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Alternative splicing (AS) is a complex coordinated transcriptional regulatory mechanism. It
affects nearly 95% of all protein-coding genes and occurs in nearly all human organs.
Aberrant alternative splicing can lead to various neurological diseases and cancers and is
responsible for aging, infection, inflammation, immune and metabolic disorders, and so
on. Though aberrant alternative splicing events and their regulatory mechanisms are
widely recognized, the association between autoimmune disease and alternative splicing
has not been extensively examined. Autoimmune diseases are characterized by the loss of
tolerance of the immune system towards self-antigens and organ-specific or systemic
inflammation and subsequent tissue damage. In the present review, we summarized the
most recent reports on splicing events that occur in the immunopathogenesis of systemic
lupus erythematosus (SLE) and rheumatoid arthritis (RA) and attempted to clarify the role
that splicing events play in regulating autoimmune disease progression. We also identified
the changes that occur in splicing factor expression. The foregoing information might
improve our understanding of autoimmune diseases and help develop new diagnostic
and therapeutic tools for them.
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INTRODUCTION

Alternative splicing is a vital mechanism in gene modulation. It allows a single gene to produce
multiple distinct mRNA that greatly increase transcriptome and proteome diversity. According to
recent genome-wide association studies (GWAS), nearly 95% of all protein-coding genes in the
human genome undergo alternative splicing to varying degrees (1, 2). In this way, they increase by
more than 10-fold of the number of distinct protein isoforms that function in various cellular
activities, such as maturation, differentiation, migration, and death (3).

Alternative splicing is highly controlled. It comprises splice site selection, spliceosome assembly,
and the control of multiple splicing regulatory elements. Any disruptions or mutations in the splicing
mechanisms may affect mature mRNA and functional protein generation and induce various disease
states. Over the last decade, particular attention has been allocated to disease-related genomics,
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transcriptomics, and proteomics. Alternative splicing might be
associated with susceptibility to cancers, cardiovascular diseases,
and different neuropathies, such as Alzheimer’s, Parkinson’s, and
Huntington’s diseases as well as schizophrenia and congenital
myasthenic syndrome. It is also related to infection, inflammation,
and immune and metabolic disorders (4).

Autoimmune diseases include a wide range of disorders
arising from an abnormal immune response to otherwise
healthy, normal tissues and organs. Genetic, environmental,
hormonal, and immunological etiologies are implicated in
autoimmune disorder pathogenesis. However, the mechanisms
that trigger the onset of at least half of all autoimmune diseases
remain unclear (5). Numerous studies have investigated the roles
of alternative splicing in autoimmunity mechanisms. Immune-
related genes encoding human leukocyte antigen (HLA),
interferon regulatory factor 5 (IRF5), T-cell receptor z (TCRz)
chain, cytotoxic T lymphocyte associated protein 4 (CTLA4), and
cytokines and their receptors presented with spliced isoforms (6).
However, our knowledge of the regulatory mechanisms of
alternative splicing in immunity and autoimmunity is limited.
ALTERNATIVE SPLICING MECHANISM

Splicing Reaction
Precursor (pre) mRNA splicing is an intricate biological process
involving intron excision and exon ligation to generate mature
mRNA products. Splicing recognizes exon–intron boundaries and
is catalyzed and controlled by complex ribonucleoprotein
complexes known as spliceosomes (7). The spliceosome consists
of at least 300 associated proteins and five uracil-rich small nuclear
ribonucleoproteins (U1, U2, U4, U5, and U6 snRNPs) (8). Proper
spliceosome assembly at the splice sites (ss) is the core reaction
mechanism. The 5’ss is located at the 5’ end of each intron, the 3’ss
is located at the 3’ end of each intron, and the branch point (BP) site
is located 18–40 nucleotides upstream of each 3’ss (9). Spliceosome
assembly begins with adenosine triphosphate (ATP)-independent
recognition of the 5’ss by U1 snRNP. U2 auxiliary factor (U2AF)
then binds the 3’ss and the polypyrimidine region. Splicing factor 1
(SF1) then binds the BP (Figure 1) (8, 10). These steps form the
stable early complex E, which then triggers ATP-dependent U2
snRNP recruitment, SF1 replacement at the BP, and conversion
into the pre-spliceosome (complex A) (10). The pre-assembled U4/
U6–U5 tri-snRNP complex is recruited and forms a pre-catalytic
spliceosome (complex B), which is then converted into a
catalytically active complex B* by removing U1 and U4. Two
subsequent transesterification steps and conformational and
compositional rearrangements form complex C. Exon ligation
follows, and mature mRNA is formed (11).

Splicing may be constitutive or alternative. Constitutive
splicing events usually generate single transcripts from the pre-
mRNAs. By contrast, alternative splicing events occur when at
least two 5’ss or 3’ ss compete (12). Constitutive splicing usually
occurs in the presence of strong splice sites containing consensus
sequences that are easily recognized by the spliceosome.
However, alternatively spliced exons usually contain weaker
Frontiers in Immunology | www.frontiersin.org 2
splice sites that can only be recognized via the mediation of
additional splicing regulatory elements (SREs).

