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It has been reported that several immune cells can release chromatin and granular
proteins into extracellular space in response to the stimulation, forming extracellular traps
(ETs). The cells involved in the extracellular trap formation are recognized including
neutropils, macrophages, basophils, eosinophils, and mast cells. With the development
of research related to central nervous system, the role of ETs has been valued in
neuroinflammation, blood–brain barrier, and other fields. Meanwhile, it has been found
that microglial cells as the resident immune cells of the central nervous system can also
release ETs, updating the original understanding. This review aims to clarify the role of the
ETs in the central nervous system, especially in neuroinflammation and blood–
brain barrier.
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INTRODUCTION

Extracellular traps (ETs) were first found in neutrophils and regarded as a host defense in response
to bactericidal proteins and peptides (1). ETs were also considered to play a role in the inappropriate
clearance of dead and dying cells in systemic lupus erythematosus (SLE) (2). They existed in a
polynucleosome form, where histones associated with DNA tightly (3). Neutrophil extracellular
traps (NETs) are large, extracellular, web-like structures of cytoplasmic and granular proteins
clustered on a scaffold of decoagulated chromatin (1). Nuleus is the majority origination of the NET
DNA, but mitochondrial DNA is also involved in the composition of NETs (1). According to the
current research, the role of NETs is not limited to preventing microbial invasion but also
participation in immune-related diseases (1, 4–8). With the development of research, more cells
have been found to be involved in the formation of ETs (Figure 1). The other leukocytes including
mast cells, eosinophils, and basophils also have been found to produce extracellular traps (9–13).
The formation of ETs seems to play an alternative role in defense when the phagocytic capacity of
cells is overtaxed (8). The characteristic of ETs is the DNA release related to histones and granule
proteins, forming an extracellular web-like structure (14). This structure can capture and kill some
microorganisms by acting as an immune defense (15). On the one hand, ETs can protect the body in
response to the invasion of pathogenic microorganism. On the other hand, the excessive release of
ETs can cause adverse effects in some diseases such as autoimmune diseases, cancers, and so on (16–
21). Thus, the balance between the protective ET formation and the efficient elimination of excessive
ETs still needs to be considered. Recently, the significant role of ETs in the central nervous system
has come to be recognized in various related diseases. In this review, we described the development
trend of ETs and the crosstalk between ETs and peripheral or central immune system.
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NETs

Neutrophils have specialized in the formation of NETs, which
are the most studied type of extracellular traps. As mentioned
above, NETs can fight against microbes through immobilizing
function and their antimicrobial compound equipment,
which means the physiological functions of NETs include
immune defense and autoimmunity. Moreover, the
evidence for the inflammation-regulation action of NETs has
been accumulating (22, 23). It has shown that the higher
density of NET effect is a double-edged sword: on one hand,
aggregated NETs can isolate the blocks of materials with
immunostimulatory activity, leading to the limitation of
immune reactivity and inflammation to sterile agents (22,
24, 25). On the other hand, tissue damaging is also one of
the properties of NETs, suggesting that the higher density of
NETs can result in an enlarged injury to tissue (25–27). The
existing studies have highly assumed that neutrophil
aggregation and NET formation might be interdependent,
but the specific relationship and mechanisms between them
remain unclear. As crucial cells of innate immunity,
neutrophils are seldom found in the central nervous system
(CNS) under normal conditions because of the presence of the
blood–brain barrier (BBB). However, neutrophils can be
activated in response to CNS diseases or exogenous stimulus
and then injure the BBB. Meanwhile, the infiltration of
neutrophils and the release of NETs increase. This
phenomenon has been reported to exist in various
neurological diseases, such as stroke, traumatic brain injury
(TBI), neurodegenerative diseases, autoimmune diseases, and
tumors. In related diseases, NETs always play a role of
aggravating diseases through its properties and damaging
the integrity of BBB (Figure 2). The following are classified
according to different types of diseases and will show how the
neuroinflammation and BBB damage caused by NETs
influence the concrete neurological diseases.
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ACUTE ISCHEMIC STROKE

