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Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease characterized
primarily by immune-mediated destruction of exocrine tissues, such as those of the
salivary and lacrimal glands, resulting in the loss of saliva and tear production, respectively.
This disease predominantly affects middle-aged women, often in an insidious manner with
the accumulation of subtle changes in glandular function occurring over many years.
Patients commonly suffer from pSS symptoms for years before receiving a diagnosis.
Currently, there is no effective cure for pSS and treatment options and targeted therapy
approaches are limited due to a lack of our overall understanding of the disease etiology
and its underlying pathology. To better elucidate the underlying molecular nature of this
disease, we have performed RNA-sequencing to generate a comprehensive global gene
expression profile of minor salivary glands from an ethnically diverse cohort of patients with
pSS. Gene expression analysis has identified a number of pathways and networks that are
relevant in pSS pathogenesis. Moreover, our detailed integrative analysis has revealed a
primary Sjögren’s syndrome molecular signature that may represent important players
acting as potential drivers of this disease. Finally, we have established that the global
transcriptomic changes in pSS are likely to be attributed not only to various immune cell
types within the salivary gland but also epithelial cells which are likely playing a contributing
role. Overall, our comprehensive studies provide a database-enriched framework and
resource for the identification and examination of key pathways, mediators, and new
biomarkers important in the pathogenesis of this disease with the long-term goals of
facilitating earlier diagnosis of pSS and to mitigate or abrogate the progression of this
debilitating disease.
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INTRODUCTION

Sjögren’s syndrome (SS) is a chronic, inflammatory autoimmune
disease typically characterized by focal lymphocytic infiltration of
exocrine glands that predominantly affect the salivary and lacrimal
glands, resulting in oral and ocular dryness, respectively.While this
diseasepreferentially involves salivary and lacrimal glands, systemic
effects are also observed. Indeed, a wide range of other affected
organs include the skin, kidney, and lungs (1). Sjögren’s syndrome
may exist as an independent entity, referred to as primary Sjögren’s
syndrome (pSS), or alternatively as secondary Sjögren’s syndrome,
which occurs in conjunction with other autoimmune connective
tissue diseases such as rheumatoid arthritis or systemic lupus
erythematosus (SLE). The prevalence of pSS ranges from 0.01%
to 3% of the general population, primarily affecting middle-aged
womenwith a female tomale ratio of up to 20:1 (2, 3).While pSS is
overwhelmingly dominated by ocular and oral dryness, fatigue, and
pain, serious disease sequelae associated with increased mortality
are observed, such as cryoglobulinemic vasculitis, B cell lymphoma
and pulmonary fibrosis (4).

pSS is amultifactorial complex disease involving both genetic and
environmental factors such as viral infections, that may influence
disease progression and severity (5, 6). Viruses have long been
considered potential players in SS pathology with Epstein-Barr and
human T cell leukemia type I viruses being the most commonly
associated with this disease (7–11). Over the years, studies also
focused on the contribution of different immune cell types to the
development of SS including T and B cells (12–14). More recently,
these studies have expanded to examine the intimate role of signaling
molecules and pathways in SS pathogenesis including various
cytokines and chemokines. Indeed, multiple chemokines have been
implicated inSS, includingCCL19,CCL21, andCXCL13, all ofwhich
have been shown to play important roles in driving the immune-
related effects associated with this disease (15–17). In addition to
cytokines and chemokines, several signaling pathways are implicated
in SS pathogenesis. Interestingly, emerging evidence suggests a
prominent role for interferon (IFN) signaling in SS pathology (18).
Indeed, activated IFNsignaling in the salivary glandof SSpatients has
been associated with this disease (17, 19). Despite extensive efforts
directed towards identifying the underlying molecular mechanisms
contributing to SS pathogenesis, current treatment options are
limited to managing clinical symptoms as no effective treatments,
or cures, have been developed to date.