Alternative Splicing Regulation
Alternative splicing arises from specific exons/introns that may or
may not be included in a mature mRNA transcript. The five basic
alternative splicing patterns are exon skipping, mutually exclusive
exons, alternative 5’ss, alternative 3’ss, and intron retention (12).
Alternative splicing is controlled by cis-regulatory elements and
trans-acting factors. Certain epigenetic factors, such as
transcription, chromatin structure, DNA methylation, and
histone modifications, may also affect SRE function. Depending
on their relative positions and activities, cis-regulatory elements
are classified as exonic splicing enhancers (ESE), intronic splicing
enhancers (ISE), exonic splicing silencers (ESS), or intronic
splicing silencers (ISS) (13). Cis-regulatory elements can recruit
trans-acting splice factors (RNA-binding proteins or RBPs) either
to promote or suppress the recognition of nearby splice sites.
Therefore, various RBP categories, expression levels, and activities
may influence the regulation of alternative splicing. Thus far,
many RBPs have been found to modulate the splicing mechanism.
These include serine/arginine-rich (SR) proteins, heterogeneous
nuclear ribonucleoproteins (hnRNPs), neuro-oncological ventral
antigens (NOVA) proteins, polypyrimidine track binding proteins
(PTB), forkhead boxes (FOX) proteins, and others. Of these, the
most extensively studied are the SR proteins and the hnRNPs (14).

SR proteins or SR-rich splicing factors (SRSFs) structurally
resemble each other and are characterized by the RS domain [rich
in arginine (R) and serine (S) residues] at the C-terminal and one
or two RNA recognition motifs (RRMs) at the N-terminal (13).
The SR protein is usually a positive splicing factor and it facilitates
splice site recognition. When it binds the ESE, the SR protein
recruits U1 and U2 snRNPs and auxiliary factors, such as U2AF.
In this way, it induces spliceosome assembly followed by exon
inclusion (15). SR protein mutation or aberrant post-translational
modification may lead to various diseases. Correct SR protein
phosphorylation is vital in the regulation of the splicing event and
alterations in subcellular localization, activity, and stability that
may affect protein–protein and protein–RNA interactions (16).
By contrast, hnRNPs are usually considered negative splicing
factors that inhibit splice site recognition. For example, hnRNP
blocks spliceosome access to the polypyrimidine tract by binding
the ESS and promoting exon exclusion.
ALTERNATIVE SPLICING IN VARIOUS
ASPECTS OF IMMUNITY

Autoimmune diseases are a subset of conditions rising from
abnormal immune responses to a functional body part.
Currently, specific candidate genes of autoimmune disease
have been identified in multiple GWAS. Moreover, various
alternative splicing events have been found in adaptive- and
innate immune signaling-related genes. Elucidation of the
mechanism of immune response related to autoimmune
disease pathogenesis is essential for further investigations into
August 2021 | Volume 12 | Article 713540

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ren et al. Alternative Splicing in Autoimmune Diseases
alternative splicing regulation. In this section, we focus on the
physiological and pathological roles of alternative splicing in
immunity, and attempt to figure out common patterns of
splicing regulation in different autoimmune diseases.

Gene Categories Involved in Alternative
Splicing in Autoimmunity
Alternative splicing is a pivotal mechanism widely acknowledged
to regulate gene expression and promote protein diversity.
The maintenance of functional immune responses requires
protein diversity and flexibility, which are essential in
Frontiers in Immunology | www.frontiersin.org 3
alternative splicing regulation. Many genes involved in innate
or adaptive immune signaling undergo varying degrees of
alternative splicing. Ergun et al. determined by RNA
sequencing and microarray that alternatively spliced isoforms
occur in 60% of all T- or B-lymphocyte genes (17). Based on
spliced gene functions, alternative splicing may affect the
physiological function of the immune system in different ways.

Cell Surface Receptors
Cell surface receptors constitute a subset of transmembrane
proteins that participate in signal transduction by receiving
FIGURE 1 | Pre-mRNA splicing: Spliceosome assembly (Adapted from Matera AG, Wang Z. A day in the life of the spliceosome. Nat Rev Mol Cell Biol (2014)
15:108-21). Pre-mRNA splicing occurs in several spliceosome assembly steps. Splicing begins with U1 snRNP assembly onto pre-mRNA via 5’ss recognition and
subsequent combination with U2AF and SF1 to form early complex E. Then, U2 snRNP replaces SF1 at the branch point and forms a pre-spliceosome (complex A).
Pre-assembled U4/U6–U5 tri-snRNP complexes are then recruited to form catalytically active complex B, which is then converted into catalytically active complex B*
via release of U1 and U4. Through two catalytic steps and conformation or composition rearrangements, complex B* converted into a final complex C* and U2, U5,
and U6 are released from the spliceosome followed by intron excision, exon ligation, and mature mRNA generation.
August 2021 | Volume 12 | Article 713540
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extracellular molecules. CD44, CD45, CD85, TCRz, CTLA4, and
others have alternative spliced isoforms. These structural
variants have distinct activity and stability and may affect
ligand binding and disrupt normal signaling. For example, a
short 3’ untranslated region (UTR) isoform of TCRz was
generated by intron removal. It was relatively less stable,
affected TCR/CD3 complex assembly and expression, and
limited T-cell activation (18).

Cytokines and Their Corresponding Receptors
Cytokine secretion and reaction are crucial processes in
immunomodulation. Immune cell stimulation produces
various cytokines and their isoforms. These may either be
similar or different in terms of biological activity. The
functions of these spliced variants have not been fully
determined. In most cases, however, isoforms of IL-2, IL-4, IL-
6, and others might act as antagonists to their corresponding
wild types and block their activity (19). Alternative splicing of
cytokine receptors usually generates both membrane-bound and
soluble isoforms with similar biological activity. However,
soluble isoforms of IL-6R, TNFR2, and others cannot transmit
signals through ligand binding and might act as inhibitors.

Intracellular Signaling
T-lymphocyte activation may result in subsequent signal-
induced alternative splicing. In this way, they generate variant
isoforms of downstream intracellular molecules, such as the Src
family members Lck, Fyn, Syk, and others, that may disrupt
normal signal transduction (6, 20). In innate immune cells, an
isoform of the adaptor protein myeloid differentiation primary
response 88 (MyD88) may inhibit downstream Toll-like receptor
(TLR) signaling and limit innate immune response activation
(21). Moreover, an isoform of TLR4 is associated with TNF-a
and NF-kB downregulation (22).

