-g+ T

lymphocytes. The data were analyzed by FlowJo software

(Tree Star).
Tumor microenvironment immune
cells analyses

For WT and IL-6-/- tumor-bearing mice, tumors were

collected 21 post tumor cell transplantation (D21), and cells

were recovered by digesting the tumor mass with 22 U mL-1 of

collagenase D (#11088866001, Roche Diagnostics) for 1h at 37°

C, gently stirring every 10 min. After the incubation period, the

collagenase was inactivated with 5 mM EDTA at room
Frontiers in Immunology 04
temperature for 5 min. The samples were gently resuspended

in R10 and filtered through 70 mm cell strainers (Easy Strainer

Greiner Bio-One). After centrifugation (300 g for 10 min), the

pellet was resuspended in R10, filtered through 40 mm cell

strainers, pelleted once again, resuspended in PBS containing

2% FBS, and distributed in 96 well U-bottom plates for further

staining. The following mAbs were used to discriminate different

subtypes of immune cells: anti-CD45-PerCP-Cyanine 5.5

(#103131, BioLegend), anti-CD4-FITC (#130308, BioLegend),

anti-CD4-BV605 (#100451, BioLegend), anti-CD8-APC

(#100712, BioLegend), anti-CD11b-Alexa Fluor 700 (#101222,

BioLegend), anti-Ly6C-FITC (#128006, BioLegend), anti-Ly6G-

PE (#127608, BioLegend), anti-Gr1-PE (# 553128, BD

Pharmingen), anti-CD11c-PE (#553802, BD Pharmingen),

anti-CD25 (#12-0251-82, eBioscience), anti-FoxP3-PE

(#560414, BD Pharmingen), and anti-MHC-II-FITC (#107606,

BioLegend). For the analysis of immune cell activation, anti-

CD86-BV605 (#105037, BioLegend) was used. Cells were
B

C D

A

FIGURE 1

The administration regimen of 1MT isoforms affects the therapeutic antitumor effects of gDE7. Female WT mice were inoculated with TC-1 (D0)
cells. Seven (D7) and fourteen (D14) days after the tumor engraftment, the animals were immunized with gDE7 (30mg, subcutaneously). Two
days after the first dose (D9), mice were treated with 1MT isoforms (A, B), either daily with 8mg/animal (A) (n = 10) or 10 mg/animal every other
day (B) (n = 10) for four weeks, until day 36 (D36) or day 37 (D37), respectively. The experimental groups were followed for 60 days. Tumor
volumes were followed up to 44 days in mice treated with the different treatments using (C) D-1MT or (D) DL-1MT. The tumor growth
“endpoint data” for each group was plotted up to the date when at least 80% of the mice were alive. The data represent the average of two
independent experiments and were analyzed by ANOVA. (&) p <0.05, statistical significance of control group concerning all the others; (#) p
<0.05, statistical significance of gDE7 + 1MT every day group concerning all the others; (*) p <0.05, statistical significance of gDE7 + 1MT every
other day group concerning all the others. The results were confirmed through multiple comparisons by Turkey’s test (three or four groups) or
Sidak’s test (two groups), comparing each group mean with the other group mean at the same time point. D0 - day zero; D7 - day 7; D9 - day
9; D14 - day 14; D36 - day 36; D37 - day 37; D44 - day 44.
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characterized according to the following parameters: T cells

(CD45+, CD4+ or CD8+), dendritic cells (CD45+, CD11chigh,

MHC-IIhigh), inflammatory monocytes (CD45+, CD11bint,

Ly6Chigh, Ly6G-), resident monocytes (CD45+, CD11bint,

Ly6Cint, Ly6G-), polymorphonuclear myeloid-derived

suppressor cells (PMN-MDSC) (CD45+, CD11bhigh, Ly6Cint,

Ly6G+ or Gr1high CD11b+), T regulatory cells (Treg) (CD4+,

CD25+, FoxP3+), and E7-specific CD8+ IFN-+ T cells (CD8+,

IFN-g+). Cells were acquired by LSR Fortessa™ (BD

Biosciences) flow cytometer and data were analyzed using

FlowJo software (TreeStar).
Statistical analysis

Statistical analyses were performed using GraphPad-Prism

software. The analysis was performed using the unpaired T-test,

One-Way ANOVA, or Two-Way ANOVA and the results were

confirmed through multiple comparisons by Turkey’s test or

Sidak’s test, according to the GraphPad-Prism software

recommendation. Survival curves were compared using the log-

rank (Mantel-Cox) test. Appropriate methods were indicated in

the legends. Values of p < 0.05 were considered significant.
Results

Mice treated with gDE7 and 1MT
isoforms promote partial tumor
mass control according to the
administration regimen