In order to better understand the underlying molecular
landscape contributing to SS pathogenesis, we have performed
RNA-sequencing to examine the global gene expression profiles
of minor salivary glands (MSGs) from non-SS controls and pSS
patients. Functional gene enrichment and network analysis of the
MSGs revealed important molecular players and pathways that are
relevant in pSS pathology.Moreover, our integrated transcriptomic
analysis has uncovered a distinct pSS molecular signature
highlighted by pertinent genes, genetic biomarkers and pathways
that may be important in driving this disease. Furthermore, we
show that the cellular dysfunction in the MSGs of pSS involves
intricate contribution of various immune cells types, with epithelial
cells also playing a potentially important role. Overall, our
comprehensive studies have not only re-affirmed the importance
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of key signaling molecules and pathways, but have also identified
novel genes and important cellular subtypes. This knowledge canbe
mined for effective diagnosis andmonitoring of pSS pathologywith
the long-term goal of developing targeted therapeutic strategies to
better treat this chronic debilitating disease.

MATERIALS AND METHODS

Patients Samples
Human minor salivary glands (MSG) from 10 pSS patients and 10
non-SS controls were collected at the Oklahoma Medical Research
Foundation (OMRF) as previously described (20). An additional
three pSS patients and three non-SS controls were collected at
the Augusta University Dental College of Georgia (AUDCG)
(Supplementary Table 5). The OMRF and the AUDGC
Institutional Review Boards approved all research procedures and
the study participants gave written informed consent in compliance
with the Declaration of Helsinki. All primary Sjögren’s syndrome
patients were classified as either pSS or non-SS in accordance with
the 2002 revised American European Consensus Group Sjögren’s
syndrome criteria (AECG) (21). Patients also met the 2016 ACR-
EULAR criteria for pSS (22, 23). The non-SS controls were subjects
with subjective sicca symptoms, based on positive responses to the
AECG standardized dry eyes and dry mouth questions, but who
did not have the objective criteria of glandular dysfunction to be
classified as pSS. MSG biopsy tissue from female pSS patients (n =
13, mean age = 55.1 years) and age and sex-matched non-SS
control subjects (n = 13, mean age = 54.2 years) were analyzed. All
pSS patients displayed focal lymphocytic sialadenitis with a focus
score of greater than one/4 mm2 in accordance with the standard of
care as detailed in Daniels et al. (24). A majority of patients
exhibited Ro/SSA autoantibodies and salivary gland hypofunction
(whole unstimulated salivary flow < 0.1 ml/min). A summary of
clinical characteristics and patient demographics is provided in
Table 1 and Supplementary Table S5.

RNA Isolation and Quantitative RT-PCR
TotalRNAfromhumanMSGs fromnon-SScontrols andpSSpatient
samples from OMRF was extracted from optimal cutting
temperature (OCT) embedded tissues and isolated and purified
using TRIzol (Invitrogen, 15596018) with BioMashers (TaKaRa,
9790A). Total RNA from human MSGs from non-SS controls and
pSS patient samples from CDMUA was similarly isolated and
purified using TRIzol with BioMashers. All RNA was phase
separated by chloroform and further isolated using the Direct-zol
RNA Miniprep kit (Zymo Research, R2050) according to the
manufacturer’s instructions. For quantitative reverse-transcription
polymerase chain reaction (qRT-PCR) a total of 0.8 micrograms of
RNA was reverse transcribed using the iScript cDNA Synthesis Kit
(Bio-Rad, 1708890) according to the manufacturer’s instructions.
Quantitative reverse-transcription polymerase chain reaction was
performed on a CFX96 Touch™ Real-Time PCR Detection System
(Bio-Rad, 1855195) using iQ SYBR Green Supermix (Bio-Rad,
1708882). All qRT-PCR assays were performed in duplicates in at
least three independent experiments. Relative expression values of
each target gene were normalized to glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) expression. The RNA samples used for
January 2021 | Volume 11 | Article 606268

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Oyelakin et al. Transcriptomic Analysis Primary Sjogren’s Syndrome
qRT-PCR analysis shown in Supplementary Figure S2 represent
three non-SS controls (S2, S4, and S5) and three pSS (S12, S14, and
S16) collected from the OMRF. In parallel, an additional set of four
patient samples were utilized consisting of three non-SS controls
(S21-S23) and three pSS (S25-S27) collected from the CDMUA as
well as one non-SS control (S24) and one pSS (S28) from the OMRF
Supplementary Figure S3. These patient samples serve as an
independent cohort for the qRT-PCR data since these samples
were not processed for RNA-seq studies. Primer sequences are
provided in Supplementary Table S1.

