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C-type lectin-like receptor 2 (CLEC-2, also known as CLEC-1b) is expressed on platelets,
Kupffer cells and other immune cells, and binds to various ligands including the mucin-like
protein podoplanin (PDPN). The role of CLEC-2 in infection and immunity has become
increasingly evident in recent years. CLEC-2 is involved in platelet activation, tumor cell
metastasis, separation of blood/lymphatic vessels, and cerebrovascular patterning during
embryonic development. In this review, we have discussed the role of CLEC-2 in
thromboinflammation, and focused on the recent research.
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INTRODUCTION

CLEC-2 (CLEC-1b) is a type II transmembrane receptor (1, 2) of the C-type lectin superfamily,
which are characterized by one or more C-type lectin-like domains (CTLDs). Members of the C-
type lectin superfamily are mainly involved in growth and development, respiration, blood
coagulation, angiogenesis and inflammation (3). CLEC-2 regulates multiple physiological
pathways by recognizing and binding to both endogenous and exogenous ligands (4–6). While
the role of CLEC-2 in tumorigenesis (7, 8) and platelet activation (9) is well-established, its
involvement in thrombosis is ambiguous. Recent studies have implicated CLEC-2 in the
inflammatory response, and correlated the upregulation of CLEC-2 ligands in the inflamed
tissues with vascular integrity (10), which further highlights its role in thrombosis. CLEC-2 and
its ligands are the molecular bridge between platelets, immune cells and target cells, and a novel
mechanistic link between inflammation and thrombosis. Therefore, CLEC-2 related pathways are
potential therapeutic targets for thromboinflammation.
MOLECULAR STRUCTURE AND CELLULAR DISTRIBUTION
OF CLEC-2

CLEC-2 is a platelet-activating type II transmembrane receptor with a molecular weight of ~32 kDa,
and is highly expressed on megakaryocytes and platelets (1, 2). Originally known as snake venom
protein receptor, CLEC-2 has a function similar to that of glycoprotein (GP) VI (GPVI) in activating
Src (non-receptor tyrosine kinase) or Syk (spleen associated tyrosine kinase) upstream of
phospholipase C (PLC) g2 to trigger platelet aggregation (11–14). It comprises of a YXXL
sequence, two conserved serine sequences at positions 21 and 27, and a partially conserved
threonine sequence at position 9, of which YXXL is crucial for signal transduction (15). Binding
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of CLEC-2 to its cognate l igand tr iggers tyrosine
phosphorylation of one intracytoplasmic YXXL motif, which
activates the downstream semi-immunoreceptor tyrosine-based
activation motif (ITAM) pathway (16). The semi-helical long
loop region on the binding surface of CLEC-2 is variable
compared with other parts, and binding of ligands can bring
the cytoplasmic signal transduction domain of CLEC-2 closer to
each other, thus promoting ligand induced dimerization (17).
CLEC-2 binds to the tandem SH2 domain of Syk in a 2:1
stoichiometry based on its cytoplasmic tail phosphorylated
peptide (18). Studies on transgenic mice have revealed that
CLEC-2 is also expressed as relatively lower levels on Kupffer
cells, sinusoidal endothelial cells (19), dendritic cells,
macrophages (14), B lymphocytes and neutrophils induced
during the inflammatory response (20). Lowe et al.
demonstrated that the expression of CLEC-2 on neutrophils is
likely the off-target effect of antibodies, and there are also
statements the expression of CLEC-2 is probably limited to
mice (20), whereas macrophages express CLEC-2 after
phagocytosing platelets. Thus, the distribution of CLEC-2 has
not been fully elucidated (5).
CLEC-2 AND ITS LIGANDS