Acute ischemic stroke is a hypoxic-ischemic disorder associated
with a sterile inflammatory reaction (28), promoting immune
cell migration and infiltration to the brain parenchyma (29, 30).
Animal studies showed that neutrophils infiltrated the ischemic
areas of the brain within a few hours after the onset of
experimental ischemia, and Perez-Puig et al. described the
presence of citrullinated histone 3, a hallmark of NET
formation, in the ischemic brain after 24-h ischemia (31).
Peña-Martıńez et al. indicated that the neutrophil activation by
platelet Toll-like receptor 4 (TLR4) could result in NETosis and
NETs could act as assembly platforms for atherothrombosis by
binding platelet-derived microparticles (PMPs) and clotting
factors (32–34). Recent research considered that NETs
promoted vaso-occlusion, and this process was initiated
through von Willebrand factor (vWF) (35, 36). Meanwhile, it
has been reported that the outer shell of thrombus samples from
clinical acute ischemic stroke (AIS) patients acting as a protective
barrier against thrombolysis are composed of fibrin, RBC, vWF,
leukocytes, and nucleated cells (37–41), which suggest the
potential value of therapy targeting NETs in thrombolysis.
Additionally, DNAse 1 has been shown to target NETs and
extracellular DNA in thrombi retrieved from patients with AIS
and then accelerates ex vivo lysis of cerebral thrombi (36, 42, 43).

The existing research indicated that NETs play a role in
neurological dysfunction after ischemia probably through the
BBB destruction (31, 44). It has been reported that
neovascularization and perfusion of the vascular structure in
the peri-ischemic brain have important roles in stroke recovery
(45, 46), while NETs can release many cytotoxic proteases such
as histone, elastase, and MPO, which directly induce endothelial
cell damage to increase vascular permeability and then break
BBB (44). Kim et al. demonstrated that high-mobility group
box-1 (HMGB1), a prototypic danger-associated molecular
pattern (DAMP), is involved in NET-mediated neuronal
FIGURE 1 | The major cells forming extracellular traps in central nervous system disease and their potential mechanism.
November 2021 | Volume 12 | Article 783882

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wu et al. Role of the Extracellular Traps
damage in the ischemic brain, where disulfide HMGB1 can
induce NETosis via CXCR4 and TLR4 (47, 48). The
experiments by Kim et al. are also the first to describe the
temporal and spatial progressions of NETosis after middle
cerebral artery occlusion (MCAO) using an intraluminal
model and report that the main route of neutrophil
infiltration from peripheral blood vessels after brain ischemia
follows the route: leptomeningeal vessel ! Virchow-Robin
space ! perivascular space ! brain parenchyma (47).

Although the thrombolysis with tissue plasminogen activator
(tPA) is the only approved pharmacological therapy for acute
ischemic stroke, it presents a major clinical problem as an
increased risk of intracerebral hemorrhage (49–51). Ranran
et al. also revealed that tPA treatment in mice with thrombotic
stroke increased NET formation and that activation of the cGAS-
STING pathway and production of IFN-b participated in NET-
mediated effects on tPA-associated cerebrovascular
complications in stroke (52). These NETs were related to the
increased risk of intracerebral hemorrhage, all of which could be
attenuated by clearing NETs with DNase I or inhibiting NET
production by PAD4 deficiency (52). The series of research
results mean the potential therapeutic value of targeting NETs
in both thrombolysis and the adjuvant therapy of tPA.

Meanwhile, the present studies have shown that neutrophil
influx is more prominent after permanent than after transient
MCAO and the frequency and intensity of NETosis are
significantly greater after permanent MCAO, which suggests a
relationship between NETosis and disease severity (31, 47, 53).
Moreover, it was observed that NET marker levels were
Frontiers in Immunology | www.frontiersin.org 3
associated with stroke severity at onset and discharge from
hospital as evaluated using NIHSS and mRs scores in the
plasma of acute ischemic stroke patients, and that increasing
levels of CitH3 at onset were associated with all-cause mortality
at 1-year follow-up visits (54). Therefore, NETs may be a useful
prognostic maker in acute ischemic stroke in the future
according to the current research results.
HEMORRHAGIC APOPLEXY

The proportion of nontraumatic intracerebral hemorrhage
(ICH) in acute strokes is ~10%–15%, and nontraumatic ICH
has a much higher risk of mortality than ischemic strokes or
subarachnoid hemorrhage (55, 56). A recent research reported
the NET infiltration in the brain of patients who died from
spontaneous intracerebral hemorrhage (sICH), suggesting that
NETs might interact with early hemostasis within the hematoma
core and with the surrounding neuroinflammatory response
(57). Orbán-Kálmándi et al. pointed out that a modified clot
lysis assay, incorporating the effect of NETs, could suggest
unfavorable outcomes in spontaneous, nontraumatic ICH
based on a prospective observational study data (58). Also, in
subarachnoid hemorrhage (SAH), the current studies revealed
that NETs can induce the alteration of microglia into a
proinflammation subtype in order to promote neuroinflammation
and cause adverse consequences, suggesting that NETs may be a
potential target for the treatment SAH in its early phase (59, 60).
According to available research, we can make a bold assumption
FIGURE 2 | The role and possible mechanism of neutrophil extracellular traps in central nervous system disease.
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that NETs may be a potentially effective therapeutic target to
hemorrhagic apoplexy.
TRAUMATIC BRAIN INJURY

