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Acute kidney injury (AKI) is a common complication of allogeneic hematopoietic cell
transplantation (allo-HCT) and is associated with non-relapse mortality (NRM) and quality
of life (QOL). Multiple factors may contribute to AKI during allo-HCT and are often present
at the same time making it difficult to determine the cause of AKI in each patient.
Nephrotoxic drugs, infections, thrombotic microangiopathy (TMA), and sinusoidal
obstruction syndrome (SOS) are well described causes of AKI during allo-HCT. Acute
graft-versus-host disease (aGVHD) is a major complication of allo-HCT that mainly targets
the intestines, liver, and skin. However, recent studies suggest aGVHD may also attack
the kidney and contribute to AKI following allo-HCT. For example, severe aGVHD is
associated with AKI, suggesting a link between the two. In addition, animal models have
shown donor immune cell infiltration and increased expression of inflammatory cytokines
in recipient kidneys after allo-HCT. Therefore, aGVHD may also target the kidney and
contribute to AKI following allo-HCT. Herein, we describe the etiology, diagnosis, risk
factors, pathophysiology, prevention, and treatment of renal injury after allo-HCT. In
addition, we highlight emerging evidence that aGVHD may contribute to the development
of AKI after allo-HCT.

Keywords: acute kidney injury, allogeneic hematologic stem cell transplantation, GvHD, experimental BMT,
cytokine, calcinurin inhibitors, thrombotic microagiopathy
INTRODUCTION

Hematopoietic cell transplantation (HCT) is a curative therapy for hematologic malignancies and many
non-malignant diseases (1). HCT is classified as either autologous (auto-HCT), when recipient
hematopoietic stem cells are stored and then infused, or allogeneic (allo-HCT), when the infused
hematopoietic stem cells are derived from a related or unrelated donor. Prior to transplantation,
conditioning with chemotherapy and/or total body irradiation (TBI) is necessary to eradicate malignant
residual tumors and inhibit rejection of donor hematopoietic cells. Myeloablative conditioning with
high-dose cyclophosphamide (CY) and TBI or a combination of busulfan (BU) and CY are two
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common regimens. Non-myeloablative conditioning or reduced-
intensity conditioning with less intense pretreatment is commonly
utilized for elderly patients or those with comorbidities (2).

Topreventgraft-versus-hostdisease(GVHD), immunosuppressive
prophylaxis is necessary after transplantation (3). GVHD is caused by
alloreactive donorT cells, attacking recipient tissues and is amajor life-
threatening complication of allo-HCT (4). Previously GVHD was
classified into acute GVHD (aGVHD) if it developed within 100 days
after transplantation or chronic GVHD (cGVHD) if it developed after
100 days. However, GVHD classification is now based on clinical and
pathological characteristics (5).

The characteristic symptoms of aGVHD are rash, diarrhea, and
jaundice (4). The pathophysiology causing these symptoms begins
with tissue damage from conditioning regimens that results in the
release of damage-associated molecular patterns (DAMPs). Injury
to the intestinal mucosa and skin also causes a breakdown in barrier
function. Barrier breakdown allows microbes to invade the body
and release pathogen-associated molecular patterns (PAMPs).
PAMPs and DAMPs are danger signals that activate the innate
immune system to produce proinflammatory cytokines, such as
tumor necrosis factor (TNF)-a and interleukin (IL)-1b, which
amplify tissue damage and activate antigen-presenting cells
(APCs). Activated host APCs then stimulate donor T cells, which
in turn produce proinflammatory cytokines, such as interferon
(IFN)-g, that further activate the innate immune system. Finally,
tissue damage caused by cytotoxic T lymphocytes and cytotoxic
cytokines derived from activated T cells and innate immune cells,
results in the development of clinically apparent aGVHD (3, 6).

The most common immunosuppressive regimen used to
prevent GVHD after allo-HCT consists of a calcineurin
inhibitor (tacrolimus or cyclosporine) in combination with a
short-term course of methotrexate (MTX) (4). Systemic high-
dose corticosteroids are the first-line treatment for patients who
develop aGVHD (7).