The major exogenous ligands of CLEC-2 are the snake venom
toxin rhodocytin and type 1 human immunodeficiency virus (HIV-
1). Rhodocytin is a heterodimeric C-type lectin that induces platelet
aggregation through CLEC-2 clustering (14). In addition, the
CLEC-2 expressed on platelets captures HIV-1 particles and
leads to its subsequent phagocytosis, which is the basis of the
high levels of circulating HIV-1 in infected individuals (21). CLEC-
2 may interact with the cytokines within the HIV-1 rather than
directly with the envelope protein (Env) of the virus. The direct
interaction between CLEC-2 and HIV-1 was considered, however,
CLEC-2 lacks a known amino acid motiv to regulate calcium
complexation and carbohydrate binding of C-type lectins (1).
Therefore, the structure recognized by CLEC-2 on the cell
surface and on the HIV-1 particle was not revealed (21). There is
evidence that the interaction between HIV-1 and CLEC-2 is
indirectly mediated by an endogenous ligand (4). Recent studies
have also confirmed that CLEC-2 does not recognize soluble HIV-1
Env, and the results show that virion incorporation of podoplanin
was required for efficient CLEC-2-dependent HIV-1 interactions
with cell lines and platelets. The binding of CLEC-2 to HIV-1 is
indirectly accomplished through podoplanin, and it was also found
that primary T cells may express a hitherto unrecognized ligand of
CLEC-2, which is integrated into the viral Env and promotes HIV-
1 transmission (4). Other exogenous ligands of CLEC-2 include the
sulfated polysaccharide fucoidan (22) and diesel exhaust particles
(23), although the mechanisms underlying their interaction remain
to be elucidated.

Podoplanin (PDPN), also known as GP38 or Aggrus, is an
endogenous ligand of CLEC-2 (24) that was first identified in rat
glomerular epithelial cells (25). Podoplanin is a type I
transmembrane glycoprotein (26) that mediates venous
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thrombosis (27), extravascular platelet activation and
inflammation in atherosclerosis (27, 28), and wound repair
(29) upon binding to CLEC-2. Furthermore, the CLEC‐2/
podoplanin axis also facilitates blood/lymphatic vessel
separation during embryonic development (30), maintains the
lymph node vascular integrity, and optimizes adaptive immune
responses (31). A recent study showed that the smooth muscle
calcium binding protein S100A13 is a potential ligand of CLEC-
2, and activates platelets independent of podoplanin (32). In
addition, the hemin produced during the turnover of red blood
cells (RBCs) can also activate platelets through integrin platelet
glycoprotein IIb/IIIa receptor (GPIIb/IIIa) or CLEC-2 at low
concentrations, and induce platelet aggregation at high
concentrations, as well CLEC-2 can maybe promote pro-
caogulant platelets which express phosphatidylserine (33). The
ligands of CLEC-2 are summarized in Figure 1.
CLEC-2 IN THROMBOSIS

CLEC-2 is an important platelet activating receptor in the
process of hemostasis and thrombosis (34–36). INU1, as an
inhibitor of CLEC-2, can slightly prolong the tail bleeding time of
mice, and CLEC-2 deficient platelets cannot form stable
aggregates in vitro (34). In addition, the podoplanin/CLEC-2
axis regulates hemostasis and thrombosis (34–36) by promoting
megakaryocyte proliferation and platelet formation (13, 19).

CLEC-2 and GPVI are two important receptors in platelet
activation. HemITAM phosphorylation of CLEC-2 during the
CLEC-2 process is mediated by the tyrosine kinase Syk, which is
essential for signal transduction and downstream effector protein
phosphorylation. Glycoprotein VI (GPVI), the center of platelet
activation collagen receptor, has a pathway similar to CLEC-2,
and its activation ultimately leads to platelet activation and
thrombus growth. CLEC-2 may compensate for the lack of
GPVI given that neither individuals with GPVI mutations nor
the GPVI-knockout mice exhibit a hemorrhagic phenotype.
Bender et al. showed that antibody-mediated blockade of either
GPVI (JAQ1) or CLEC-2 (INU1) in mice down-regulated their
expression and activity on the platelet surface, but did not affect
bleeding, whereas simultaneous inactivation of both completely
inhibited thrombus formation. The mutual compensatory action
of the receptors indicates that targeted blocking of both can not
only exert a strong anti-thrombotic effect but also impair normal
hemostasis (36). In mice with suppressed Syk function, the
increase in tail bleeding time was slight, reflecting the adhesion
effect of CLEC-2 (37).

CLEC-2 plays a major role in process of thrombosis and a
secondary role in normal hemostasis process. During wound
healing, CLEC-2 may be useful in maintaining vascular integrity
in the inflected skin only in the absence of GPVI (38). The ligand of
CLEC-2 in the vascular system is not clear yet. Considering its
undergo homophilic binding with submicromolar affinity, it is
speculated that the endogenous ligand may be CLEC-2 itself
(10, 35). It promotes the adhesion of platelets in vascular system,
but in the case of inflammation, it plays a more important role in
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prevention of bleeding and thrombosis (10). There are
corresponding changes in CLEC-2 in infectious and non-
infectious diseases, especially in inflammatory reaction, CLEC-2
in platelets regulates the vascular integrity of acute inflammation
(16), and its distribution varies with the anatomical location and
inflammatory state of different immune cells (5), and there will be
an up-regulation of CLEC-2 and its ligands (39, 40).
CLEC-2 IN THROMBOINFLAMMATION

Thromboinflammation refers to the coordinated activation of
thrombotic and inflammatory responses that manifests in various
diseases, and is a major cause of mortality and morbidity. In the
following sections, the specific roles of CLEC-2 and its ligands in
neurological diseases, atherosclerosis, deep vein thrombosis,
infectious thrombosis and cancer thrombosis have been discussed.