TBI is a major public health issue, which may contribute to
elevated intracranial pressure (ICP) and lead to neurological
deterioration. A research identified NETs as the distinct
mediators of cerebral edema which caused elevated ICP and
neurological deterioration (61). The researchers revealed that the
formation of NETs was induced by the activation of TLR4 via a
PAD4-dependent mechanism and then resulted in neurological
deficits (61). In 2021, researchers have demonstrated the
presence of NETs in paraventricular nucleus (PVN) after TBI
and NETs activated microglia dependent on the LL37-Hippo/
MST1 pathway to facilitate the IL-1b release, which may lead to
the occurrence of sympathetic excitation as a result (62). Oggioni
et al. reported the presence of PTX3 in the mouse brain
parenchyma, next to astrocytes, neurons, microglia, and
endothelial cells, in the subacute phase of TBI for the first time
(63). In view of the complex functions of PTX3 in different cells
(64–67), this research considered that PTX3 may alleviate
subacute pathological sequelae after TBI (63). Meanwhile,
PTX3 is complexed with the NET components, which suggest
that NETs may participate in the subacute phase of TBI
through PTX3.
NEURODEGENERATIVE DISEASES

Alzheimer’s disease (AD) is one of the neurodegenerative
disorders characterized by the progressive deterioration of
cognitive functions. Its neuropathological features include
amyloid-b (Ab) accumulation, the formation of neurofibrillary
tangles, and the loss of neurons and synapses (68).
Neuroinflammation is a well-established feature of AD
pathogenesis, and recent studies have identified several
inflammation pathway genes associated with the risk of AD
(69, 70). AD is also characterized by the loss of BBB integrity,
which disrupts the clearance of Ab and thus promotes Ab
accumulation in the brain, leading to neuronal injury and
cognitive decline (71). Recent research have indicated that both
the intravascular NETs and intraparenchymal NETs have an
impact on AD (72). Zenaro et al. reported the existence of
neutrophil–microglia crosstalk and intravascular and
intraparenchymal NETs in AD in 2015 (73). This existence
suggested that NETs can possibly damage the BBB and
neurons in AD (73, 74). Additionally, the research supported
the neutrophil-dependent brain damage in AD, showing that the
migration of neutrophils produced IL-17 which has toxic effects
on neurons directly and may recruit more neutrophils (73). In an
AD mouse model, it has been found that the block of LFA-1
integrin can reduce the neutrophil adhesion in the brain
microvasculature, alleviating the cognitive deficits (73).
Interestingly, previous studies reported that the brain
Frontiers in Immunology | www.frontiersin.org 4
vasculature in AD humans produced more cytokines such as
TNF-a, IL-1b, IL-8, and thrombin which triggered the
intravascular NETs compared with the age-matched controls
(75–80). A recent research has reported the presence of three
times excessive level of NET formation in the peripheral blood of
mild cognitive impairment (MCI) patients who are the precursor
of AD and a positive correlation between the excessive level of
NET formation and the content of Ab (81). In vitro studies based
on brain endothelial cells revealed increasing expression of
cytokine genes which induce NETosis in response to the
exposure to Ab peptides (82). Moreover, Ab peptides can
further promote intravascular NETosis by inducing the
generation of ROS and secreting more proinflammatory
cytokines (72). Neutrophils invaded the brain parenchyma at
the early stage of AD in mice model and produced NETs,
leading to memory deficit (73). Similarly, the release of
intraparenchymal NETs can also be influenced by related
cytokines as intravascular NETs in the case of Ab peptide
exposure (73, 83). Meanwhile, a study pointed out that the
intraparenchymal release of NETs can also respond to other
fibrillary form of amyloids (84). The zurophilic granules of
neutrophils release MMPs and serine proteases which can
cause tissue injury and exacerbate the inflammatory response
during the generation of NETs. MMPs activated at the
stimulation of neutrophils are involved in the proteolysis of the
extracellular matrix in order to cause damage to the brain
parenchyma (85). The serine proteases such as NE can also
degrade tissues not only by cleaving extracellular matrix proteins
but also by inactivating the endogenous tissue inhibitors of
MMPs (TIMPs) which can also be inhibited by MPO localized
within NETs (86, 87). The existing research suggests that NETs
seem to be a new therapeutic target to ease the AD progression,
and more research is still needed to investigate the mechanism of
NETs in AD (88).