In previous work, we showed that the combination of gDE7

with 1MT partially controls the growth of TC-1 cells in mice (27).

Since gDE7 conferred complete antitumor protection in IDO-/-

knocked mice (27), here we compare two therapeutic regimens in

wild-type mice with administration of 1MT isoforms every day

(Figure 1A), and every other day (Figure 1B). Notably,

administration of 1MT isoforms every day did not improve

treatment outcomes (Figures 1C, D). On the other hand,

administration of D-1MT or DL-1MT every other day

improved the therapeutic antitumor effects of the gDE7-based

immunotherapy (Figures 1C, D). Regarding mice survival

(Figures 2A, B) and tumor-free outcome (Figures 2C, D), mice

submitted to vaccination and treated with 1MT every other day

(Figures 2B, D) outperformed the group that was treated every day

(Figures 2A, C). Mice treated with DL-1MT showed higher

survival rates (Figure 2B) and tumor-free conditions

(Figure 2D). Importantly, when 1MT therapy (D-1MT or DL-

1MT) is interrupted, there was a decline in tumor growth control

(Figures 1C, D), as also indicated by the mice survival rate after
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day 40 (Figures 2A, B). Given that every other day treatment with

IDO inhibitors had a better outcome, we proceeded the

experiments using solely this treatment strategy. Therefore, we

next investigate the tumor-infiltrating immune cells population

(time point analyzed - D21) to evaluate the immunological

mechanism triggered by the chosen therapeutic approach

(Figure 2E). Mice immunized with gDE7 and those also treated

with IDO inhibitors (D-1MT or DL-1MT) showed similar

frequencies of CD45+ cells, PMN-MDSC and dendritic cells

(Figures 2F-H). Regarding T cell population, although only

gDE7 immunization induced higher rates of intratumoral CD8+

T cells (Figure 2I), immunization with gDE7 with or without IDO

inhibitors leads to increased frequency of E7-specific CD8+ IFN-+

T cells (Figure 2J). Interestingly, higher rates of intratumoral

CD4+ T cells were found in mice immunized with gDE7

(Figure 2K), but only the combined therapy was able to

decrease Treg population (Figure 2L). These findings suggest

that the antitumor effects of IDO inhibitors, when employed as

immunometabolic adjuvants, depend on the administration

regimen. Moreover, when combined with immunotherapy, IDO

inhibitors have a beneficial effect on Treg tumor-infiltration.
IL-6 expression promotes tumor
growth and negatively impacts gDE7
vaccine efficacy

Next, we assessed how IL-6 affects tumor development

(Figure 3A) and tumor-infiltrating immune cells (Figures 3B-

F) (see Figure 2E for gate strategy) in IL-6-/- mice engrafted with

TC-1 cells. Tumor growth was significantly reduced in IL-6-/-

mice when compared to WTmice (Figure 3A). Furthermore, the

frequency of immune cells (CD45+ cells) in the tumor

microenvironment was increased in IL-6-/- animals with a

higher rate of intratumoral dendritic cells (DCs) compared to

WT mice (Figures 3B, C), but no significant differences were

observed in the frequencies of intratumoral CD8+ and CD4+ T

lymphocytes, and Treg (Figures 3D-F). Notably, the

transplanted TC-1 cells were capable of producing IL-6

(Figures 3G, H), underlining the importance of endogenous

IL-6 on immune and stromal cells in the promotion of tumor

growth. Following that, we investigated the influence of IL-6 on

the antitumor effects of the gDE7 vaccination (Figure 3I).