The main organs affected by aGVHD are the skin, liver, and
gastrointestinal (GI) tract, but a variety of other organs may also be
affected (8). Classically, the kidney is not recognized as a main target
organ of aGVHD and no renal aGVHD diagnostic criteria have
been established (8). However, various factors related to
conditioning and GVHD prophylaxis are known to cause renal
injury after allo-HCT. In patients with aGVHD and renal
dysfunction, it is often difficult to identify the cause of renal
dysfunction due to the frequent co-occurrence of multiple
possible etiologies. Renal biopsy is the gold-standard examination
for deconvoluting multiple possible etiologies of renal injury;
however, invasive renal biopsies are rarely safe during the acute
phase of GVHD. Recently, animal studies suggest that the kidney
may be a target of aGVHD. Here, we describe the pathophysiology
and management of acute kidney injury (AKI) after allo-HCT and
highlight the emerging association between AKI and aGVHD.
CRITERIA FOR ACUTE KIDNEY INJURY

Although AKI is a common disease, there have been no
internationally standardized criteria (9). In 2004, the Acute Dialysis
Frontiers in Immunology | www.frontiersin.org 2
Quality Initiative (ADQI) published the Risk, Injury, Failure, Loss,
and End-stage renal disease (RIFLE) criteria (10). TheADQI defined
acute renal failure (ARF) as elevated serum creatinine (sCr),
decreased glomerular filtration rate (GFR), and decreased urine
output. The AQDI also classified the severity of ARF based on the
degree to which these parameters were altered (10). Later, the Acute
Kidney Injury Network (AKIN) proposed the concept of acute
kidney injury (AKI) in order to include early renal injury. The
AKIN criteria, published in 2007, modified the RIEFLE criteria by
including mild elevations of sCr (11). In 2012, the Kidney Disease
Improving Global Outcomes (KDIGO) criteria were proposed,
which integrated the RIEFLE and AKIN criteria. The KDIGO
criteria for AKI include anyone of the following: 1) an increase in
sCr by≧0.3mg/dlwithin 48hours, 2) an increase in sCr to≧1.5 times
baseline within the preceding 7 days, and 3) a urine volume <0.5 ml/
kg/h for 6 hours. The severity of AKI is classified by the KDIGO as
Stage 1 to 3 based on sCr or urine output (12). The details of each
criterionare shown inTable1. Importantly, the latestKDIGOcriteria
are as ormore predictive of life expectancy than either the RIEFLE or
AKIN criteria (13–15). The KDIGO criteria are frequently used in
recent studies to measure the incidence of AKI after HCT (16–19).
KIDNEY DISEASE AFTER HCT

According to a recently published meta-analysis of reports from
1995-2019, the incidence of AKI after HCT was 55.1%, with
Stage 3, the most severe form, occurring in 8.3% of patients (20).

Factors known to contribute to the risk of AKI after HCT
include pre-treatment factors such as being female (21), age 55 years
or older (22), and underlying conditions such as diabetes (23),
hypertension (21), and chronic kidney disease (CKD) (24). Risk
factors for AKI associated with HCT include TBI conditioning (22),
use of a calcineurin inhibitors (CNIs) for GVHD prevention (23, 25,
26), and use of MTX for GVHD prophylaxis (22, 23). Post-
transplant stay in an intensive care unit (21) and the need for
mechanical ventilation (27) are also risk factors. Several post-HCT
complications also increase the risk for AKI including hepatic
sinusoidal obstruction syndrome (SOS) (28), sepsis (28, 29), and
cytomegalovirus infection (22). AKI risk can be further increased by
agents used to treat post-HCT complications including
amphotericin B (30), acyclovir (31), aminoglycosides (32), and the
concomitant use of multiple nephrotoxic drugs (33).

AKI is more common in the early phase of HCT due to the
risk of conditioning toxicity, sepsis, SOS, and drug-induced renal
injury that are more common early post-HCT (23, 34). For these
reasons, clinical studies typically assess post-HCT AKI at 100
days post-transplantation (35).

The incidence of AKI varies according to the type of HCT. In
auto -HCT recipients, graft failure is less common, and CNIs are
not required because there is no risk for GVHD. Less antibiotics
are administrated to auto-HCT recipients than to allo-HCT
recipients because duration of neutrophilia is shorter.
Therefore, the incidence of AKI is less in auto-HCT versus
allo-HCT recipients (36–39). AKI incidence is lower following
nonmyeloablative compared to myeloablative conditioning due
January 2022 | Volume 12 | Article 779881
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to decreased rates of infection, SOS, and organ failure (35, 40).
Overall, the greatest risk of AKI is with myeloablative allo-HCT
(21-73%), followed by nonmyeloablative allo-HCT (29-56%),
and then autologous transplantation (10.4-19%) (36, 41, 42).
Reports vary on whether the incidence of AKI is higher with cord
blood or HLA mismatched donor transplantation (28, 43–47).