RNA-Sequencing, Differentially Expressed
Gene (DEG), Ingenuity Pathway Analysis
(IPA), and Enrichment Analyses
cDNA libraries were prepared using the TrueSeq RNA Sample
Preparation Kit (Illumina) from RNA samples isolated from eight
non-SS controls and nine pSS patients obtained from the OMRF
(see Figure 1A and Table 1 for sample ID numbers and additional
patient information). The cDNA libraries were then sequenced on
an Illumina NovaSeq sequencer (50 cycle paired-end). After initial
quality control metrics were determined using FASTQC v0.4.3, the
raw reads were thenmapped to the reference genome (Hg38 build)
with Hisat2 (25) v2.1.0. using Bowtie (26) v2.2.6 as the underlying
aligner. Reads mapping uniquely to each gene in the reference
genome were then quantified using featureCounts (27) from the
Subread (28) package. The resulting counts matrix was imported
intoR for read countnormalizationanddifferential gene expression
analysis using theDESeq2 (29) package. An adjusted p-value < 0.05
based on Benjamini-Hochberg method was used as a cut-off for
determining differentially expressed genes. Gene ontology analysis
for identification of enriched pathways was performed using the
Database for Analysis Visualization and Integrated Discovery
(DAVID) v6.8 (30, 31). The databases were queried by providing
the list of official names of genes of interest. The resulting KEGG
Pathway (32–35) table was then imported into R for generating bar
plots. ClueGO v2.5.7 (36) add-on of the Cytoscape Platform v3.72
(37) was used to generate Figures 1C, D. For Figure 5A, a table
containing official names and corresponding foldchange values of
the 80 genes that are common across all three datasets was used as
Frontiers in Immunology | www.frontiersin.org 3
input for the Ingenuity Pathway Analysis (IPA) software (Qiagen).
The core analysis function of the software was used to interpret the
data and generate the graph (Figure 5A) of canonical pathways that
correspond to the changes in gene expression. Figures 5B–D were
generated from the genes enriched in the indicated canonical
pathways using STRING v11 (38–41), and the clusters were
defined based on likelihood of protein-protein interaction using
the STRING’s implementation of the Markov cluster algorithm
(MCL) clustering (42). Sequencing data generated for this study has
been deposited in the Gene Expression Omnibus (GEO) database
under the accession number GSE157159.

Determination of Immune Cell
Contribution to Gene Expression
Transcripts per million (TPM) normalized gene expression
matrix was generated according to the method proposed by
Wagner et al. (43) and was used as input for estimating cell type
enrichment using the xCell (44) program with default settings.
The resulting cell type estimation matrix was filtered to remove
cell types with enrichment scores less than 0.1 and used as input
for generating the heatmap in Figure 4.

Protein Expression Dataset
Differentially expressed genes (DEGs) with absolute foldchange
values greater than 1 between pSS and non-SS control subjects
were separated into upregulated and downregulated genes. Each
subset was then used to filter the RNA gene expression values from
tissues downloaded from the Human Protein Atlas (HPA) (45). The
salivary gland and several immune-related tissues were then further
extracted and used to generate the boxplots visualizing the estimated
contribution of these tissues to the overall differential gene expression
profiles observed between the non-SS control and pSS tissues.

RESULTS

Defining the Transcriptome of the Minor
Salivary Gland of pSS Patients
To better define the global gene expression patterns of pSS and to
identify new molecular players that may contribute to the
TABLE 1 | A Summary of Clinical Characteristics and Patient Demographics.