Immunotherapy reduces tumor development in IL-6-/- mice

(Figure 3J) with a significant improvement in survival but does

not induce tumor remission (Figures 3K, L). Furthermore, no

increase in the frequency of circulating E7-specific CD8+ IFN-+

T cells (Figure 3M) was seen at the time point analyzed (D21).

These findings show that IL-6 promotes the growth of TC-1 cell

proliferation and negatively impacts the efficacy of gDE7-

based immunotherapy.
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B

C D

E

F G H

A

I J K L

FIGURE 2

The combination of gDE7 and 1MT improves mice survival depending on their administration regimen. (A–D) The data represent the average of two
independent experiments (n=5, total n=10). (A, B) Survival curves. Data were analyzed by Kaplan-Meyer test. (A) Two mice from gDE7 group and
from gDE7 + DL-1MT survived until day 60. (B) Two, one, and four mice from gDE7, gDE7 + D-1MT, and gDE7 + DL-1MT groups survived until day
60, respectively. (C, D) Tumor-free mouse curves. Data were analyzed by ANOVA test* p <0.05. (E) Gating strategy for immune cell analyses in the
tumor microenvironment, evaluated at day 21 after the tumor engraftment. Doublets were initially excluded by FSC-H versus FSC-W parameters,
followed by SSC-H versus SSC-W parameters. Cells were gated by the expression of CD45+ and successively analyzed for: CD8+, followed by CD8+

IFN-g+; CD4+, followed by CD25+ and FoxP3+ CD25+ (T regulatory cells); CD11chigh MCH-IIhigh (dendritic cells); and Gr1high CD11b+. (F) Frequency
of CD45+ cells. (G) Frequency of Gr1high CD11b+ cells. (H) Frequency of CD11chigh MCH-IIhigh cells. (I) Frequency of CD8+ T cells. (J) Frequency of
E7-specific CD8+ IFN-g+/CD8+ cells. (#) p<0.05 represent the statistical significance of stimulated (red dots) versus non-stimulated (white dots) cells
inside each experimental group. (K) Frequency of CD4+ T cells. (L) Frequency of FoxP3+ CD25+ CD4+ cells. Data representative of two
independently performed experiments (n=6). Statistical significance: (*) p<0.05, (**) p<0.01 by ANOVA. (#) p<0.05 (###) p<0.001 represents the
ANOVA statistical significance of stimulated (red dots) versus non-stimulated (white dots) cells inside each experimental group.
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IDO inhibition boosts the antitumor
effects of gDE7 in IL-6-/-mice

To further understand the interplay of IL-6 and tryptophan

metabolism in HPV-related tumors, we next evaluated the in
Frontiers in Immunology 07
vitro impact of IDO inhibitors on IL-6 expression in TC-1 cells.

As indicated in Figure 3, culturing TC-1 cells in the presence of

D-1MT or DL-1MT significantly reduced IL-6 gene expression

and cytokine release (Figures 3G, H). IL-6-/- tumor-bearing mice

were immunized with gDE7 and treated with IDO inhibitors
B

C D E F

G H I

J K

L M

A

FIGURE 3

Expression of IL-6 affects immune cells and negatively impacts gDE7 antitumor effects. (A) Wild-type (WT) and IL-6-/-mice were subcutaneously
inoculated with 1 x 105 TC-1 cells and tumor growth was monitored until day 30 (D30) when at least 80% of the mice from each group were
alive. Immune cell analyses of the tumor microenvironment were evaluated at day 21 after the tumor engraftment. (B) Frequency of CD45+

cells. (C) Frequency of CD11chigh MCH-IIhigh cells. (D) Frequency of CD8+ T cells. (E) Frequency of CD4+ T cells. (F) Frequency of FoxP3+ CD25+