CLEC-2 in Neurological Diseases
Platelets are central to the pathogenesis of ischemic stroke, which is
characterized by a complex thromboinflammatory response
triggered by the activation of platelets and immune cells, which
destroys the blood-brain barrier (BBB) and leads to neuronal
damage (41). GPVI plays an important role in the development
of cerebral infarction by inducing an inflammatory response
through the ITAM pathway (42, 43). Furthermore, the lectin-like
oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is
elevated in the blood of patients with acute ischemic stroke and
Frontiers in Immunology | www.frontiersin.org 3
transient ischemic attack (44). The Syk cascade signal initiated by
CLEC-2 is closely related to GPVI and belongs to C-type lectin
receptor family with LOX-1. A study conducted on Chinese patients
with acute ischemic stroke reported high levels of plasma CLEC-2,
which was associated with poor prognosis and significantly
increased risk of death (45). Other studies have also shown that
plasma CLEC-2 is a predictor of cerebrovascular disease recurrence
in patients with acute ischemic stroke (46). Podoplanin inhibitors
mitigated the pathological changes after cerebral ischemia-
reperfusion in a mouse model of middle cerebral artery
occlusion-induced stroke, which indicates a potential role of the
CLEC-2/podoplanin axis in thromboinflammation (47). In the
same study, CLEC-2 and podoplanin were linked to the NLRP3
inflammasome (47). The above results were limited to cerebral
artery embolization, and the role of CLEC-2 and its ligands in
cerebral venous sinus thrombosis is still unclear.

Traumatic brain injury (TBI) is closely related to
inflammation, hypercoagulation and apoptosis (48, 49). A
significant proportion of patients with TBI have dysfunctional
coagulation due to early platelet activation, leading to acute
traumatic coagulation disease, which is systemic and affects
many organs, arteries and veins (50–53). In addition, elevated
plasma CLEC-2 levels in TBI patients correlate with poor
prognosis, and can be used as a potential biomarker to
evaluate disease severity and prognosis (54). However, in the
mouse model, exogenous CLEC-2 appears to produce
neuroprotective effects in TBI, improving brain edema,
reversing blood-brain barrier damage and basement membrane
FIGURE 1 | The structure of CLEC-2 and the function of its endogenous ligand.
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degradation, and regulating inflammatory response, but does not
improve the symptoms of neurological impairment in mice (55).

The underlying mechanisms of thromboinflammatory
diseases induced by stroke and brain injury are not fully
understood. GPVI and CLEC-2 expression in platelets is
regulated by Src like adaptor (SLAP) and SLAP2, which are
inactivated after cerebral ischemia, resulting in severe
deterioration of neurological function after focal brain injury
(56). Furthermore, the podoplanin/CLEC-2 axis has an
endogenous role in the nervous system. Podoplanin is widely
distributed in the central nervous system of mice from
embryonic development to adulthood (57), and both
podoplanin and CLEC-2 knockout mice show embryonic
neurovascular development defects (9). In addition,
podoplanin also plays an important role in neural progenitor
cells proliferation and neuronal differentiation by interacting
with the nerve growth factor (58). Podoplanin knockout mice
show defects in cerebral neuron growth, synaptic plasticity and
hippocampus-dependent learning and memory (59). Alzheimer
disease (AD) patients have significantly higher levels of plasma
CLEC-2 compared to those with mild cognitive impairment
(MCI), which further underscores the role of GPIIb/IIIA-
dependent platelet activation in cognitive diseases (60).
Furthermore, podoplanin is overexpressed in the inflamed
brain tissues of multiple sclerosis patients (61), indicating a
spec ific ro l e o f podop lan in /CLEC-2 s igna l ing in
neuroinflammation. While a limited inflammatory response
following brain injury promotes the repair of damaged tissues
(62), unrestrained inflammation can lead to secondary damage
and neuronal apoptosis (63). Podoplanin is up-regulated in the
reactive astrocytes of mice with brain inflammation (64).
Furthermore, rats injected with lipopolysaccharide (LPS) into
their lateral ventricles exhibited neuroinflammation and
upregulation of podoplanin in the neurons. Mechanistically,
podoplanin promoted the re-entry of neurons into the cell
cycle by altering the expression levels of cyclin D1 and cyclin-
dependent kinase (CDK) 4, which triggered cell death and
neuroinflammation (65). In addition to LPS, the pro-
inflammatory cytokine TNF-a (Tumor necrosis factor-a) also
upregulates podoplanin in the macrophages (66). However, it is
unclear at present whether the podoplanin/CLEC-2-driven
inflammatory changes following central nervous system injury
are mediated through inflammasomes (NLRP3) or cytokines (IL-
18, IL-1b, IL-6). Further studies are needed to explore the
mechanisms underlying the thrombo-inflammatory responses
induced by podoplanin and CLEC-2 using animal and
cellular models.