Complement System
Activation of the complement system is an essential part of the
innate immune response. Alternative splicing events have also
been found in complement proteins and receptors, such as C2,
CR1, CR2, and others (23). They have also been detected in
complement regulatory proteins, such as membrane cofactor
protein (MCP) (24).

Splicing Regulatory Patterns
in Autoimmunity
Basic alternative splicing patterns and its regulatory mechanisms
are widely acknowledged. In autoimmunity, the disease-related
pathogenesis varies from one to another. Here, we conclude the
common features of alternative splicing in the pathological
changes of autoimmune diseases.

Gene Mutations: The Most Common Cause of
Alternative Splicing
Candidate single-nucleotide polymorphisms (SNPs) and other
sequence mutations can directly change the coding region and
result in aberrant alternative splicing. In most cases, SNPs are
localized to non-coding sequences, which may disrupt consensus
Frontiers in Immunology | www.frontiersin.org 4
splicing sites or create novel alternative binding sites, thereby
influencing the efficiency or selection mode of alternative
splicing. Wang et al. reviewed 303 genes and 370 diseases with
overall 2,337 splice mutation-disease entries from publication
searching. Nearly 90% of the events resulted from point
mutations (25). However, the regulatory mechanisms involved
are not fully understood and they might affect alternative splicing
in other ways.

SREs: Fundamental Regulatory Mechanism of
Alternative Splicing
Epigenetic modification and changes in the levels of cis-
regulatory elements and trans-acting factors can lead to
different alternative splicing site selection and, therefore,
variant transcripts. In human genome, there are numerous
potential splice sites, known as pseudo-exons. It is relatively
weaker than the consensus sequences during the recognition of
snRNP. SREs can enhance or silence nearby splice sites, thereby
promoting the diversity of selection between pseudo-exons and
real exons. Weaker splice sites at the 5’ and 3’ end of intron may
hamper the recognition of spliceosome, leading to specific intron
retention (26). Epigenetic modifications bring additional
different functional SREs and thereby influence the splicing
process regulation.

Autoantigens: Prone to Be Alternative Spliced
Autoantigens are more frequently subjected to splicing control
than non-autoantigens. Ng et al. compared the incidence of
alternative splicing event in both randomly selected 45
autoantigens and 9,554 proteins from human genome. The
results showed a 100% occurrence rate of alternative splicing
in autoantigen transcripts, whereas 42% rate in the other group
(27). Spliced isoforms have been found in various disease-specific
autoantigens, such as multiple sclerosis (MS)-related autoantigen
mye l in o l i godendrocy te g lycoprote in (MOG) and
transformation of myelin proteolipid protein (PLP), type 1
diabetes mellitus (T1DM)-related autoantigen islet cell Ag 512
(IA-2), Sjögren’s syndrome (SS)-related autoantigen SS-B/La and
SS-A/Ro, Graves’ disease (GD)-related autoantigen thyroid
peroxidase (TPO), and others (28–33). Moreover, some
nucleus antigens, such as RA33, Sm, U1 snRNP, Jo-1, NOR-90,
histone, DNA Topo 1, ribosomal P2, and others, also undergo
some level of alternative splicing (27, 34–36). The increased
noncanonical splicings and posttranslational modifications may
give rise to novel untolerized antigenic epitopes that could
enhance the immunogenicity of the autoantigens. Moreover,
spliced isoforms with variation at the linker region can
influence ligand binding and subsequent downstream
signaling. Some specific autoantigens, such as U1 snRNP, Sm
may even affect the splicing procedures. Assessment of these
antigens or antibodies is of great importance in the diagnosis and
monitor of autoimmune diseases.

Soluble Isoforms: May Serve as Predictors
or Natural Inhibitors
High level of soluble isoforms, such as sIL-6R, sIL-7R, sgp130,
sCD44v5, sCD44v6, and sCTLA4, are observed in most
August 2021 | Volume 12 | Article 713540
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autoimmune diseases. Unlike membrane-bound isoforms,
soluble isoforms are readily detected in peripheral blood. In
certain cases, their levels there indicate disease severity and
activity. Hence, they might be useful in disease monitoring. By
contrast, soluble isoforms can also be natural competitive
inhibitors to membrane-bound isoforms. Therefore, the former
block downstream signaling pathways and are potential
therapeutic targets.

We attempted to identify the foregoing common splicing
modulation patterns in different autoimmune diseases. We
focused on systemic lupus erythematosus (SLE) and
rheumatoid arthri t i s (RA). SLE is associated with
autoimmunity induced by immune complexes (ICs), whereas
RA is related to cytokine-mediated inflammation. We also
explored spliced isoforms with potential diagnostic or
therapeutic value.
Frontiers in Immunology | www.frontiersin.org 5
SPLICED ISOFORMS IN SLE