T cells. Data from one experiment (n=9) were pooled and analyzed by unpaired t-test. (G, H) Effects of 1MT isoforms on the expression IL-6 by
TC-1 cells. (G) Real-time PCR assay - Relative gene expression of IL-6 in TC-1 cells with or without 1mM D-1MT or DL-1MT treatment for 24h
(n=3). (H) CBA assay - IL-6 release by TC-1 cells with or without exposure to 1mM D-1MT or DL-1MT for 24h (n=3). I Wild-type (WT) and IL-6-/-

mice were subcutaneously inoculated with 1 x 105 TC-1 cells and vaccinated with two doses (D7 and D14) of gDE7 (30µg per animal). The
experimental groups were followed for 60 days, but the “endpoint data” for each group was plotted up to the date when at least 80% of the
mice were alive. (J-L) The antitumor effects of gDE7 in WT IL-6-/-mice were measured by (J) tumor volume (mm3), (K) percentage of mice
survival and (L) percentage of tumor-free mice. (M) Frequency of circulating E7-specific CD8+ IFN-g+/CD8+ T cells on day 21 (D21) after
overnight ex-vivo stimulation of cells with the HPV-16 E7 Kb MHC class I-restricted immunodominant epitope peptide. (B-F) Data from one
experiment (n=9) were pooled and analyzed by unpaired t-test. (A, J-M) data represent means ± SD from two independently performed
experiments (n = 12) with comparable results and analyzed by ANOVA or by Kaplan-Meyer test (exclusively for survival assay). (K) One and four
mice from WT + gDE7 and IL-6-/-+ gDE7 groups survived until day 60, respectively. (&) p <0.05, statistical significance of wild type (WT) group
concerning all the others; (#) p <0.05, statistical significance of IL-6-/-+ gDE7 group concerning all the others; (*) p<0.05, (***) p<0.001,
statistical significance of one experimental group concerning the other group. Regarding tumor volume graphs, the results were confirmed
through multiple comparisons by Turkey’s test (three or four groups) or Sidak’s test (two groups), comparing each group mean with the other
group mean at the same time point.
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following the “every other day” regimen (Figure 4A). In

comparison to the gDE7-treated group, IL-6-/- mice vaccinated

with gDE7 and treated with D-1MT or DL-1MT showed

significantly decreased tumor mass (Figures 4B-D). IL-6-/-

mice treated with gDE7 and D-1MT had a 73% survival rate

and 52% remained tumor-free till the end of the observation

period (D60), whereas animals treated with gDE7 and DL-1MT

had a 52% survival rate and 47% were tumor-free. In contrast,

IL6-/- mice treated only with gDE7 showed a 33% survival rate

and 10% remained tumor-free at D60. Importantly, comparing

WT mice with IL-6 KO mice, both treated with the combination

of gDE7 + IDO inhibitors, we observed a significantly decreased

in tumor growth in IL-6 defective mice, especially when treated

with D-1MT (Supplementary Figure S1). Furthermore, at D28,

higher numbers of circulatory E7-specific CD8+ IFN-g+ T cells

were observed in mice that received the combined therapy

(Figures 4E, F). Importantly, we opted to assess CD8+-specific

T cells on D28 because when we previously evaluated this cell

population in the mice blood on D21, we found no changes

between the control and the gDE7-vaccinated groups

(Figure 3M). Taken together, the current findings show that,

in IL-6-/-mice, the combination of gDE7 with 1MT isoforms

boosts the antitumor immunity and highlights the role of IDO

and IL-6 on the growth of TC-1 cells.
Lack of IL-6 expression and IDO
inhibition enhances activation of
intratumoral effector immune cells and
reduces immune suppressive cells in
gDE7 vaccinated mice

We next investigate the tumor-infiltrating immune cells

population (time point analyzed - D21) to determine the

immunological mechanism behind the tumor rejection

outcome obtained in IL-6 deficient mice by our therapeutic

approach (Figure 5A). Mice immunized with gDE7 and those

also treated with IDO inhibitors (D-1MT or DL-1MT) had

higher rates of intratumoral CD45+ (Figure 5B) and CD8+ T

cells (Figure 5C) than non-immunized mice. Interestingly,

despite CD4+ T-cell population was similar in all experimental

groups (Figure 5D), immunization with gDE7 with or without

IDO inhibitors decreased the frequency of intratumoral Treg

cells (Figure 5E). Regarding myeloid cells, immunization of IL-

6-/- mice with gDE7 enhanced DC migration into the tumor

microenvironment (Figure 5F). In addition, the adjuvant

treatments with D-1MT or DL-1MT increased the frequencies

of activated DCs in the tumor microenvironment (Figures 5F,

G). Moreover, mice treated with gDE7 and 1MT isoforms

showed increased activation of resident and inflammatory

monocytes (Figures 5H, I). Notably, the combined treatment

of gDE7 and D-1MT or DL-1MT substantially reduced the

frequency of intratumoral PMN-MDSC when compared to
Frontiers in Immunology 08
mice treated only with gDE7 (Figure 5H). Furthermore, the

combination treatment with D-1MT or DL-1MT promoted

upregulating of CD86 of PMN-MDSC (Figure 5I) .