CLEC-2 in Atherosclerosis
Atherosclerosis refers to the gradual buildup of fats, cholesterol and
other substances in the artery walls that eventually forms a plaque.
It is not only associated with acute cardiovascular events but also
involved in the pathological process of thrombosis after stent
implantation. Studies increasingly show that the formation of
atherosclerotic plaques is an inflammatory process that involves
endothelial cell activation and adhesion of macrophages to the
vascular wall, which eventually release large amounts of
Frontiers in Immunology | www.frontiersin.org 4
chemokines and cytokines. Multiple factors such as hypertension,
lipid metabolism disorder and delayed wound healing can induce
atherosclerotic build-up. In the late stages of atherosclerosis, the
plaques rupture at the lesion and promote thrombosis, leading to
cardiovascular events.

Thrombosis caused by atherosclerosis is related to platelet
aggregation. Case-control trials have shown that elevated plasma
sCLEC-2 is an independent risk factor for CHD (67, 68).
Furthermore, podoplanin expression in smooth muscle cells
and macrophages increases with atherosclerotic progression,
and further aggravates the injury (69). The smooth muscle
cells also express S100A13, which activate platelets through
CLEC-2 independent of podoplanin (32). It has been suggested
that S100A13 plays a more important role than podoplanin in
early atherosclerotic lesions, given that podoplanin is rare in
early atherosclerotic lesions (32). Injuries to vascular
endothelium lead to S100A13 exposure, triggering platelet
aggregation, and plaque induced ischemia and hypoxia, which
in turn leads to inflammation. S100A13 is distributed on the
surface of atherosclerosis, and podoplanin is detected in the
interior of advanced atherosclerosis, and the different
localization of S100A13 and podoplanin may be related to the
different effects (69). S100A13 aggravates plaque growth from
the outside.

The role of internal podoplanin is controversial. CLEC-2/
PDPN-mediated phagocytosis is important for the formation of
atherosclerotic plaques in mice, but the distribution may be
species-specific, as noted in the same study (20). Podoplanin is
present inside of the advanced atherosclerotic lesions rather than
on the surface of the lesion, which blocks access to CLEC-2, and
podoplanin may play an important role in triggering plaque
rupture. In addition, podoplanin expressed on the stromal
fibroblasts can also promote cell migration and invasion (70,
71), and induce inflammatory changes (72–74), indicating that
the podoplanin/CLEC-2 axis is closely related to atherosclerotic
progression (69). Local hypoxia and inflammation in the
atherosclerotic plaque induces VEGF-A expression in smooth
muscle cells (75), macrophages and endothelial cells (76), which
enhances platelet aggregation and plaque erosion via the
podoplanin/CLEC-2 axis (77). Furthermore, pro-inflammatory
factors released from the intima of the arterial lumen into the
blood activate CLEC-2 on the platelets and may trigger
thrombosis (78). Patients with stent implantation are
perpetually at risk of thrombosis and therefore require long-
term dual anti-platelet therapy. Mice with CLEC-2 deficiency
require a lower dose of antiplatelet drugs without an increase in
the risk of bleeding (36), Therefore, blocking CLEC-2 can
prevent stent thrombosis and slow down the progression of
atherosclerosis. In addition, studies show that podoplanin is a
marker of myocardial injury, and inhibition of podoplanin can
accelerate recovery after myocardial infarction (74). Taken
together, CLEC-2 and its ligands are promising therapeutic
targets for cardiovascular diseases.