Patient ID (sample ID) Group Age Sex Ethnicity SSA SSB Focus score Whole saliva flow (<0.1 ml/min)

p1032179-8(S1) Non-SS 51 F White/NativeAm – – 0 –

p1033491-4(S2) Non-SS 58 F Unknown – – 0 –

p1033567-0(S3) Non-SS 52 F White – – 0 –

p1033570-8(S4) Non-SS 48 F White – – 0 –

p1033749-8(S5) Non-SS 64 F White – – 0 –

p1033790-4(S6) Non-SS 51 F White – – 0 –

p1034307-9(S7) Non-SS 64 F White – – 0 –

p1034335-9(S8) Non-SS 52 F White – – 0 –

p1000509-3(S11) SS 50 F White + + 5 +
p1000529-6(S12) SS 52 F White + + 6.4 +
p1001613-4(S14) SS 68 F NativeAm + + 12 +
p1001703-6(S15) SS 59 F White/NativeAm + + 6 +
p1012568-8(S16) SS 47 F White/NativeAm + + 10.6 +
p1025909-5(S17) SS 51 F White + + 10 +
p1031753-1(S18) SS 51 F White + + 2.2 +
p1034325-7(S19) SS 57 F Unknown + + 5.5 +
p1034535-4(S20) SS 61 F White + + 8 +
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development of this disease, we performed RNA-sequencing
based expression profiling of human MSGs from eight non-SS
controls and nine pSS patients. In order to better analyze the
overall changes in gene expression patterns between cases and
controls, we utilized principal component analysis (PCA). The
resulting PCA plot revealed a clear degree of separation between
the different samples with each of the control and pSS patient
groups appearing as separate entities (Figure 1A). Overall, our
analysis suggests that the patient samples segregated well based
on their mRNA expression profiles.
Frontiers in Immunology | www.frontiersin.org 4
To better appreciate the underlying molecular drivers of pSS,
we compared the transcriptomic profiles of non-SS control and
pSS MSGs. Our analysis identified 5529 differentially expressed
genes (DEGs), with 2979 genes upregulated and 2550 genes
downregulated with the top 100 upregulated and downregulated
genes shown in Figure 1B (Figure 1B and Supplementary Table
S2). To better appreciate the biological relevance of the global
transcriptomic differences between the control and pSS glands,
we performed pathway analysis based on the top 100 DEGs. As
expected, in the glands of pSS patients we observed specific
pSS
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enrichment of biological processes associated with immune
responses including B cell proliferation, regulatory T cell
differentiation, regulation of interleukin-12 production and
chemokine-mediated signaling pathway—many of which have
been implicated in SS pathogenesis (17, 46, 47) (Figure 1C and
Supplementary Table S3). In contrast, downregulated genes
were associated with negative regulation of cell-cell adhesion,
O-glycan processing, and glycoprotein metabolic process, all of
which are important processes necessary for proper salivary
gland function including host-mediated defense mechanisms
(Figure 1D and Supplementary Table S4) (48).