SLE is a chronic autoimmune disease of unknown etiology. It
more frequently affects women in their reproductive age. It is
characterized by nuclear autoantigen and IC formation leading
to organ-specific or systemic inflammation and tissue damage.
Both innate and adaptive immune responses participate in SLE
development (Figure 2). Viruses, excess apoptotic material, and
neutrophil extracellular trap (NET) formation may be
autoantigen sources. These are recognized by plasmacytoid
dendritic cells (pDCs), which, in turn, activate innate
immunity. A malfunctioning type I interferon (IFN) signaling
pathway is an important clue in SLE as it plays essential roles in
dendritic cell (DC) differentiation and maturation, the activation
of autoreactive T cells and T cell-stimulating autoreactive B cells,
and multiple autoantibody production. Along with several
FIGURE 2 | Systemic lupus erythematosus (SLE) genetics and pathogenesis. Schematic picture of SLE immunopathogenesis and alternative splicing involved in
signaling pathways-related genes. (A) Source of autoantigens initiating innate and adaptive responses in SLE include viruses, apoptotic material, and neutrophil
extracellular trap (NET) formation. (B) pDC activation, antigen presentation, and IFN-a secretion. (C) IFN-a signaling pathway stimulates T- and B-cell activation,
which leads to autoantibody and proinflammatory cytokine production and eventual local tissue injury. Straight arrows represent stimulation and curved arrows
represent target process activation or production. SLE-related susceptibility genes are indicated in immune signaling steps. Genes with * undergo alternative splicing.
August 2021 | Volume 12 | Article 713540
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proinflammatory cytokines and chemokines, autoantibodies
contribute to local tissue injury by immune complex
deposition or complement activation. However, genetic factors
increase the relative risk of SLE as well. Earlier GWAS identified
over 50 genetic loci associated with SLE (37–40). Some of these
might influence splicing. Furthermore, mutations and
disruptions in the splicing machinery may also cause
alternative splicing. Factors and conditions that increase SLE
susceptibility have also been reported in previous studies.

In the following section, we address several of the best-studied
examples of alternative splicing that affect both the adaptive- and
innate immune signaling-related genes associated with SLE. We
also summarize the roles of transcription factors in alternative
splicing regulation.

IRF5
IRF5 is a transcription factor belonging to the IRF family. IRF5
mainly regulates interferon expression by activating the innate
immune response to viruses or inflammatory stimuli. Moreover,
IRF5 modulates cellular maturation, differentiation, and
apoptosis as well as proinflammatory cytokine generation (41).
Both innate and adaptive immune signaling activate IRF5 via the
TLR and MyD88 pathways (42). IRF5 overexpression is
associated with clinical SLE progress. The human IRF5 gene
has nine coding exons and at least four non-coding alternative
exons designated 1A, 1B, 1C, and 1D (41, 43). By differential
selection of the coding or non-coding alternative exons, human
IRF5 could theoretically generate multiple distinct functional
isoforms. Some of these have been identified and were designated
V1–V11. The spliced variants generated via the inclusion of
alternative exon 1B (v2, v9, and v10) are strongly linked to IRF5
upregulation and SLE susceptibility. However, genetic
polymorphisms in the human IRF5 locus disrupt normal
splicing and increase the risk of aberrant spliced variant
formation. The distinct haplotypes of four functional SNPs
increase susceptibility to SLE and other autoimmune diseases.
For example, the T allele of rs2004640 creates a novel 5’ss at the
intron-exon boundary of alternative exon 1B. Thence, exon 1B is
included in transcript production. The G allele of rs10954213
destroys the polyadenylation (polyA) site in the 3’ UTR region of
exon 9. This mechanism arrests transcription and results in a
relatively long, unstable transcript (44). A 5-bp (CGGGG) indel
(insertion/deletion) located in the proximal promoter creates a
novel binding site for the Sp1 transcription factor, which leads to
alternative splicing (45). Furthermore, 30-bp indel
polymorphisms in exon 6 select two alternative 3’ss. Insertion
of these 3’ss produces V5 and V6 isoforms, whereas their
deletion generates V1 and V4 isoforms (41). These isoforms
are structurally and functionally distinct and have different
expression levels. Hence, they influence IRF5 signaling and its
downstream immune responses.

Murine IRF5 (MuIRF5) shares approximately 87% amino
acid sequence homology with human IRF5. Different from the
heavily spliced human IRF5, MuIRF5 primarily generates a full-
length transcript. Nevertheless, Paun et al. have detected a
splicing variant of IRF5 from the bone marrow of C57BL/6J
mice, termed as BMv, which contains a deletion of the entire
Frontiers in Immunology | www.frontiersin.org 6
exon 5 and part of exon 4, 6 (46). In the MyD88 activated innate
immune signaling, BMv serves as a relatively weaker activator to
the downstream IFNA4 promoter, compared to the full-
length transcript.

LILRA2
Leukocyte immunoglobulin-like receptors (LILRs) are also
known as CD85. This family of leukocyte receptors has 13
members and includes the two pseudogenes LILRP1 and
LILRP2. LILRA2 is a stimulatory receptor that delivers positive
signals and is widely expressed on B cells, dendritic cells,
monocytes, macrophages, and a subset of natural killer (NK)
cells. LILRA2 cross-links with the immunoreceptor tyrosine-
based activation motif (ITAM) of Fc-g receptor (FcRg) and
induces calcium mobilization and subsequent signaling
activation (47). Genetic polymorphisms of human LILRA2
were associated with increased SLE susceptibility in Japanese
populations (48). The SNP rs2241524 G>A at the intron 6–exon
7 junction disrupts the consensus splicing acceptor motif and
interferes with normal splicing. This mechanism results in a
novel transcript with an in-frame deletion of three amino acids
(Ala-Ser-Leu) at position 419–421 in the linker region (48). The
impact of this spliced variant (D419–421 isoform) on ligand
binding is unknown.