CLEC-2 in Deep Venous Thrombosis
Deep venous thrombosis (DVT) is the formation of a blood clot in
the deeper veins, usually in the lower extremities, following an aseptic
June 2021 | Volume 12 | Article 688643
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inflammatory response (79) in the vascular endothelium. The
endothelial cells in the intima of the blood vessels release Weibel-
Palade bodies (WPB) containing cytokines, which mobilize platelets
and white blood cells to the vessel wall, resulting in thrombosis (27,
80). The increase in blood pressure and turbulence caused by
stenosis decreases the local blood flow, loosens the connection
between vascular endothelial cells and increases vascular
permeability. The resulting local hypoxia upregulates podoplanin
in the vascular walls (81), which induces thrombosis through CLEC-
2 (82). Thrombus formation is prevented in the absence of CLEC-2,
which reduces platelet aggregation and white blood cell recruitment
at the stenosis vessels. Podoplanin elevation after stenosis correlates
with an increased risk of thrombosis, and further upregulation of
podoplanin during thrombosis aggravates the condition. In addition,
the weight and length of thrombus were significantly reduced in
animals treated with the anti-podoplanin antibody (80). Up
regulation of podoplanin and CLEC-2 is not only the cause of
thrombosis, but also may be triggered by neutrophil-mediated
inflammatory response. The reduced blood flow caused by stenosis
and inducible factors produced by local hypoxia attract and activate
neutrophils. In the early stage of DVT, multiple immune cells are
recruited to the vessel wall, and platelets further enhance the
inflammatory recruitment. Neutrophils recruited to the vascular
wall release cytokines (83), further stabilize and promote the
formation of thrombosis (27, 84). On the other hand, neutrophils
also release metalloproteinases to further promote platelet
aggregation and aggravate thrombosis (85). In this process,
inflammation and thrombosis promote each other, leading to deep
vein thrombosis (86).

Bruton’s tyrosine kinase (Btk) is an important non-receptor
signaling kinase involved in platelet aggregation. Several Btk-
dependent platelet aggregation pathways such as GPVI-activation
by low collagen concentrations, FcgammaRIIA (an ITAM receptor)
activation by cross-linking and VWF-stimulated GPIb activation
are inhibited in human blood by low nanomolar IC50
concentrations of Btk-inhibitors (87). Besides, Btk is essential for
Frontiers in Immunology | www.frontiersin.org 5
platelet CLEC-2 (88). In heparin-induced thrombocytopenia, Btk
inhibitors reduce CLEC-2- and GPIb-mediated platelet activation,
monocyte interaction and activation, and neutrophil extracellular
trap release (89). In addition, Btk inhibitors likely to reduce the
microvascular and venous thrombosis in COVID-19 by blocking
platelet CLEC-2, and well reduce thrombosis without an associated
increase in bleeding (90), providing a new idea for the selective
targeting of thrombotic inflammatory diseases.

CLEC-2 in Septic Thrombosis
The role of podoplanin/CLEC-2 in inflammatory thrombosis was
studied using mouse typhoid model by linking infection,
inflammation and thrombosis (91). Podoplanin expressed on
macrophages can activate the toll like receptor 4 (TLR4) signaling
pathway in vitro (92, 93). Hitchcock et al. further showed that up-
regulation of podoplanin in CLEC-2-dependent thrombosis is
associated with TLR4/Interferon (IFN)-g-dependent inflammation
in vivo, and CLEC-2 is a key participant in this pathway (82).
Bacteria in the liver cause a large number of macrophages
depending on TLR4 and IFN - g to aggregate, and ultimately
damage the vascular endothelium due to the combined effects of
bacteremia, infection, inflammation and cell migration. The
platelets extravasating from the blood vessels are exposed to
monocytes and other cells overexpressing podoplanin, and are
activated via CLEC-2. Thus, inflammation triggered by bacterial
infection directly induces thrombosis through the CLEC-2 pathway,
which can be inhibited by knocking out CLEC-2 on the platelets or
with anti-podoplanin antibodies.

A study on the septicemia mouse model showed that platelets
limited the severity of symptoms through CLEC-2 signaling
independent of thrombosis. The protective effect of CLEC-2 in
septicemia was partly mediated by its interaction with the
podoplanin expressed on inflammatory macrophages, which
limited the infiltration of immune cells into the infected site by
controlling cytokine/chemokine secretion, and mitigated organ
damage. In addition, podoplanin reduces bacteremia by
TABLE 1 | CLEC-2 in thromboinflammation.