Integrated Analysis Identifies a pSS
Molecular Signature
To confirm the robustness of our sequencing results, we next
compared the global transcriptomes of the control and pSS glands
byutilizingRNA-sequencing (RNA-seq) datasets describedhere, to
additional RNA-seq (Liu et al.) (49) and microarray array datasets
(Min et al.) (50) that have been previously reported (Figure 2 and
Supplementary Figure S1). Given that our analysis revealed a
significant number of upregulated DEGs in our dataset (Oyelakin
et al.) compared to the Liu et al. andMin et al. datasets, we focused
on the 80 upregulated DEGs that were enriched across each of the
three datasets (Figures 2A, B and Supplementary Table S2). We
reasoned that this approach would address possible variations
between the three datasets due to technical and experimental
differences. Indeed, our analysis identified a number of genes
common to all three datasets that have been previously
demonstrated to play important roles in pSS pathogenesis
including several members of the CXC chemokine family of
cytokines including CXCL9, CXCL10, CXCL11, CXCL13 (15, 51,
52),members of the guanylate-binding protein family;GBP1,GBP5
(49, 53, 54), as well as AIM2 (55), CD52 (56), and GZMK (57). To
further confirm these results, we performed quantitative reverse-
transcription polymerase chain reaction (qRT-PCR) using a subset
of patient samples which were included in our RNA-seq analysis to
examine the mRNA expression levels of a select number of
candidate genes, several of which have been implicated in pSS
pathogenesis. Concordant with our RNA-seq results, we found
reduced mRNA expression levels of INSIG1 (19) and elevated
expression levels of CCL5, LYN, STAT1, IL7R, and IRF1, all of
which have been previously implicated in pSS (50, 57–61)
(Supplementary Figure S2). In order to further validate these
findings, we performed additional qRT-PCR analyses using an
independent cohort of four pairs of pSS and control patient
samples and observed similar trends in overall gene expression
(Supplementary Figure S3 and Supplementary Table S5). Having
identified 80 common genes across the three datasets, we next
sought to gain a better understanding of the underlying biological
functions and pathways associated with these genes. Not
surprisingly, our analysis identified enrichment of genes
associated with a number of biological processes which have been
previously linked to pSS including immune responses, type I
interferon signaling pathway, defense response to virus,
chemokine-mediated signaling pathway, inflammatory response,
and interferon-g-mediated signaling pathway (17, 18, 62, 63)
Frontiers in Immunology | www.frontiersin.org 5
(Figure 2C and Supplementary Table S6). Taken together, our
integrated analysis has identified a molecular signature which
includes a number of genes and pathways which have previously
been shown to play a role in pSS, highlighting the power of
this analysis.

Defining the Nature of the Transcriptomic
Changes in pSS Salivary Glands
To further evaluate the changes in gene expression inpSS andbetter
define the overall nature of these transcriptomic changes, wemined
the publicly available transcriptome database for human tissues
generatedby theHPAproject (45).Uponcomparisonof the average
gene expression levels of the pSS salivary gland datasets to various
human tissue datasets, we found select enrichment of genes in the
pSSpatient samples to be those that are predominantly expressed in
immune-specific tissues and cell types (Figure 3A). Given this
result, it is tempting to speculate that the specific enrichment of
genes associated with immune organs and tissues is a reflection of
immune cell infiltration commonly observed in the glands of pSS
patients. Conversely, we found the genes that were downregulated
in pSS patients were highly enriched in the tonsil and salivary gland
tissues compared to other immune tissues (Figure 3B). This
suggests that in addition to the immune cell-type related changes,
other salivary gland specific cell types such as epithelial cells, may
also be affected in pSS (64, 65).

Armed with a global view of the overall transcriptional
changes in the glands of pSS patients, we next sought to
characterize the cell types that may be contributing to the
alterations in gene expression. Towards this end we utilized
xCell (44), a cell type enrichment analysis tool that allowed us to
estimate the cell types contributing to the bulk RNA-seq
expression profile using published information from single-cell
RNA-seq datasets (66–68). As expected, we observed enrichment
of genes associated with various immune cells types including B
cells, conventional dendritic cells (cDC), plasmacytoid dendritic
cells (pDC) and CD4+ effector memory T cells (CD4+ Tem) in
the pSS glands, which is in good agreement with previous reports
(69–74) (Figure 4). Interestingly, our analysis demonstrated a
decrease in genes commonly expressed in epithelial cells (Figure
4). Indeed, these results correlate well with our own DEG
analysis demonstrating that genes which were downregulated
in pSS were highly enriched in normal salivary gland tissues as
described in Figure 3B. Taken together, our results highlight the
complex cell intrinsic and extrinsic changes occurring in the
glands of pSS patients.