Unfortunately, due to the small tumor volume, it was not

possible to assess the E7-specific CD8+ IFN-g+ T cells

population in the tumor microenvironment. These findings

further support the role of IL-6 and IDO in the

immunomodulation promoted by gDE7 and underline the

relevance of multi-target therapeutic strategies for successful

antitumor immunotherapy.
Discussion

Our research explored the possible association between IL-6

and IDO1 in the progress of HPV-related tumors, as well as their

influence on a specific cancer immunotherapy strategy. The

experimental approach aimed to circumvent three major

concerns in HPV-related tumors: systemic and local high

expression of IL-6 and IDO as well as activation of effector

immune cells. To address this goal, we employed the well-known

HPV-16 TC-1 tumor mouse model, which expresses IL-6 (30)

and IDO (27), to understand the impact of these factors during

gDE7-based immunotherapy. The main findings of the study

were: 1) IL-6 impacts the in vivo TC-1 cell tumor development

and this feature depends on IL-6 expression by leukocytes and

stromal cells, not by tumor cells; 2) in IL-6-/- mice, gDE7

treatment enables partial tumor mass control, nonetheless,

only with IDO inhibition gDE7-immunized mice could boost

immune responses and more efficiently eradicate tumor cells; 3)

in the absence of IL-6, the adjuvanticity of 1MT isoforms were

essential to increase the efficacy of the gDE7 vaccine leading to

increased frequencies and activation of antigen-presenting cells

in the tumor microenvironment and control of intratumoral

PMN-MDSC and Treg expansion.

The vaccines based on the fusion of HPV-16 E7 oncoprotein

and the HSV-1 glycoprotein D, either protein- or DNA-based,

have been shown to potentiate immune responses capable of

blocking inhibitory signals mediated by the B and T lymphocyte

attenuator (BTLA) co-signaling protein by competitive binding

inhibition with herpesvirus entry mediator (HVEM) receptor

(31, 32). In addition, HSV-1 gD protein delivers target antigen

and promotes direct activation of a specific DCs subset

specialized in cross-presentation leading to efficient activation

of CD8+ T cell-dependent antitumor responses (25). The

therapeutic antitumor efficacy of gDE7-based vaccines could

be enhanced by combination with different adjuvant procedures,

including administration by electroporation (33), combined

treatments with gemcitabine (34) and cisplatin (26), the

addition of poly(I:C) (25, 35), co-expression of IL-2 (36) or IL-

10 receptor (37), adsorption to Bacillus subtilis spores (38), and

combination with metabolic adjuvants such as IDO inhibitors

and melatonin (27). Recently, a novel antibody-based vaccine
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FIGURE 4