Diseases Species Trend Outcomes Potential molecules References

Ischemic stroke Human ↑ High risk of death
Poor prognosis

SLAP, SLAP2,
podoplanin,
IL-1b, IL-18,
NLRP3, TNF-a

(45, 46)

Mouse ↑ Regulate inflammatory cytokines
Poor prognosis

(47, 56, 66)

Traumatic brain
injury

Human ↑ Serious illness
Poor prognosis

(54)

Mouse ↑ Neuroprotection
Cerebral edema improved
Regulation of inflammatory response

(55)

Atherosclerosis Human ↑ High risk of coronary heart disease
Stent thrombosis

Podoplanin,
VEGF-A, S100A13

(32, 67, 77)
Mouse ↑

Deep venous
thrombosis

Mouse ↑ Severity of thrombosis Podoplanin (86)

Sepsis Mouse ↑ Limit disease severity
Limit organ damage
Reduce bacteria

Podoplanin,
TLR4, IFN-g

(82, 91, 94)

Tumor Human ↑ Promote tumor angiogenesis,
growth and metastasis

Podoplanin,
TNF-a

(96, 97)
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mediating the role of inflammatory macrophages. Podoplanin
expressed in inflammatory macrophages not only regulates
platelet aggregation, but also regulates the secretion of TNF-a
in macrophages. Podoplanin antibody, mAb 8.1.1, regulates
inflammatory response after sepsis. In vitro, mAb 8.1.1 reduced
TNF-a secretion. However, in vivo, although pro-inflammatory
cytokines and chemokines increased, the injection of anti-
podoplanin antibody regulated the inflammatory response and
immune cell infiltration during sepsis. Platelet CLEC-2 restricts
the symptoms of sepsis by controlling multiple factors, including
monocyte/macrophage migration, inflammatory mediators,
bacteremia and organ damage, suggesting a complex role of
platelets in regulating innate immunity against infection (94).

Some bacteria actively dissociate the thrombus to spread in the
bloodstream, which suggests that inflammation-driven thrombosis
is a novel strategy for bacterial capture and clearance (95). However,
studies on animal models show that thrombosis controls the
inflammatory diffusion in the early stage of infection (82, 94).
During inflammation, platelet activation and thrombosis may
adversely affect the host by inducing disseminated intravascular
coagulation (DIC), and extensive microthrombosis occurs between
arterioles and venules. Furthermore, if the thrombus exceeds a
certain size, it may rupture and lead to other complications such as
cerebral artery infarction or pulmonary artery embolism.

CLEC-2 in Cancer Thrombosis
The interaction between CLEC-2 and podoplanin-expressing tumor
cells promote angiogenesis, tumor growth and metastasis (96). Mice
bearing lung tumors show extensive thrombosis, which can be
alleviated by blocking CLEC-2. In addition, inhibition of CLEC-2
also reduced plasma cytokine levels, improved cachexia and
prolonged survival of tumor-bearing mice (97). In the process of
trying to deduce the mechanism of cancer-mediated inflammation,
researchers found that podoplanin was up-regulated in the venous
wall. Therefore, CLEC-2 may play an important role in tumor-
induced thromboinflammation, and chronic long-term exposure to
inflammatory cytokines induces podoplanin expression (98).
CONCLUSION

The podoplanin/CLEC-2 axis promotes aseptic and bacterial
inflammation, maintains vascular endothelial integrity and
Frontiers in Immunology | www.frontiersin.org 6
protects against microthrombosis. Although CLEC-2 is a
potential target of anti-inflammatory drugs, targeting the
CLEC-2 pathway may affect neovascularization during
infection. Therefore, CLEC-2 blockade should only be
considered as a short-term option. To better understand these
diseases, relevant information is summarized in Table 1.
Through the study of many diseases, it is obvious that it is
very important to find the balance of CLEC-2 and its ligand in
the treatment and application of thromboinflammation.
Whether the related findings of CLEC-2 in these thrombo-
inflammatory diseases can be widely applied to other diseases,
and whether the involved pathways can specifically target to
improve the status of thromboinflammatory diseases are still the
focus of our consideration and research. However, the important
effects of CLEC-2 and its ligands on thrombosis and
inflammation cannot be ignored, and the research on the
mechanism of CLEC-2 and related drugs will still be the future
research hotspot in this field.
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