BANK1
The B-cell scaffold protein with ankyrin repeats 1 (BANK1) gene
encodes a scaffold adaptor protein expressed primarily in B cells.
Stimulation of B-cell receptors (BCRs) induces tyrosine
phosphorylation in BANK1, which then amplifies B-cell
signaling by facilitating the activation of downstream signal
molecules, such as Src-family kinases, the inositol 1,4,5-
trisphosphate receptor (IP3R) calcium channel, phospholipase
Cg2 (PLCg2), protein kinase C b (PRKCB), and Ras (49, 50).
BANK1 variants have been linked with susceptibility to multiple
autoimmune diseases, such as SLE, RA, and SS (51–53). Kozyrev
et al. analyzed BANK1 cDNA and identified a novel spliced
transcript (50) designated D2 isoform because it lacks the entire
exon 2. It encodes a protein without putative IP3R-binding or
PH domains. This defect attenuates BANK1-mediated signaling.
The D2 isoform is also detected from chimpanzee and mouse
spleen. Three SNPs (rs10516487 G>A in exon 2, rs17266594 T>C
in intron 1, and rs3733197 G>A in exon 7) associated with SLE
might also influence D2 isoform splicing. The rs17266594 is
localized to a putative splice BP of exon 2. This mutation affects
relative splicing efficiency and upregulates the D2 isoform. The
rs10516487 is associated with a decrease in exon 2 splicing (54).
The precise role of BANK1-mediated signaling downregulation
in SLE is unclear, but it may participate in SLE pathogenesis as B
cells have vital functions in autoimmunity.

RasGRP1
Ras guanyl releasing protein 1 (RasGRP1) is a guanine-
nucleotide-exchange factor that is first cloned in the brain and
is then highly expressed on T cells (55). RasGRP1 is linked to
autoimmunity. RasGRP1 deletion may lead to a deficiency of
thymocyte differentiation or T-cell development in mice (56). In
August 2021 | Volume 12 | Article 713540
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humans, RasGRP1 deficiency may interfere with T-cell and B-
cell proliferation and activation, thereby causing various
autoimmune disorders (57). T-cell receptor (TCR) stimulation
drives protein tyrosine kinase activity and diacylglycerol (DAG)
binding, which, in turn, recruit son of sevenless (SOS) to the
plasma membrane and activate Ras (58, 59). RasGRP1
participates in TCR-induced signaling and activates Ras.
RasGRP1 consists of a DAG-binding domain and two calcium-
binding EF hands. Yasuda et al. identified 13 new spliced human
RasGRP1 transcripts generated by alternatively including or
deleting exons 5–17. These novel transcripts constitute an
isoform family (splice variants A–M) (59). Nine of these were
translated into truncated nonfunctional RasGRP1 isoforms
because of a premature translation termination codon. The
remaining four, however, did not cause any frameshift
abnormalities or induce early translation termination.
Compared with normal individuals, SLE patients lack the
functional RasGRP1 isoform and have elevated levels of
defective variant isoforms.

Splicing factors, such as SRSF1, regulate alternative splicing.
The RasGRP1 transcript lacking exon 11 (splice variant A) is the
type most observed in the T cells of SLE patients. SRSF1 directly
binds the exon 11 of RasGRP1 mRNA, thereby promoting exon
11 inclusion. Kono et al. found that compared with the T cells of
healthy individuals, those of SLE patients presented with
significant SRSF1 downregulation. SRSF1 knockdown in
healthy human T cells via small interfering RNAs (siRNAs)
increased the splice variant A:normal RasGRP1 isoform ratio
and downregulated RasGRP1 (60). Moreover, hnRNP-K protein
was correlated with RASGRP1 expression and extracellular
signal-regulated kinase (ERK) phosphorylation (61).

TCRz
The TCRz chain is involved in TCR/CD3 complex assembly and
surface expression (62). The cytoplasmic domain of TCRz
includes three ITAMs that are phosphorylated when TCR is
activated. This mechanism leads to the recruitment of other
signaling molecules and, in turn, the phosphorylation or
activation of downstream signaling transduction molecules
(63–65). T cells are central to SLE pathogenesis. In SLE, T cells
display multiple abnormalities in their antigen‐mediated
signaling. Recent studies showed that SLE patients had lower
TCRz mRNA expression levels than healthy subjects (66–68),
possibly because of low transcription activity, splice variant
generation, and other factors (69, 70). Alternative splicing
generated a series of transcript variants of TCRz, including
TCRh (exon 8 replaced by exon 9), TCRi (exon 8 replaced by
exon 10), an isoform lacking exon 7, and another with a short
3’UTR (69, 71–74). Similar variation of TCRz transcript also
exists in animal models. For example, TCRh contains completely
uniform alternative exon 8 selection to human, and is observed
in both mice and swine, while TCRi is observed in mice (75, 76).
TCRh and TCRi are natural isoforms with normal function,
whereas the other two are relatively unstable, more readily
degraded than their full-length transcript counterparts, and
detected exclusively in SLE patients. Variant isoforms affect the
assembly of the TCR/CD3 complex and its expression on the cell
Frontiers in Immunology | www.frontiersin.org 7
surface. In addition, it changes the Treg/Th17 balance.
Consequently, they attenuate normal signaling and result in T-
cell dysfunction and insufficient IL-2 production (77–79).

A previous study demonstrated that epigenetic modification
or changes in the levels of splicing factors may affect the
mechanism regulating alternative splicing. In human T cells,
SRSF1 can bind the 3’UTR region of TCRz mRNA, thereby
favoring the expression of TCRz isoforms with full-length 3’UTR
over unstable short ones (80). SLE patients usually present with
relatively low SRSF1 levels and enhanced SRSF1 ubiquitination
(81, 82). SRSF1 may increase total TCRz mRNA expression,
whereas SRSF1 knockdown may decrease it. The specific
mechanism involved in SRSF1 regulation remains to be
determined. However, SRSF1 might be a suitable therapeutic
target for the restoration of normal T-cell function.

Other Genes
Many studies have identified numerous loci of disease
susceptibility-related genes associated with certain specific
splicing patterns. In addition to the foregoing gene loci, there
are several less common spliced variant isoforms related to
SLE susceptibility.