Whether the indication for HCT is for a malignant or
nonmalignant disorders does not significantly affect the incidence
of AKI (33, 48, 49). However, malignancies are a risk factor for post-
transplant CKD (50), and these patients should be monitored
carefully for changes in renal function. Multiple myeloma (MM)
and immunoglobulin light-chain (AL) amyloidosis, which
themselves cause AKI (see the section of “Etiologies of AKI after
HCT”), have been reported to cause relatively little post-transplant
AKI. However, patients with these disorders are typically treated
with auto-HCT, which is less nephrotoxic than allo-HCT (19, 24).

AKI after allo-HCT is associated with all-cause (19, 20, 22, 28,
33, 39, 51) and non-relapse mortality (17, 23, 33), and the earlier the
onset of AKI, the higher the mortality (52). The severity of AKI
decreases overall survival, and mortality worsens to 55-100% with
renal failure requiring dialysis (17, 22, 36, 37, 53, 54). AKI after allo-
HCT is also a risk factor for CKD (33, 50). Representative studies
that focus on the association of AKI with transplant outcomes are
shown in Table 2. In pediatric HCT recipient, the incidence of AKI
is similar to adults (44, 48, 49, 56–58), AKI worsens mortality after
HCT (49, 57), and the 1-year survival rate is less than 10% in
patients with renal failure requiring renal replacement therapy (56).
Fortunately, HCT-related AKI has decreased in recent years due to
the increased use of less toxic conditioning regimens, decreased
rates of SOS, modified infection prophylaxis, less amphotericin B
use, and declining rates of severe aGVHD (59, 60).
ETIOLOGIES OF AKI AFTER HCT

There are various causes of AKI after HCT. An overview is
shown in Figure 1.
Frontiers in Immunology | www.frontiersin.org 3
Nephrotoxic Drugs
Most of the renal injury after HCT is thought to be caused by
nephrotoxic drugs, particularly CNIs given for GVHD
prophylaxis (34). CNIs can cause both AKI and CKD (61);
however, CNIs serum concentration does not always correlate
with the severity of AKI (26). CNIs cause AKI through a variety
of mechanisms. One way is by inhibiting the production of
vasodilators and increasing the production of vasoconstrictors,
resulting in the contraction of afferent and efferent arterioles.
They also cause vacuolation and dysfunction of renal tubules
(61), and they increase the levels of oxidative stress that damages
the renal endothelium and contributes to the development of
thrombotic microangiopathy (TMA) (62). Consistent with the
vasoconstrictive effect of CNIs on afferent and efferent arterioles,
inhibition of the renin-angiotensin-aldosterone system may be
useful for preventing CNI nephrotoxicity (60).

MTX can also be nephrotoxic. The mechanism is thought to
relate to direct tubular injury and/or its precipitation in the renal
tubules. The risk for MTX-induced nephrotoxicity is increased
by high dose intravenous administration, dehydration, and
aciduria (63).

Chemotherapeutic agents used in conditioning (cytarabine
and fludarabine) can be nephrotoxic and primarily cause acute
tubular injury. Vomiting and diarrhea, which are common
adverse events of chemotherapy, cause pre-renal AKI due to
dehydration (35). CY and BU cause post-renal AKI due to
hemorrhagic cystitis (35, 64).

Many antimicrobial agents may induce direct renal injury or
acute interstitial nephritis due to allergic reactions leading to AKI
(60). For example, aminoglycosides can cause Fanconi syndrome
and Bartter-like syndrome (32). The antifungal agent,
amphotericin B causes AKI in a dose-dependent manner via
renal vasoconstriction and direct tubular injury (65).
Fortunately, liposomal amphotericin B, which is now more
commonly used, is far less nephrotoxic (66). Finally, acyclovir,
an antiviral agent, has been associated with crystal-induced
tubular injury and obstruction (60, 67).
TABLE 1 | Classification of AKI severity.

Serum creatinine Urine output

RIFLE
Risk Increase sCr ×1.5 or GFR decrease > 25% <0.5 ml/kg/h for 6 hours
Injury Increase sCr ×2 or GFR decrease > 50% <0.5 ml/kg/h for 12 hours
Failure Increase sCr ×3 or GFR decrease 75% or sCr > 4mg/dl <0.3 ml/kg/h for 24 hours or Anuria for 12 hours
Loss Complete loss of kidney functions > 4 weeks
ESKD End Stage Kidney Disease >3 months
AKIN
Stage 1 Increase ≧0.3 mg/dl or 1.5-2 fold from baseline <0.5 ml/kg/h for 6 hours
Stage 2 2-3 fold from baseline <0.5 ml/kg/h for 12 hours
Stage 3 >3 fold from baseline or sCr ≧ 4.0 mg/dl with an acute increase of at least 0.5 mg/dl <0.3 ml/kg/h for 24 hours or Anuria for 12 hours
KDIGO
Stage 1 1.5–1.9 times or ≧0.3 mg/dl increase <0.5 ml/kg/h for 6 hours
Stage 2 2.0–2.9 times <0.5 ml/kg/h for 12 hours
Stage 3 3.0 times or Increase to ≧4.0 mg/dl or initiation of renal replacement therapy or, in patients <18 years,