Lack of IL-6 combined with IDO inhibition augment immunotherapy control mediated by gDE7 on TC-1 cells engrafted in mice. (A) IL-6-/-mice
were subcutaneously inoculated with 1 x 105 TC-1 cells and vaccinated with two doses (D7 and D14) of gDE7 (30µg per animal). Two days after
the first dose (D9), mice were treated with 1MT at a concentration of 10 mg/animal every other day for four weeks, until D37. The experimental
groups were followed for 60 days, but the “endpoint data” for each group was plotted up to the date when at least 80% of the mice were alive.
(B-D) Data represent means ± SD from two (groups IL-6-/- and IL-6-/- + gDE7) (n=6, total n=12) or three (groups IL-6-/- + gDE7 + 1MT) (n=6 or
7, total n=19) independently performed experiments with comparable results and analyzed by ANOVA or by Kaplan-Meyer test (exclusively for
survival assay). The antitumor effects of gDE7 combined with 1MT isoforms were followed by (B) tumor volume (mm3), (C) mice survival, and (D)
presence of tumor-free mice. (C) Four, fourteen, and nine mice from IL-6-/- + gDE7, IL-6-/- + gDE7 + D-1MT, and IL-6-/- + gDE7 + DL-1MT
groups survived until day 60, respectively. (E) Frequency of circulating E7-specific CD8+ IFN-g+/total CD8+ T cells on D28 after overnight ex-
vivo stimulation of cells with the HPV-16 E7 Kb MHC class I-restricted immunodominant epitope peptide (n=12). (F) Gate strategy of circulating
IFN-g producing CD8+ T cells by flow cytometry. (&) p <0.05, statistical significance of IL-6-/- control group concerning all the others; (F) p
<0.05, statistical significance IL-6-/-+ gDE7 group concerning all the others; (d) p <0.05, statistical significance of IL-6-/-+ gDE7 + DL-1MT group
concerning all the others. (*) p<0.05, (**) p<0.01, statistical significance of one experimental group in comparison with the other groups. (#)
p<0.05 represents the statistical significance of stimulated (red dots) versus non-stimulated (white dots) cells inside each experimental group.
Regarding tumor volume graphs, the results were confirmed through multiple comparisons by Turkey’s test (three or four groups), comparing
each group mean with the other group mean at the same time point.
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FIGURE 5

IDO inhibition increases activation of intratumoral DCs and decreases immune suppressive PMN-MDSC in tumor microenvironment of IL-6-/-
mice immunized with gDE7. (A) Gating strategy for immune cell analyses of the tumor microenvironment, evaluated at day 21 after the tumor
engraftment. Cells were gated by the expression of CD45+ and successively analyzed according to the expression of CD8+ (CD8+ T
lymphocytes), CD4+ (CD4+ T lymphocytes) followed by CD25+ and FoxP3+ CD25+ (T regulatory cells); CD11chigh MCH-IIhigh (dendritic cells),
CD11bint Ly6Cint Gr1- (resident monocytes), CD11bint Ly6Chigh Ly6G- (inflammatory monocytes) or CD11bhigh Ly6Cint Ly6G+ (PMN-MDSC).
Antigen-presenting cells were considered activated by the expression of the co-stimulatory molecule CD86, analyzed by the median of
fluorescence intensity (MFI) in the gated subsets cells. (B) Frequencies of CD45+ cells. (C) Frequencies of CD8+ cells. (D) Frequencies of CD4+

cells. (E) Frequency of FoxP3+ CD25+ CD4+ cells. (F) Frequencies of CD11chigh MCH-IIhigh cells. (G) CD86 MFI in CD11chigh MCH-IIhigh cells. (H)
Frequencies of Gr1+ (Ly6C+/Ly6G- or Ly6C-/Ly6G+) CD11b+ cells. (I) CD86 MFI in Gr1+ CD11b+ subsets cells. Data representative of two
independently performed experiments (n=6). Statistical significance: (*) p<0.05, (**) p<0.01, (***) p<0.001 by ANOVA. (#) p<0.05 and (##)
p<0.01 represent the statistical significance of control group versus other groups.
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platform was designed to deliver E7 oncoprotein to DEC205+

dendritic cells (aDEC205-E7 mAb) (39). Although gDE7-based

vaccines showed outstanding anticancer effects, the effectiveness

decreased when tumors achieved an advanced growth stage due

to immunosuppressive mechanisms elicited by tumor cells (27,

34, 37). Indeed coadministration of DNA vaccines encoding

gDE7 and IL-10 receptors has been shown to halt tumor-

induced immune suppressive cells (MDSC) and enhance

strong tumor-specific CD8+ T-cell response leading to better

control of tumors at advanced growth stages (37). Notably, IL-

10-/- mice develop TC-1 cell-derived tumors at faster rates with a

significant enhancement of IL-6 and numbers of intratumoral

MDSC concerning WT mice. Indeed, previous experimental

evidence demonstrated that the use of an anti-IL-6 receptor

monoclonal antibody controlled tumor growth and expansion of

intratumoral MDSC (40).