CD72 is an inhibitory receptor expressed mainly on B cells.
The CD72 SNP affects normal splicing and generates a spliced
isoform lacking exon 8 (CD72Dex8) that modulates antibody
production. Polymorphisms of the Complement C3d Receptor 2
(CR2) gene also regulate alternative splicing. A haplotype formed
by minor CR2 SNP alleles (rs17615 and rs1048971 in exon 10
and rs4308977 in exon 11) might affect splicing efficiency and
significantly lowers the risk of SLE (83). The SNP of CR2 known
as rs3813946 is located in the 5’UTR and may also influence CR2
transcription. CTLA4, also known as CD152, is a protein
receptor expressed mainly on T cells. Variants of human
CTLA4 are associated with a wide range of autoimmune
diseases, including SLE, RA, T1DM, GD, and MS. Alternative
splicing of human CTLA4 generates various transcripts, such as a
membrane-bound form (mCTLA4), a soluble form (sCTLA4),
and four other rare transcript types. Al Fadhli et al. reported that
patients with SLE or RA express neither mCTLA4 nor sCTLA4
(84). sCTLA4 may interfere with the B7:CTLA4 interaction and
block negative signals. However, the roles of various CTLA4
isoforms in autoimmune disease mechanisms remain to be
clarified and additional studies are required to explore these
signaling pathways.
SPLICED ISOFORMS IN RA

RA is a chronic autoimmune disorder characterized by persistent
inflammation of the synovial joints. RA eventually results in
cartilage and bone destruction. About 50% of all RA incidences
are associated with genetic factors, such as the predisposing
genotypes HLA, PTPN22, and STAT4. Lifestyle factors, such as
smoking, obesity, and vitamin D deficiency, can also trigger RA
onset (85). Disequilibrium of the respiratory mucosa is an initial
sign of RA development and subsequently leads to immune
activation, local inflammation, and the production of
August 2021 | Volume 12 | Article 713540
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autoantibodies, including those against citrullinated protein
antigens (ACPA) and rheumatoid factor (RF) (Figure 3) (86).
Activated lymphocytes and autoantibodies migrate to the joints
where they induce the production of proinflammatory
chemokines and cytokines, such as TNF‐a, IL-1, IL-6, and IL-
17. In turn, these facilitate the recruitment and activation of
other immunocytes. IL-17 produced by helper T (Th17) cells
stimulates the activation and proliferation of synovial fibroblasts
Frontiers in Immunology | www.frontiersin.org 8
and macrophages, which eventually affect the balance between
osteoclasts and osteoblasts and ultimately lead to bone
destruction (87).

Previous GWAS identified over 100 genetic loci encoding
immune regulatory factors linked with RA. Moreover, several
variant isoforms were identified among some of the candidate
genes. In the following section, we review the major spliced gene
transcripts participating in RA pathogenesis.
FIGURE 3 | Rheumatoid arthritis (RA) genetics and pathogenesis. Schematic picture of cytokine-mediated bone inflammation and destruction in RA. Genetic
predisposition and environmental factors initiate the autoimmune response. Interactions between TCR and MHCII-antigen plus co-stimulation of the CD28-CD80/86
pathway trigger activation of T cells by DCs along with substantial cytokine production, B-cell activation, and autoantibody generation. IL-17 stimulates synovial
fibroblast and macrophage proliferation and activation and promotes the secretion of proinflammatory mediators, such as TNF‐a, IL-1, IL-6, and GM-CSF. TNF-a
regulates the balance between bone formation and destruction by promoting osteoclast precursor transformation to osteoclasts and inhibiting osteoblast precursor
transformation to osteoblasts. Osteoclast differentiation also depends on the interaction between RANK and its ligand. Curved arrows represent target process
activation and bar-headed lines represent target process inhibition. Straight arrows represent changes in quantity. Several RA-related genes involved in RA
pathogenesis are listed on the left side of the picture. Genes with * undergo alternative splicing.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ren et al. Alternative Splicing in Autoimmune Diseases
CD44
CD44 is a cell-surface glycoprotein involved in cell survival,
proliferation, migration, and traffic signal transmission, cell–cell
interactions, and programmed cell death (88, 89). CD44 comprises
10 constant and 10 variant (v1–v10) exons inserted between the 5’
and 3’ ends (90). Standard CD44 (CD44s) is the most ubiquitous
form. It contains only constant exons and is expressed mainly on
hematopoietic cells. Alternative splicing of the variant exons and
N-glycosylation, O-glycosylation, and glycosaminoglycanation
lead to numerous variant isoforms (CD44v). However, only a
few dozen of these have been identified thus far (91). CD44 is
closely related to multiple autoimmune disorders, including RA,
SLE, MS, and inflammatory bowel disease (IBD). Compared with
osteoarthritis patients, RA patients have relatively higher synovial
CD44s, CD44v4, CD44v6, and CD44v7–8 transcript levels (92,
93). CD44v3 and CD44v6 are associated with increased tumor cell
migration and invasion because they add adhesion and MMP
docking domains. A similar mechanism occurs in RA fibroblast-
like synoviocytes (FLS), and it augments their ability to invade
Matrigel (94). Elevated serum levels of soluble CD44 (sCD44)
variant isoforms, such as sCD44v5 and sCD44v6, have been
detected in RA patients. Serum sCD44v5 is correlated with
inflammation and could serve as a predictive factor in responses
to RA therapy (95, 96).