decrease in eGFR to <35ml/min/1.73 m2
<0.3 ml/kg/h for 24 hours or Anuria for 12 hours
RIFLE, Risk, Injury, Failure, Loss, and End-stage renal disease; AKIN, Acute Kidney Injury Network; KDIGO, Kidney Disease Improving Global Outcomes; sCr, serum creatinine; GFR,
glomerular filtration rate.
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TABLE 2 | Recent studies on the association of AKI with transplant outcomes.

Study Year Type of trans-
plantation

AKI definition Incidence
of AKI

Follow up Overall mortality
(non-AKI vs AKI)

Non-relapse mortality
(non-AKI vs AKI)

Mori et al. (54) 2012 allo-HCT AKIN 62.2% 5 years 25% vs 45%, HR for death; >Stage 3 vs no
AKI or stage 1-2; 5.49 (p <0.001)

NA

Sehgal et al.
(37)

2017 allo-HCT, auto-HCT
(16.9%)

RIFLE 75.4% 3 months non-AKI 17.6%, risk 40%, injury 36.4%, failure
80% (p=0.027)

NA

Piñana et al.
(17)

2017 allo-HCT(RIC) KDIGO 44% 25 months non-AKI 22%, grade 1 32%, grade 2 50%,
grade 3 70% (p<0.0001)

16% vs 33% (p=0.005)

Liu et al. (55) 2018 haplo-HCT sCr>1.5-fold rise 43% 2 years non-AKI 21.1% vs grade 3(sCr>3-fold) 55.4%
(p<0.001)

PFS; non-AKI 72.2% vs
severe AKI 45.7 (p<0.001)

Khalil et al. (38) 2019 allo-PBSCT, aotu-
PBSCT(38.6%)

RIFLE 31.6% 3 months 17% vs 42%
survival time; non-AKI 130 vs injury or failure
38 months (p=0.001)

NA

Mima et al. (18) 2019 allo-HCT, auto-HCT
(14.8%)

KDIGO 15.7% 100 days 20.2% vs 29.4% (p=0.409) NA

Andronesi et al.
(19)

2019 auto-HCT KDIGO 10.3% 90 days 0.6% vs 5.3% (p=0.01) NA

Sakaguchi
et al. (33)

2020 allo-HCT KDIGO 64.9% 5 years 42.7% vs 76.2% (p<0.001) 13.3% vs 59.8% (p<0.001)

Gutiérrez-
Garcıá et al.
(22)

2020 allo-HCT KDIGO 58% 5 years AKI 0-1-2, 55% vs AKI-3, 70% (p=0.008) TRM; AKI 0-1-2, 31% vs
AKI-3, 51% (p<0.0001)

Bhasin et al.
(39)

2021 auto-HCT(56.1%),
allo-HCT

increase in sCr
> 0.3 mg/dL

23% 100 days 1.4% vs 15.6% (p<0.001) NA
Frontiers in Immu
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AKI, acute kidney injury; HCT, hematopoietic cell transplantation; allo, allogeneic; auto, autologous; RIC, reduced-intensity conditioning; PBSCT, peripheral blood stem cell transplantation;
AKIN, Acute Kidney Injury Network; RIFLE, Risk, Injury, Failure, Loss, and End-stage renal disease; KDIGO, Kidney Disease Improving Global Outcomes; sCr, serum creatinine; HR, hazard
ratio; PFS, progression free survival; TRM, transplant-related mortality. NA, not applicable.
FIGURE 1 | Overview of the pathophysiology of AKI after HCT. AKI, acute kidney injury; HCT, hematopoietic cell transplantation; IL, interleukin; IFN, interferon; TNF, tumor
necrosis factor; Treg, regulatory T cell; SOS, sinusoidal obstruction syndrome; CNI, calcineurin inhibitor; TA-TMA, transplantation associated-thrombotic microangiopathy.
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Hematological Disease-Associated AKI
Hematologic diseases themselves can cause renal injury. For
example, AKI occurs in 20-50% of patients with multiple
myeloma (68). The most common cause of AKI in patients
with multiple myeloma is cast nephropathy, in which large
amounts of light chains bind to Tamm-Horsfall protein in the
tubules and form insoluble casts, resulting in tubular obstruction
and injury. Other causes include light chain deposition disease,
AL amyloidosis, and hypercalcemia (69). Direct invasion of the
kidney by lymphoma and leukemia can also cause AKI (70).