Functional Gene Regulatory Network
Analysis
Over the years, gene regulatory network analyses have emerged as
an important tool in identifying transcriptional control programs,
regulatory relationships and signaling networks that operate in the
gene-rich environments during development and in disease.
Towards this end, we utilized ingenuity pathway analysis (IPA) to
explore differences in pathways and gene regulatory networks
between the pSS and non-pSS control samples. Our analysis
revealed the top two differentially regulated pathways to include
January 2021 | Volume 11 | Article 606268
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the T-helper cell pathways—Th1 and Th2 (Figure 5A), which is in
good agreement with previous studies detailing the role of T cells in
SS (75). Surprisingly, we also observed specific enrichment ofDEGs
that are commonly associated with repression of the PD-1/PDL-1
cancer immunotherapy pathway (Figure 5A and Supplementary
Table S7). The possible association of pSS with repressed PD-1/
PDL-1 pathway is surprising given that some studies have reported
elevated expression levels of PD-1 and PDL-1 in the salivary glands
of pSS patients (76–78). However, our finding is in agreement with
recent reports of the development of a Sjögren’s like syndrome in
cancerpatients treatedwithPD-1/PD-L1 checkpoint inhibitors (79,
80). Further support for pSS development resulting from repressed
PD-1/PDL-1 comes frommousemodels which have demonstrated
that animals with deletion of PD-1 develop autoimmune diseases
that include lupus-like arthritis and glomerulonephritis (81, 82).
Frontiers in Immunology | www.frontiersin.org 6
Given the conflicting roles for the PD-1/PDL-1 pathway in pSS
pathogenesis, further careful studies are warranted. Yet another
interestingfindingwas theobservedenrichment of genes associated
with theneuroinflammation signalingpathway (Figure5A).This is
in linewith recent studies examining the role of the neuroendocrine
system in systemic autoimmune diseases including rheumatoid
arthritis, SLE and SS (83, 84). Finally, the role of pattern recognition
receptors in recognition of bacteria and viruses was also among the
over-represented pathways in our DEG dataset, which is in
accordance with emerging evidence, suggesting a role for toll-like
receptor (TLR) activation in pSS (Figure 5A) (85). Gene regulatory
network analyses detailing the signaling networks connecting the
DEGs for each of the aforementioned pathways are demonstrated
in Figures 5B–D. Overall, while our RNA-seq driven data analysis
revealed enrichment in a number of immune-mediated functional
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categories, it has also provided clues to the involvement of
other pathways in pSS, some of which have only recently
received attention.
DISCUSSION

While the underlying molecular mechanisms driving the
pathogenesis of SS has been an area of extensive research over
the last several decades, very few advancements have been made
in treating this disease. Although various strategies have been
employed over the years to address this, recent advances in next-
generation sequencing approaches like RNA-seq have provided
unprecedented insight into the complex molecular circuitry that
governs dysregulated transcriptional networks contributing to
diseased states. Here we have utilized RNA-seq to generate a
comprehensive global gene expression profile of MSGs from
patients with pSS. Using an integrative based approach, we have
Frontiers in Immunology | www.frontiersin.org 7
identified a pSS molecular gene signature that may offer insight
into new players and pathways important for driving this disease.
Moreover, we have utilized sophisticated computational and
bioinformatics-driven analyses to identify important cell types
that may be contributing to the underlying transcriptomic
changes in the MSGs of pSS patients.

OurRNA-seqbasedapproach identifieda largenumber (~5529)
ofDEGs between non-SS control and pSS glands.More specifically,
our analysis revealed 2979 upregulated and 2550 downregulated
genes. These results were particularly surprising given that a recent
RNA-seq study performed by Liu et al., and an integrated
microarray-based study by Min et al., revealed a total of 293 and
382 DEGs, respectively (49, 50). While discrepancies between the
number of DEGs identified in our study detailed here, compared to
the microarray-based study can be attributed to the inherent
limitations associated with microarray technologies, the
differences we observed between our study and that of the
RNA-seq study performed by Liu et al., is particularly intriguing.
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A potential explanation for this discrepancy could be ascribed,
among many things, to differences in patient background and
demographics, disease severity, focus score and the inherent
variability associated with genomic data collection and
processing. We suspect that the patients included in the Liu et al.
study were all of Chinese descent and thus likely represent a more
homogenous patient population. Conversely, the patients included
in our analysis were more ethnically diverse (Table 1). Hence, it is
tempting to speculate that the increased number of DEGs observed
in our data set is a direct reflection of ethnic diversity and more
representative of the genetic heterogeneity commonly associated
with this disease (86, 87). It is also plausible that the differences in
focus scores between the twopatient groupsmay inpart account for
the significant difference in DEGs. Indeed, the high average patient
Frontiers in Immunology | www.frontiersin.org 8
focus scores (8.4) of our study compared to that of Liu et al. (1.8),
might be indicative of enhanced immune cell activation in the
minor salivary gland biopsies chosen for our study.We suspect that
this heightened immune activation might broadly influence not
only the inflammatory infiltrates but also the epithelial cell
populations, which may reflect the differences in DEGs. Future
studies aimed at more detailed investigations of the dynamic
changes in the transcriptomic landscape as it pertains to patient
focus scores will be of both prognostic and therapeutic value.