TNFR2
Tumor necrosis factor (TNF)-a is a pleiotropic proinflammatory
cytokine implicated in inflammation, cell proliferation,
differentiation, and apoptosis (97). TNF-a is one of the most
potent proinflammatory cytokines in RA. TNF signaling is
mediated by the receptors TNFR1 and TNFR2. Both of these
belong to the TNFR superfamily and have high affinity for TNF-
a (98). TNFR1 is widely expressed on most cells and is both
proinflammatory and apoptotic. TNRF2 expression is limited
mainly to endothelial cells and certain immunocytes and
participates in anti-inflammatory processes and cell
proliferation (99, 100). Proteolytic cleavage produces soluble
forms of TNFR (sTNFR). Elevated serum sTNFR is observed
in certain infections, cancers, and autoimmune disorders, such as
RA, SLE, and SS (101, 102) Recent studies identified an
alternatively spliced TNRF2 isoform lacking exons 7 and 8 that
encode transmembrane and cytoplasmic domains (DS-TNFR2)
(103, 104). TNRF2 is a soluble receptor that acts as an antagonist
in TNF‐a-mediated signaling and blocks apoptosis (104). Cañete
et al. demonstrated that alternatively spliced DS-TNFR2
constitutes the majority of the sTNFR2 in RA patients, and
serum sTNFR2 is closely associated with RA activity and severity
(101, 103).

IL-6R and gp130
IL-6 is a pleiotropic cytokine that is crucial in chronic
inflammation and multifactorial autoimmune disorders, such
as RA, IBD, MS, and Castleman’s disease. IL-6 overexpression
may contribute to clinical RA symptoms. In classic signaling,
IL-6 binds the cognate ligand-binding subunit (IL‐6R, CD126).
This mechanism results in the recruitment of the signal-
Frontiers in Immunology | www.frontiersin.org 9
transducing components gp130 and CD130, which, in turn,
promote anti-inflammatory responses (105). Gp130 is widely
expressed on most cell types, whereas IL-6R is detected on only a
few specific cells, such as monocytes, macrophages, neutrophils,
lymphocytes, and hepatocytes (106). IL-6R can exist in both
membrane-bound (mIL-6R) and soluble (sIL-6R) form. About
90% of all sIL-6Rs are transformed from mIL-6R via limited
proteolysis of metalloproteinase domain-containing protein 17
(ADAM17) (106, 107). The SNP rs8192284 A > C localized to the
proteolytic cleavage site of exon 9 was associated with an increase
in mIL-6R shedding (108, 109). The exclusion of exon 10
encoding the transmembrane region and IL-6R mRNA splicing
generate a minor proportion of the sIL-6R (110). The loss of
mIL-6R disrupts classic IL-6 signaling whereas formatted sIL-6R
is biologically active. By binding IL-6, the sIL‐6R/IL‐6 complex
can interact with gp130, which leads to intracellular signaling in
cells that do not otherwise express IL-6R (111–113). This process
is known as IL-6 trans-signaling and it induces proinflammatory
responses (114). Upregulated sIL-6R has been observed in both
RA and osteoarthritis. Hence, sIL-6R is implicated in joint
inflammation and destruction (115). IL-6R inhibitors, such as
tocilizumab and sarilumab, target binding to mIL-6R and sIL-6R.
Therefore, they block both classic IL-6 signaling and trans-
signaling. Their efficacy in RA treatment has been
demonstrated (116). Recently, soluble gp130 (sgp130) variants
arising from alternative splicing or polyadenylation have been
identified. Sgp130 variants are considered natural trans-signaling
inhibitors. Their three known isoforms are full-length sgp130,
sgp130-RAPS, and sgp130-E10 (117, 118). Fc-dimerized sgp130
protein (sgp130Fc) blocks IL-6 trans-signaling and has been
evaluated in the treatment of various inflammatory disease
models. It is currently undergoing clinical trials as a drug
candidate for IBD (119) and is also a potential therapeutic
agent for RA.

Along with the foregoing soluble isoforms, alternative splicing
generates others associated with RA such as sIL-7R (excision of
exon 6 containing the transmembrane domain) (120), sCD137
(lacking the 414–545 nucleotide region and characterized by a
frameshift) (121), sCD1d (excision of exons 4 and 5 containing
the transmembrane domain) (122), and FasDTM (excision of
exon 6) (123).

VEGF
Vascular endothelial growth factor (VEGF) is a highly specific
vascular endothelial cell mitogen. In vivo, VEGF induces
microvascular permeability and plays central roles in
regulating angiogenesis and tumor neovascularization (124).
Prior studies demonstrated that VEGF-mediated angiogenesis
also occurs in the synovial tissues of RA patients. In RA, VEGF
polypeptide is highly expressed on synovial macrophages,
fibroblasts, vascular smooth muscle cells, and synovial lining
cells and in synovial fluids (125, 126). Human VEGF comprises
eight exons and seven introns. Alternative selection of exons 6–8
and VEGF mRNA splicing generate the variant transcripts
VEGF−A121, VEGF−A145, VEGF−A165, VEGF−A189, and
VEGF−A206. These are generically designated VEGF−Axxx
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where xxx indicates the number of amino acids in the mature
protein (127). VEGF121 and VEGF165 are the only VEGF-
spliced isoforms expressed in RA. VEGF165 has 15 basic amino
acids in 44 residues encoded by exon 7 and it binds heparan
sulfate. By contrast, VEGF121 lacks this region and its
diffusibility differs from that of VEGF165 (128).

Fibronectin
Fibronectin (Fn) is a multifunctional glycoprotein that is widely
expressed in the extracellular matrix, plasma, synovial fluid, and
other fluids. From a single gene, alternative Fn mRNA splicing
generates multiple distinct isoforms that play vital roles in
embryonic development, inflammation, wound repair,
malignant metastasis, and thrombosis. Recognized alternative
splicing sites include extra domain A (EDA), extra domain B
(EDB), and type III connecting segment (IIICS) (129, 130). EDA
and EDB each encode a single homology type III repeat (131).
RA patients present with elevated synovial EDA(+)FN. This
marker is correlated with accelerated rheumatoid joint
destruction. The EDA(+)FN synovial fluid level is proportional
to the severity of RA signs and symptoms and is promising as a
predictor of RA progression (132). In animal model,
Gondokaryono et al. found that EDA(+)FN might induce joint
swelling in a mast cell TLR4-dependent manner by injecting
EDA(+)FN to mast cells that lacked W/Wv mice (133). Removal
of EDA(+)FN from the plasma can efficiently and effectively
mitigate RA symptoms. EDA(+)FN cryofiltration and selective
EDA(+)FN adsorbents have been developed for this purpose
(134). Furthermore, heparin has high affinity for FN and can
selectively bind and remove EDA(+)FN from the plasma.
ALTERNATIVE SPLICING IN OTHER
AUTOIMMUNE DISEASES