Complications of HCT
Recipients are immunocompromised and prone to sepsis after
HCT (60). Gram-negative bacteria is more common in cord
blood transplantation than in bone marrow transplantation (71),
likely due to a longer period of neutropenia. Sepsis causes
systemic vasodilatation, hypotension, and cytokine-induced
endothelial damage, leading to AKI (72). As mentioned above,
some of the antimicrobial agents used in the treatment of sepsis
are nephrotoxic.

Adenovirus and BK virus infections are also common
opportunistic infections following allo-HCT and often lead to
AKI (35, 60). Adenoviruses may cause hemorrhagic cystitis and,
rarely, necrotizing tubulointerstitial nephritis (73). Adenovirus
infections are more common in transplants from unrelated
donors and in pediatric patients. Severe adenovirus infection
can cause hepatitis, pneumonitis, and encephalitis, and multi-
organ failure (74). Reactivation of BK virus may lead to
hemorrhagic cystitis, ureteral stricture, and tubulointerstitial
nephritis (75). Acute GVHD, allo-HCT, and BK viremia are
still associated with increased risk for hemorrhagic cystitis
(76, 77).

Nephrotic syndrome, while rare (0.4-6.0%), may also develop
following allo-HCT (34). Membranous glomerulonephritis
(MGN) and minimal change disease (MCD) account for about
two-thirds and one-quarter of nephrotic syndrome cases
following allo-HCT, respectively (78). Intriguingly, the onset of
nephrotic syndrome following allo-HCT has been associated
with recent reduction in the dose of immunosuppressive drugs
(78) and the onset of GVHD (79). Most cases occur more than 6
months after transplantation and are considered a rare
manifestation of cGVHD (34, 60). However, de novo nephrotic
syndrome without GVHD also occurs (80).

Marrow infusion syndrome is caused by hemolysis of
erythrocytes that release hemoproteins into the recipient.
These hemoproteins cause symptoms of hemolysis, such as
fever and vomiting. They can also cause acute tubular injury
by forming casts in the tubules. Hemolysis resulting in marrow
infusion syndrome often occurs during the preservation of stem
cells or upon infusion of grafts containing the cryoprotectant
dimethyl sulfoxide (DMSO), which can cause hemolysis in
recipients of DMSO-containing grafts. Marrow infusion
syndrome is mitigated and treated by intravenous hydration
and by rinsing or red blood cell-depleting the graft (81).

Tumor lysis syndrome (TLS) occurs when a large number of
tumor cells lyse and release toxic cellular contents. It is characterized
by hyperkalemia, hypocalcemia, hyperphosphatemia,
Frontiers in Immunology | www.frontiersin.org 5
hyperuricemia, and crystal-induced kidney injury (82). While
more common during induction chemotherapy for leukemia, TLS
is relatively rare following HCT because most patients come to
transplant following multiple treatment courses that dramatically
reduce tumor burden (82).

Hepatic sinusoidal obstruction syndrome (SOS) is
characterized by painful hepatomegaly, jaundice, and weight
gain due to fluid retention (83). AKI often co-occurs with SOS
(84, 85), which is more frequently seen after allo- than auto-HCT
(81), and severe SOS may lead to multiple organ failure (86). SOS
develops following sinusoidal endothelial damage from
conditioning therapy, resulting in hepatic portal hypertension,
ascites, and increased abdominal pressure. While the exact cause
of renal injury in SOS is uncertain and likely multifactorial,
decreased renal blood flow due to elevated abdominal pressure
likely contributes to tubular injury, which further exacerbates
fluid retention and multiorgan failure (86, 87).

Thrombotic Microangiopathy
Transplantation-associated-thrombotic microangiopathy (TA-
TMA) is another complication of HCT associated with a
substantial risk of mortality (88). It typically develops subacute
or chronically (89), and can also lead to AKI (60). Vascular
endothelial damage associated with transplantation results in
thrombus formation and fibrin deposition in the capillaries and
small arteries, microangiopathic hemolytic anemia, and
consumptive thrombocytopenia (88). TBI, high-dose BU, CNIs,
aGVHD Grade II-IV, infections (BK virus, cytomegalovirus,
parvovirus B19, aspergillus species, adenovirus), peripheral
blood stem cell transplantation, and use of unrelated donors are
all risk factors for TA-TMA (62).