In addition to AD, Parkinson’s disease is also a kind of
neurodegenerative disorder resulted from the accumulation of
amyloid fibrils formed by specific misfolded proteins (89). And
in amyloid diseases, researchers observed that amyloid fibrils
induced NETs release dependent on the NADPH oxidase system
to a large extent (84). Although there are few studies focusing on
the other neurodegenerative disorders, the study based on related
pathomechanism has been proceeded, suggesting the potential
therapeutic value of NETs in neurodegenerative disorders.
AUTOIMMUNE DISEASES

NETs were considered to contribute to the autoimmune diseases as
early as the phenomenon of NET release was first reported (1).
Current researches have shown that NETs are closely related to a of
lot of autoimmune diseases including those that may be affecting the
central and peripheral nervous systems (90–92). Multiple sclerosis
(MS) is a chronic inflammatory, demyelinating disease, and the
mechanism of MS includes both a complex genetic trait and
environmental factors (93). As mentioned in a recent review,
NETs may have a cytotoxic effect on the BBB and facilitate the
November 2021 | Volume 12 | Article 783882
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damage of adjacent neurons and other cells of the CNS in MS (94).
Meanwhile, the NET-associated decrease of proteins can ease the
MS progression and increase the BBB integrity (94, 95).
Interestingly, the NETs in the serum of MS patients are elevated
compared with the controls, and there is a partial sex difference in
the extent of elevation of NETs (92, 95, 96). In mice model, Allen
revealed that murine neutrophil metastases through activated
cerebrovascular endothelial cells could induce a proinflammatory
and neurotoxic phenotype and lead to the release of NET as a result
(74). Although researchers have indicated the NET-related
potentiation of proteases to modify the immune complexes, the
real mechanism in human MS is still unclear (97).

In addition to MS, NETs are also involved in other
neuropsychiatric symptom. According to a recent review, it
concludes a hypothesis for the cognitive dysfunction in systemic
lupus erythematosus (SLE): MMP-9 released by prestimulated
LDGs can degrade the basal lamina and damage the integrity of
BBB. And then the anti-NR2A/B antibodies further activate the
BBB, increasing the expression of endothelial cell adhesion
molecules. Afterwards, the neutrophils recruit, roll, adhere and
transmigrate, leading to further NETosis. Finally, the NETs
release leads to neurotoxity through inducing neuron death,
causing the neuropsychiatric manifestations of SLE as a result
(98). In microscopic polyangiitis (MPA), it is considered that
NETs may be involved in the pathogenesis of neuropathy and
suggests the therapeutic strategies targeting NETs based on the
nerve biopsy samples from MPA patients (99).
MALIGNANT BRAIN TUMORS