Autoimmune diseases other than SLE may also be the result of
aberrant alternative splicing. For example, alternative transcripts
of disease-specific antigens could serve as novel antigenic
epitopes affecting ligand binding and, by extension,
autoimmunity. High level of a shorter splice variant of PLP,
DM20 lacking exon 3B, in the thymic epithelial cells can induce
the T-cell tolerance to all epitopes of the PLP protein (135). In
an animal model of MS, SJL/J mice lack thymic DM20
and thereby experience loss of the central tolerance to this
epitope and increased susceptibility to MS (28). Distribution
and expression of IA-2 isoforms can influence immune
responsiveness to specific epitopes. Islets express full-length
IA-2 and two spliced isoforms, IA-2D13 (lacks exon 13) and
IA-2D14 (lacks exon 14), whereas thymus and spleen exclusively
express IA-2D13. Hence, IA-2 could serve as a target of T1DM
(30). Moreover, SS-B/La isoform (exon 1 exchange) might be a
target of Sjögren’s syndrome (SS) (31). Table 1 lists several
autoimmune diseases, such as MS, T1DM, IBD, MG, SS, SSc, and
GD, which are associated with alternative splicing. Diagnostic or
pathologic roles of spliced isoforms in relevant autoimmune
diseases are also cited.
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THERAPEUTIC STRATEGY TARGETING
ALTERNATIVE SPLICING

Alternative splicing modulation has been applied in many
different areas even though its underlying regulatory
mechanisms are poorly understood. Prior studies have
attempted to identify causes or potential therapeutic targets via
disease-related alternative splicing analyses. A recently
discovered structural splicing enhancer (SSE) promotes tumor
cell invasion and metastasis by interacting with small nuclear
ribonucleoprotein polypeptide A’ (SNRPA1) (173). Shen et al.
reported that, in mice, inhibiting the spliceosome by knocking
down 14 splicing factors with siRNAs could drive the transition
from pluripotent to totipotent stem cells. Hence, this mechanism
has great potential in stem cell therapy (174). Certain therapies
targeting the regulatory mechanism of alternative splicing have
already been approved for cancers and neurological disorders.

Splice-switching oligonucleotides (SSOs) are specialized
antisense oligonucleotides (ASOs) targeting pre-mRNAs. They
comprise a major validated approach towards modulating
alternative splicing events. SSOs bind various functional
splicing factors, promote or inhibit exon and intron inclusion
or skipping, and participate in the generation of expected spliced
isoforms. SSOs have been approved for the treatment of
Duchenne’s muscular dystrophy (DMD), spinal muscular
atrophy (SMA), and other conditions (175, 176). For example,
Graziewicz et al. designed a series of SSOs intended to promote
exon 7 skipping in mouse TNFR2mRNA. The SSOs upregulated
the soluble TNFR2 isoform, which, in turn, naturally blocked
TNF-a signaling (177). Therefore, SSO application might be a
promising therapeutic avenue because TNF-a overexpression is
a critical feature in RA immunopathogenesis. Furthermore, a
synthetic 20-base ASO directed target at exon 2 of the AChE
mRNA, known as Monarsen, is designed for the treatment of
MG patients. According to a non-placebo-controlled phase Ib
study of Monarsen, more than 90% of patients felt an
improvement in symptoms (166, 178). Monarsen is currently
in a Phase II study. Kinases and phosphatases in the serine-
arginine protein kinase family (SRPKs) and CDC2-like family of
kinases (CLKs), protein phosphatases, and certain small
molecules can affect alternative splicing by modulating splicing
factor activity or levels (8). Other technologies such as siRNAs
and clustered, regularly interspaced, short palindromic repeat‐
associated protein 9 (CRISPR‐Cas9) regulate alternative splicing
events via gene editing. Moreover, targeted disease-related
spliced variant degradation may help treat certain diseases.
There is abundant theoretical evidence for numerous
efficacious therapies targeting the regulatory mechanism of
Frontiers in Immunology | www.frontiersin.org 12
alternative splicing. Nevertheless, we lack empirical evidence
for the effectiveness of these approaches in the management of
autoimmune diseases. Thus, further research is required to
validate the feasibility of alternative splicing manipulation.
CONCLUSION AND PROSPECTIVE

Autoimmunity is closely associated with alternative splicing.
Most candidate autoimmune genes may produce alternative
isoforms. Though the present review is not exhaustive, it
provides a fairly comprehensive synopsis of the most
extensively studied alternative splicing events in autoimmune
diseases, such as SLE and RA. Numerous variant mRNA
transcripts and proteins were identified via literature searches.
However, the actual number of functional isoforms might be less
than anticipated because some of them were either untranslated
or underwent premature translation because of the presence of a
termination codon in the transcript.

As high-throughput sequencing continues to increase in
depth and capacity, RNA sequencing (RNA-Seq) might play an
important role in elucidating transcriptome and alternative
splicing (179). Recently developed third-generation RNA-Seq
has the advantage of long read length and can facilitate the
analysis of directly spliced isoform structures as well as the
discovery of thousands of novel distinct transcript products
(180). Innovative technologies will deepen our understanding
of the mechanisms regulating alternative splicing in various
diseases and help develop new diagnostic and therapeutic tools
for them.
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