Diagnostic criteria for TA-TMA have been developed by the
Blood and Marrow Transplant Clinical Trial Network (BMT-
CTN) (90) and the European Group for Blood and Marrow
Transplantation (EBMT) (91). Both sets of criteria require the
presence of schistocytes and elevated lactate dehydrogenase
(LDH). The BMT-CTN criteria also requires worsening renal
function (90).

The Kidney is the most vulnerable organ to TA-TMA (62,
89). Renal TA-TMA presents as both AKI and CKD (62, 89) and
is often accompanied by hypertension, proteinuria, and a
decreased GFR (89). The histopathology of renal TA-TMA is
characterized by fibrin deposition in the glomeruli, narrowing of
the capillary lumen, presence of fragmented red blood cells,
basement membrane duplication, mesangiolysis, and edema of
the endothelium (89, 92).

Although endothelial damage plays a major role in the
pathogenesis of TA-TMA (62), it is unclear whether it is a
direct complication of transplantation or a manifestation of
GVHD, infection, or drug toxicity (60). Factors known to
cause endothelial damage include CNIs, mammalian target of
rapamycin (mTOR) inhibitors, chemotherapy, and TBI (35).
Recent studies have also suggested the involvement of
complement activation (62, 88).

Several clinical studies have shown an association between TA-
TMA and aGVHD (93, 94), but these were retrospective studies
confounded by the use of CNIs (88). Nevertheless, clinical studies
January 2022 | Volume 12 | Article 779881
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have suggested that vascular endothelial cells are targeted by donor
T cells (95), and some studies suggest that TA-TMAmay be caused
by GVHD of the vascular endothelium (89, 96, 97).

Kidney Disease Associated With GVHD
Renal injury after allo-HCT is generally attributed to the etiologies
describes above. However, aGVHD is a risk factor for AKI (23, 28,
53, 54, 98), and recent studies have suggested that the kidneymay be
a direct target of aGVHD (34). Traditionally, the kidney was not
considered a target of aGVHD (35). However, diarrhea associated
with severe GVHD can indirectly cause dehydration leading to AKI,
and CNIs used for GVHD prophylaxis can also cause AKI. Hence,
the association between kidney injury and aGVHD is controversial.
In the following section, we review studies investigating the
relationship between aGVHD and AKI.

Clinical Studies
Hingorani et al. (99) measured cytokines in the urine of patients
who underwent allogeneic or autologous transplantation.
Increased urine IL-6 and IL-15 levels after HCT were
associated with an increased risk of developing proteinuria,
and an increased urine MCP-1 level after HCT was associated
with chronic kidney disease at 1 year. Thus, these data suggested
kidney inflammation occurs after HCT.

Inflammatory cytokines are involved in the pathogenesis of
GVHD, but they are not unique to GVHD and are elevated by
other HCT-related complications and inflammatory disorders
(100). In studies exploring GVHD-specific biomarkers, elafin
was identified as a biomarker for cutaneous GVHD (101). Elafin
is an elastase-specific protease inhibitor expressed mainly in
epithelial tissues, is secreted in response to IL-1 and TNF-a,
and has functions such as antibacterial activity, inflammatory cell
recruitment, and dendritic cell activation (102, 103). In a study
that measured urine elafin levels in patients after HCT (98), it
was found that patients with AKI had higher urine elafin levels
than those without AKI, and patients with albuminuria also had
higher urine elafin levels than those without albuminuria. In
addition, elafin was associated with increased risk of CKD and
death. These data suggest that inflammation similar to cutaneous
aGVHD may occur in the kidney.