Among the oncology biomarkers explored in HPV-related

cancers, IL-6 stands out as a predictor of tumor development

and immunosuppression. (9, 41–43). High expression of IL-6 in

both tumor cells and surrounding tissues has been found in

patients with HPV-16 and 18 infections (8, 42, 44). It is widely

assumed that the positive regulation of IL-6 in HPV-related

pathologies relies on STAT3 signaling (15, 43). Interestingly, the

STAT3/IL-6 axis is assumed to regulate the constitutive

expression of IDO1 in tumor cells (16), leading to the

hypothesis that this axis could regulate the high-level

expression of IDO1 in the tumor microenvironment and

adjacent tissues of HPV-related tumors (27, 45–48), since both

molecules are co-expressed in TC-1 cell mouse model or cervical

cancer patients. Indeed, IL-6 and IDO have been linked to poor

treatment outcomes, tumor recurrence, and aggressive tumor

progression in breast cancer (49), nasopharyngeal carcinoma

(50), and prostate cancer (51) patients. Therefore, the study of

these two immunosuppressive molecules is important not only

for HPV-related tumor, but also for other tumor types.

Considering that immunometabolism has emerged as a central

element in cancer therapy (52, 53), we previously explored the

combination of gDE7 with IDO inhibitors and melatonin, which

promoted synergic antitumor effects drawing attention to the

relevance of multi-target therapeutic approaches (27). Focusing

on continuing this study and further understanding the IDO/IL6

axis in HPV-related tumors, in the present study we investigated

the outcomes of gDE7 immunization in IL-6-/- mice, treated or

not with 1MT isoforms, based on the hypothesis that targeting

IDO and IL-6 could augment the immunotherapeutic effects.

Aligning with our findings, the impact of IL-6 in HPV-related

tumors has been previously demonstrated with IL-6-/- mice and

by blocking of IL-6 with specific inhibitors (43). Here we saw a

considerable reduction in tumor development when the IL-6-/-

mice were immunized with gDE7. This phenomenon could be

related to the specific tumor signature since IL-6 deficiency did

not affect esophageal tumorigenesis (54).
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IL-6 signaling can be targeted in a variety of ways, including

the use of anti-IL-6 (siltuximab) or IL-6R (tocilizumab)

monoclonal antibodies, which have both been extensively

studied in different experimental tumor models as well as in

clinical trials (55). IL-6 inhibition combined with other

chemotherapeutic drugs, radiation, and targeted therapies

significantly increased the clinical therapeutic gain in various

cancer types (56, 57). In this concern, the inhibition of IDO1 can

trigger an IL-6-dependent toxic inflammation in mice, which

can be reduced by anti-IL-6 antibodies (58). Indeed, the

combination of different treatments with multifactorial target

mechanisms may pave the way for the generation of new and

more effective cancer therapies. Focusing on cancer metabolism,

we previously observed the impact of IDO1 on the efficacy of

gDE7 immunization, with the complete rejection of TC-1

tumors in IDO1-deficient mice (27). Taking this finding into

account, and knowing that giving oral IDO inhibitors every

other day partially protects WT mice immunized with gDE7

(27), we sought to find out if oral administration of 1MT

isoforms to WT mice every day would enable tumor clearance

in response to gDE7 treatment. This approach leads to toxic side

effects that impaired the antitumor responses conferred by

gDE7. Similar findings were obtained in an experimental

HPV-related head and neck tumor model using tumor cells

derived from murine oropharyngeal epithelial cells expressing

HPV16 E6/E7 (59). However, in a glioblastoma mouse model

(60) and a lung mouse model (61), daily oral administration of

1MT isoforms improved therapeutic outcomes.

Targeting IDO1-induced immunosuppressive mechanisms

could represent a double-edged sword, since inhibiting IDO1 as

a monotherapy could also lead to increased tumor development

(27, 62). Clinical development efforts now encompass the

combination of IDO inhibitors with immunotherapies.