Malignant brain tumors can be both primary tumors originated in
the brain such as gliomas and exogenous tumors that metastasize
into the brain such as nonsmall-cell lung carcinoma (NSCLC) (100).
The prognosis for both primary and metastatic brain malignancies
is poor, mainly due to the limitations of standard treatments, thus
researchers turn to the tumor microenvironment (101). Based on
the previous studies, NETs seemed to facilitate the cytotoxic effect
and inhibit the spread of cancer cells as a result of inducing
epithelial and endothelia cell death (26, 102). On the contrary,
neutrophils have been proved to facilitate the metastasis of tumor in
experiments and animal studies in different cancers (103–107). In
2013, Cools-Lartigue et al. pointed out that the NETs can promote
tumor metastasis through isolating circulating tumor cells (108).
Moreover, the recent research reported that NETs formed during
LPS- or tobacco smoke-induced lung inflammation can awaken
dormant cancer cells and cause metastasis in mice dependent on
FAK/ERK/MLCK/YAP pathway (109–111). In glioma cells, it has
been considered that NETs could induce the expression of IL-8
which is correlated with tumor burden and prognosis through a
HMGB1- and RAGE/ERK/NF-kB axis-dependent manner (112).
Furthermore, the IL-8 produced by glioma can cause in turn the
formation of NETs (112). T-cell immunoglobulin and mucin
domain-3 (TIM-3) also has been proven to interact with HMBG1
in TADCs and then preventing the nucleic acids from localizing
into the endosomal vesicles, thus playing a role in blowing the
Frontiers in Immunology | www.frontiersin.org 5
antitumor effect of tumor-associated dendritic cells (TADCs) (113–
115). Additionally, the administration of anti-Tim-3 mAb during
chemotherapy has been demonstrated to lead to tumor regression
(113). Interestingly, a current research has reported that TIM-3 can
suppress the uptake of extracellular DNA in intratumoral dendritic
cells in order to limit the activation of cGAS-STING pathway, which
may influence the production of NETs (116). While these
discoveries unstated the type of tumor and the specific role of
NETs in the referred mechanism, they still suggest the future
research interests of NETs in malignant brain tumors relating to
HMBG1-TIM-3. Toll-like receptor 2 (TLR2), one of the HMBG1
receptors, has been considered to involve in the production of
NETs, and HMGB1-mediated TLR2 signaling plays a critical role in
eliciting glioblastoma regression, suggesting the prospect of NETs in
malignant brain tumors (117–119). Although the current research
has demonstrated the role of neutrophils in glioma (107), further
studies are still needed to clarify the protumor and antitumor
functions of NETs in glioma.
METs

Macrophages comprise a diverse group of cells and demonstrate
remarkably various functions. Macrophage functions ranged from
supporting development, maintaining homeostasis, keeping
immune surveillance, and regulating tissue remodeling and repair
(120). The formation of METs was initially found at the stimulation
of Mycobacterium tuberculosis in 2013 (121). Although the
following research focused on the formation of METs in vitro and
in vivo, the mechanism of the formation of METs is still unknown.
It has been reported that microorganisms such as Toxoplasma
gondii, Candida albicans, Staphylococcus aureus, Haemophilus
influenza, Klebsiella pneumoniae, and Escherichia coli can
stimulate the formation of METs (122), but METs play opposite
roles in different infections caused by diverse microorganisms (123–
125). Pertiwi et al. reported that METs were significantly more
numerous in the late stages of thrombus formation and were mostly
located around and inside the lipid core, suggesting that METs
involved in the thrombus formation. Although the specific role of
METs in thrombus formation is unclear, this finding supports the
involution of METs in noninfectious diseases (126). While the
studies on the role of METs in CNS are few, the research focusing
on the crosstalk between monocyte-macrophage system and CNS is
not in the minority, including its effect on glial cells. Therefore, the
research based on the role of METs in CNS will be more in the
foreseeable future, which is supposed to become a new target.
MiETs

Microglia are a resident mononuclear phagocyte population in the
CNS and are gatekeepers of CNS immunology, involved in the CNS
maintenance (127, 128). A previous study has reported that
microglia can release extracellular traps (MiETs) in response to
the Listeria infection in vivo and in vitro (129). Then, a following
research found that MiETs could be induced by dopamine in vitro
November 2021 | Volume 12 | Article 783882
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and interestingly the formation of MiETs did not lead to immediate
cell death (130). Although the mechanism of the formation of
MiETs is unclear, the existing results suggest that the role of MiETs
in CNS steady state including infection, neuroinflammation, and
glioma are intriguing areas for future investigations. As one of the
most important immune cells in CNS, the research of microglia has
been continued endlessly. The interaction between microglia and
astrocytes has been well verified in CNS diseases such as vascular,
tumor, and trauma. As a result, as one of the rich mineral cells,
it is of great value to continue to be explored to reveal its
potential pathogenesis.
CONCLUSION

The increasing evidence shows that the presence of ETs in CNS
plays different roles. In this review, we described the roles of ETs
in different diseases, especially focusing on the integrity of BBB
and neuroinflammation. According to a lot of existing research
focusing on NETs, we have demonstrated that the excessive
release of NETs involves in the breakdown of BBB integrity and
facilitating the neuroinflammation through releasing
metalloproteinases, proteases, cytokines, extracellular histones,
Frontiers in Immunology | www.frontiersin.org 6
DNA, and ROS. Furthermore, more research is demanded to be
implemented to focus on the other roles of ETs in the
neuroinflammation and BBB integrity. While the relating
mechanism is still unclear, the current results suggest that ETs
may become the potential therapeutic targets for CNS diseases to
improve prognosis.
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