Histological diagnosis of renal dysfunction shortly after HCT
is rare, and pathological diagnostic criteria have not been
established (35). Nonetheless, several renal histopathology
studies using tissue obtained by biopsy or autopsy have been
reported. For example, Girsberger et al. (104) reported that renal
biopsy pathology was consistent with TA-TMA in 29%, CNI
toxicity in 24%, and membranous glomerulonephritis in 18% of
patients who presented with deterioration of kidney function or
proteinuria after HCT (12 allo-HCT, 5 auto-HCT). In 137
autopsies (114 allo-HCT, 23 autologous HCT), the most
common renal pathology was acute tubular damage (40%),
followed by chronic vascular and interstitial change (11%), and
TMA (10%). A small number of cases of membranous
glomerulonephritis (1%) and acute interstitial nephritis (1%)
were also observed. The median time from transplantation was
497 days for biopsies and 91 days for autopsies; therefore,
cGVHD may have a greater association with kidney injury
Frontiers in Immunology | www.frontiersin.org 6
than aGVHD. Mii et al. (97) studied renal biopsy (two cases)
and autopsy (5 cases) tissue from patients who developed renal
TA-TMA. The median interval between HCT and renal biopsy
or autopsy was 7 months. Five of the 7 patients underwent allo-
HCT, all 7 patients underwent conditioning that included TBI,
and all but one patient received a CNI for GVHD prophylaxis. In
addition to TA-TMA changes, all patients had glomerulitis,
tubulitis, and peritubular capillaritis with T cell infiltration.
Based on these results, the authors concluded that the kidney
is a potential target for GVHD.

Studies With Animal Models
Animal models have been important tools for studying the
pathophysiology of HCT complications, most notably GVHD,
and for developing new therapies to treat these complications
(105). In addition to the above-described clinical studies, kidney
injury associated with aGVHD has also been studied in animal
models. These models revealed important insights into the
relationship between kidney injury post allo-HCT and GVHD.

Two studies that measured renal function in mice after allo-
HCT reported that sCr did not increase (106, 107). Because
creatinine is a waste product of muscle metabolism (108), the
lack of sCr elevation may have been due to loss of muscle mass
after allo-HCT. By contrast, blood urea nitrogen (BUN), another
marker of renal function, was elevated in a rat model (107).

In addition tomarkers of renal function, elevatedmarkers of renal
injury have also been observed in mouse models. These markers
include urine protein, albumin (106), N-acetyl-beta-D-
glucosaminidase (NAG) (106, 107), and neutrophil gelatinase-
associated lipocalin (NGAL) (109), which mainly reflects tubular
injury(110,111).TheexpressionofaKlotho,whichisdown-regulated
in AKI and CKD (112), was also decreased in allo-HCTmice (109).

Higo et al. (107) evaluated renal lesions in a rat bone marrow
transplantation (BMT) model. The kidneys in the allo-HCT
group were infiltrated with donor leukocytes. Areas with mild
inflammation were characterized by CD4+ T cell, CD8+ T cell,
and CD68+ macrophage infiltration of the interstitium around
small arteries. Whereas in lesions with moderate to severe
inflammation, the cellular infiltrate extended into the
interstitium surrounding the tubules. Peritubular capillaritis,
tubulitis, acute glomerulitis, and endarteritis were also
observed in lesions with moderate to severe inflammation.
There was no renal deposition of immunoglobulin or
complement. In a study using a mouse BMT model (106),
similar results were reported. Specifically, allo-HCT recipient
mice developed aGVHD within 4 weeks; renal tissue was
infiltrated with CD4+ T cells, CD8+ T cells, FoxP3+ T cells,
and macrophages; and endarteritis, interstitial nephritis,
tubulitis, and glomerulitis were observed.

Ma et al. (113) observed the presence of renal TA-TMA in a
TBI-conditioned murine BMT model. In the kidneys of allo-
HCT recipients, in addition to tubulitis and interstitial nephritis,
mesengiolysis, mesangial proliferation, mesangial edema,
subendothelial thickening, endothelial thickening, lumen
narrowing, fibrinoid necrosis of afferent arterioles, and
microthrombi were observed. All of which are similar to
patients with renal TA-TMA. Immunostaining showed C3
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complement deposition in the glomeruli, and these glomerular
lesions were attenuated in C3-deficient mice, suggesting that
complement activation may also be involved in renal injury.

In the kidneys of mice following allo-HCT, increased
expression of messenger RNAs for TNF-a, IFN-g, IL-1a, IL-2,
IL-6, and IL-10, as well as the adhesion molecules intercellular
adhesion molecule 1 (ICAM-1) and vascular cell adhesion
molecule 1 (VCAM-1) have been reported (106). Sadeghi et al.
(114) performed BMT in mice using chemotherapy conditioning
and compared kidney transcript expression patterns to those in
the liver. Genes that were upregulated in the kidneys of
allogeneic recipients, compared to syngeneic recipients and
muscle without GVHD, included genes involved in antigen
presentation, immune response, and leukocyte migration.
These patterns were similar to those in the liver.