Positive clinical outcomes were achieved when IDO inhibitors

were used in combination with sipuleucel-T (NCT01560923),

DC-based vaccine (NCT01042535), and pembrolizumab (63),

implying that IDO inhibition has a significant therapeutic value

when combined with other therapeutic procedures. Regarding

gDE7 immunotherapy, we observed a similar adjuvanticity

performance of DL-1MT and D-1MT, worth mentioning that

D-1MT is presently undergoing 17 clinical trials. Both 1MT

isomers lead to increased gDE7-mediated antitumor protection

in WT mice, but only the combination of gDE7 with IDO

inhibitors in the absence of IL-6 afforded more efficient tumor

cell eradication. Importantly, TC-1 cells were the exclusive IL-6

source in the model suggesting that the therapeutic efficacy is

selective when targeting IL-6 on immune and stromal cells

rather than on the tumor cells. The immunotherapeutic

efficacy of the proposed vaccine approach (gDE7 + IL6-/- +

1MT) relied on the immune-cellular profile of the tumor

microenvironment, including activation of myeloid cells and

reduction of PMN-MDSC and Treg. Supporting our data, IL-6 is
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involved in the differentiation and expansion of MDSCs, which

can inhibit T-cell via multiple molecular mechanisms (64), and

1MT effectively reverses the recruitment of tumor-infiltrating

MDSCs induced by IDO1 (65). Similarly, as previously noted,

CD11b+Ly6G+ myeloid cells represent a major source of IDO in

the tumor microenvironment (58). Treg cells are also involved in

the role of IDO1-induced immunosuppressive mechanisms that

promotes cancer cell survival (20). Indeed, higher frequency of

CD4+CD25+FoxP3+ T cells are associated with IDO expression

in immunological and stromal cells (66, 67). In this concern and

corrobotarting or data, the inhibition of IDO by 1MT attenuates

Treg cells differentiation and expansion (67, 68).

Concerning the therapeutic effectiveness, DCs are required

for immunotherapy-driven tumor relapse control (25, 26, 38).

Our current data with the IL6-/- mouse model demonstrated the

relevance of 1MT adjuvanticity in boosting DCs in the tumor

microenvironment. Indeed, cooperativity between orally-

delivered 1MT and subcutaneous administration of gDE7 in

IL-6-/- mice induced tumor rejection and DC activation.

Interestingly, we observed an increased frequency of DCs in

the tumor microenvironment of IL-6-/- mice, but not CD4+ T

cells or CD8+ T cells at the time point assessed. Corroborating

our data, an increased percentage of DCs was observed in IL-6-/-

mice implies that IL-6 hinders DC maturation in vivo with

negative outcomes for DC-mediated T cell activation (14).

Notably, IL-6-/- DCs retained the ability to generate functional

CD8+ T effectors and memory cells (69). In this concern, the IL-

6 signaling cascade was shown to inhibit the expression of major

MHC-II and CD86 molecules on the surfaces of DCs in vivo,

resulting in the delay of cancer-related antigen presentation (70,

71). Moreover, the dysfunction of DC also attenuates CD4+ T-

cell-mediated antitumor immunity responses, and inhibition of

IL-6 reduces tumor growth by restoring T-cell activity in tumor-

bearing mice (72, 73). The tumor-driven immunosuppression of

DCs could also rely on IDO expression (74). Remarkably, in the

TC-1 tumor mouse model, there is a substantial increase in

tumor-infiltration of IDO-expressing DCs, macrophages, and

monocytes during tumor development, which contributes to the

immunosuppressive cellular microenvironment (27). Although

IDO inhibitors did not increase intratumoral CD8+ T cells in

vaccinated mice, concomitant targeting of IL-6 and IDO

promoted efficient induction of tumor-infiltrating DCs.

Notably, cellular analyses indicated that only gDE7 combined

with 1MT increased tumor infiltration of monocytic and

myeloid antigen-presenting cells expressing higher levels of

CD86, an important T-cell costimulatory molecule. Therefore,

one possible hypothesis of the observed antitumor effects may

rely on the fact that 1MT can reverse the T cell suppressive

phenotype induced by IDO-expressing murine DCs promoting

efficient antigen presentation and T cell proliferation (62).

In the era of immuno-oncology, the search for prognostic

markers to expand the use of the immunotherapeutic approach

may be a key step to improving the outcome of presently
Frontiers in Immunology 12
available cancer treatments. The contextual study presented

here has allowed us to demonstrate how anti-IDO/IL-6

therapies may contribute to future successful treatments and

open perspectives for the development of alternative options for

the treatment of HPV-related tumors.
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