One important innovative aspect of our study is the generation
of a pSS molecular signature which we posit includes relevant genes,
genetic biomarkers and pathways—this can be extremely revealing
about the underlying mechanisms driving pSS pathogenesis. While
our molecular signature has identified a number of genes which
FIGURE 4 | Cell Type Enrichment Analysis in pSS. Heatmap visualization of gene set enrichment scores by cell type. Scores were normalized across rows. The
stroma and immune scores are displayed at the top of the heatmap. Cell types were assigned by the xCell algorithm based on the estimated enrichment of cell type
signature genes in each bulk RNA-seq sample.
January 2021 | Volume 11 | Article 606268

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Oyelakin et al. Transcriptomic Analysis Primary Sjogren’s Syndrome
have previously been reported to play key roles in pSS, we have also
uncovered several genes which have not been previously associated
with this disease and which may serve as candidates for future
studies. For instance, we identified the T cell activation GTPase-
activating protein (TAGAP) gene as an integral component of the
pSS molecular gene signature. Although TAGAP has not been
directly linked to SS, prior GWAS studies have identified single
nucleotide polymorphisms (SNPs) located within the TAGAP
genomic locus to be genetic risk factors for rheumatoid arthritis, a
common autoimmune disease (88). Additionally, we identified the
Mucolipin 2 (MCOLN2) gene to be part of our gene signature. The
Frontiers in Immunology | www.frontiersin.org 9
Mucolipin 2 gene encodes for the transient receptor potential
mucolipin channel 2 (TRPML2) protein which belongs to the
TRPML family of cation channel proteins (89). Recent studies
have suggested a role for MCOLN2 in the activation of innate
immune responses through TLR signaling (90). This is an
interesting correlation given the emerging role for TLR signaling
in pSS pathobiology (85, 91–93).

While glandular destruction observed in SS patients has
commonly been attributed to the consequences of abnormal B
cell and T cell responses, emerging evidence also suggests a
pathogenic role for epithelial cells in contributing to disease
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development and progression. Indeed, salivary gland epithelial cells
(SGECs) isolated frompatients with SS have been shown to play an
active role in driving local autoimmune responses by mediating
recruitment, homing, activation anddifferentiationof immune cells
(94–96). In fact, our computational analyses clearly demonstrated
alterations to the transcriptional landscape of the epithelial cells in
pSS patients, lending further credence to an active role for this cell
type in disease pathology. Although our bulk RNA-seq studies
described here have been valuable in examining global changes of
protein-coding genes, other genomic approaches focusing on the
roles of microRNAs (miRNA) and circular RNAs (circRNAs) have
also been gaining interest and have been revelatory for pSS biology
(97, 98). Additional follow-up RNA-seq studies with larger cohorts
of patients andmore importantly, single-cell based studies that can
delve deeper into examining alterations in the molecular and
cellular heterogeneity of the various cell types of the MSGs of SS
patientswill beextremely valuable.As thegenomics era continues to
advance and evolve, it will no doubt shed new light on the
underlying mechanisms driving SS with the hope of offering new
avenues to treat this disease.
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