Collectively, these pre-clinical studies suggest that infiltration
of donor-derived immune cells, changes in cytokines and
chemokines, and activation of the complement system may be
responsible for renal injury after allo-HCT.
PREVENTION AND TREATMENT OF AKI
AFTER HCT

Principles of Prevention and
Treatment of AKI
AKI is triggered by a variety of factors related to HCT. Therefore,
reducing these HCT-related complications is key to preventing AKI.
One important strategy to reduce HCT-related complications is to
tailor the choice of conditioning regimen and donor source
according to each patient’s disease status and comorbidities. The
largest contributor to AKI after HCT is drug-induced kidney injury,
which can be mitigated by administrating appropriate doses of
nephrotoxic agents, and using less nephrotoxic agents when
possible. For example, limiting exposure to nephrotoxic
antimicrobials decreases the incidence and severity of AKI (115).

Treatment of AKI depends on whether it is pre-renal, renal, or
post-renal. Pre-renal AKI is caused by inadequate renal blood flow
and responds to hydration. Hydration is also used to prevent renal
injury from nephrotoxic agents such as IV contrast for imaging
studies. However, care must be taken to avoid fluid overload and
pulmonary edema in fluid-sensitive patients including those with
decreased cardiac function. Renal AKI is unresponsive to hydration,
and oliguria or anuria may persist for several weeks. Blood pressure
andfluid balance should be tightly controlled, andnephrotoxic drugs
should be discontinued. Depending on the cause of renal AKI,
pharmacotherapy with furosemide, atrial natriuretic peptide, and
low-dose dopamine may be used, but there is a lack of evidence for
their efficacy in preventing or treating renal AKI. In the case of post-
renalAKI, obstructionandhydronephrosis arediagnosedby imaging
studies, and the main treatment is relief of the obstruction (12, 116).

Renal replacement therapy (RRT) is required for severe renal
dysfunction. Patients with prolonged oliguria or anuria, for
which RRT is essential for life support, are absolute indications
for RRT. There is no consensus on whether earlier initiation of
RRT improves the prognosis of severe AKI (117–120).
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When the cause of AKI is determined, treatment should focus on
correcting it. For example, AKI related to hepatic SOS should be
treated with defibrotide, aggressive attempts to maintain fluid
balance, and possibly methylprednisolone (121, 122).
Prophylactic use of ursodeoxycholic acid (123), defibrotide
(124), and fresh frozen plasma (125) should be considered in
those at high risk of SOS.

There is no established treatment for TA-TMA, but potential
contributing factors should be eliminated when possible. For
example, if an infection is thought to contribute, then treatment
should be directed toward the pathogen, and every effort should
be made to avoid further kidney injury. If CNI therapy is thought
to contribute, then CNI withdrawal or dose reduction should be
considered (62). Plasma exchange may be performed for the
treatment of severe TA-TMA, but the response is usually poor
(126, 127). Other potentially efficacious treatments include
recombinant thrombomodulin (128), defibrotide (129),
rituximab (a monoclonal antibody against CD20) (130), and
eculizumab (a monoclonal antibody against complement C5)
(131). However, none of these have been investigated in large-
scale prospective studies.

Hemorrhagic cystitis (caused by adenovirus or BK virus
infection) may require surgical decompression with a
nephrostomy tube if urinary tract obstruction cannot be
relieved by bladder irrigation from a urinary catheter. The
antiviral drug cidofovir is effective for hemorrhagic cystitis
caused by adenovirus (132, 133) and may be effective for
hemorrhagic cystitis caused by BK virus (134). Ganciclovir
(135) and valganciclovir (136) have also been reported to be
effective against hemorrhagic cystitis caused by adenovirus.
CONCLUSION

AKI is a common complication of HCT and an important
determinant of HCT-related mortality. As described above,
AKI after HCT can be caused by a variety of HCT
complications and by many drugs commonly used before,
during, and after HCT. Furthermore, the agents used to
prevent and treat many HCT-related complications can
contribute to kidney injury. In individual patients, it is
common for several etiologies of AKI to be present at once. In
fact, it is likely that these multiple etiologies act in combination.
Due to the presence of multiple etiologies for AKI, it is often
difficult to quantify the contribution of any one factor in
individual patients. In addition, uncharacterized factors may
also contribute to renal injury after HCT. For instance, the
kidneys are not considered a primary aGVHD target organ,
but recent data suggests that renal aGVHD may cause AKI.

Additional research is needed to identify the factors that cause
AKI in HCT recipients. This research will hopefully improve the
clinical ability to pinpoint specific causes of AKI in individual
patients, and lead to therapies targeting each underlying
pathologic etiology. Such advances in the diagnosis,
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prevention, and treatment of AKI in HCT recipients will
improve the safety of HCT.
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