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The intestinal tract encompasses the largest mucosal surface fortified with a fine layer of
intestinal epithelial cells along with highly sophisticated network of the lamina propria
immune cells that are indispensable to sustain gut homeostasis. However, it can be
challenging to uphold homeostasis when these cells in the intestine are perpetually
exposed to insults of both endogenous and exogenous origin. The complex networking
and dynamic microenvironment in the intestine demand highly functional cells ultimately
burdening the endoplasmic reticulum (ER) leading to ER stress. Unresolved ER stress is
one of the primary contributors to the pathogenesis of inflammatory bowel diseases (IBD).
Studies also suggest that ER stress can be the primary cause of inflammation and/or the
consequence of inflammation. Therefore, understanding the patterns of expression of ER
stress regulators and deciphering the intricate interplay between ER stress and
inflammatory pathways in intestinal epithelial cells in association with lamina propria
immune cells contribute toward the development of novel therapies to tackle IBD. This
review provides imperative insights into the molecular markers involved in the
pathogenesis of IBD by potentiating ER stress and inflammation and briefly describes
the potential pharmacological intervention strategies to mitigate ER stress and IBD. In
addition, genetic mutations in the biomarkers contributing to abnormalities in the ER
stress signaling pathways further emphasizes the relevance of biomarkers in potential
treatment for IBD.

Keywords: endoplasmic reticulum stress, unfolded protein response, apoptosis, inflammation, intestinal
epithelial cells
INTRODUCTION

The intestine houses a plethora of innocuous microbes that establish a symbiotic relationship in the
host. Additionally, constant exposure to the external factors makes it susceptible to invasion by
exogenous pathogens ensuing persistent immune response in the gut. Therefore, the lamina propria
immune cells must be functionally fine-tuned to differentiate and exhibit tolerance toward
org November 2020 | Volume 11 | Article 5430221
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commensals and immunity to pathogens. At this juncture, the
intestinal epithelial cells (IECs) lining the gut play two major
roles: segregation and mediation, conserve gut homeostasis (1);
avoid unwarranted immune responses to gut microbes utilizing
highly specialized cell types (Paneth cells, goblet cells,
enteroendocrine cells, and absorptive epithelial cells) (2–7).
Perturbations in the functions of these IECs cause microbial
dysbiosis, infiltration and hyperactivation of immune cells in the
lamina propria contributing to IBD. IBD is multifactorial whose
pathophysiology is unclear and disrupts several aspects such as
the physiology, microbiology, immunology, and genetics of the
host mimicking a chaotic battlefield. Simply put, the impairment
of one aspect causes the annihilation of the other. One such
widely reported contributing factor for IBD is ER stress as
described below.
ER STRESS AND UPR

The ER is the primary site for facilitating the appropriate folding
of proteins and dispatches them to their respective functional
destinations in the IEC with secretory function (2). However, the
proteins that shuttle through the ER may aggregate, triggering a
highly conserved unfolded protein response (UPR) and establish
ER homeostasis in three possible ways (8). A. Transcriptional
induction:- increases the protein folding capacity by transcribing
chaperones that aid in proper folding; B. Translational
attenuation:- reduces protein load in the ER by arresting
translational machinery, degrading mRNAs; C. ER-associated
degradation:- the unfolded proteins are marked for proteasomal
degradation. However, if ER stress persists, the effort to establish
homeostasis can be futile triggering apoptosis in IEC (9).
Abbreviations: AGR2, Anterior Gradient 2; AKT, Protein Kinase B; APR, Acute
Phase Response; ASCL1, Achaete-scute homolog 1; ATF4, Activating
Transcription Factor; ATG16L1, Autophagy related 16 like 1; CASP2, Caspase
2; CHOP, C/EBP (CCAAT/Enhancer Binding Protein) Homologous Protein;
CREBH, cAMP Responsive Element Binding Protein H; CRP, C – Reactive
Protein; CSNK2B, Casein Kinase 2 Beta; DSS, Dextran Sulfate Sodium; eIF2a,
Eukaryotic Initiation Factor 2a; ERAD, Endoplasmic Reticulum Associated
Protein Degradation; Ero1a, Endoplasmic Reticulum Oxidoreductase 1a;
GADD34, Growth Arrest and DNA Damage–Inducible Protein; GCN, General
Control Nondepressible 2; HIK, Sensor Histidine Kinase/Response Regulator;
IEC, Intestinal Epithelial Cells; IL–1b, Interleukin 1b; IL–6, Interleukin 6; JNK, c-
Jun N- terminal Kinase; LCA, Lithocholic Acid; Mac-1, Macrophage-1 antigen;
Mbtps1, Membrane Bound Transcription Factor Peptidase, Site 1; MLKL, Mixed
Lineage Kinase domain-like Pseudo kinase; MUC2, Mucin 2; NEC, Necrotizing
Enterocolitis; NF-kB, Nuclear Factor Kappa – Light Chain Enhancer of Activated
B cells; NKG2D, Natural Killer Group 2D; NRF2, Nuclear Factor Erythroid 2–
Related Factor; OASIS, Old Astrocyte Specifically Induced Substrate; OGR1,
Ovarian cancer G-protein coupled receptor; ORMDL3, ORM1-like protein 3; 4–
PBA, 4–Phenyl Butyrate; PERK, Protein Kinase R–Like ER Kinase; PI3K,
Phosphatidylinositol 3–kinase; PKR, Protein Kinase R; PP1C, Protein
Phosphatase 1C; RIDD, Regulated Ire1–Dependent mRNA Decay; RIPK1/3,
Receptor-interacting serine/threonine protein kinase 1/3; S1P, Site 1 Protease;
S2P, Site 2 Protease; SAP, Serum Amyloid Protein; SNP, Single Nucleotide
Polymorphism; TNFa, Tumor Necrosis Factor a; TNFR1, Tumor Necrosis
Factor Receptor 1; TRAF2, TNF Receptor–Associated Factor 2; TRUC, T-bet-/-/
RAG2-/-/Ulcerative Colitis; TUDCA, Tauroursodeoxycholic Acid; UDCA,
Ursodeoxycholic Acid; ULBP1, UL16 Binding Protein 1; XBP1s, X–box Binding
Protein 1 spliced variant; XBP1u, X–box Binding Protein 1 unspliced variant.
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UPR SIGNAL TRANSDUCERS

UPR pathways function with unique mechanisms of signal
transduction operating in parallel utilizing IRE1a, PERK, and
ATF6 (9). In their inactive state, these stress sensors are bound to
BiP toward the intraluminal domain. Under ER stress, the BiP
dissociates, activating IRE1a, PERK, and ATF6 signaling
cascades to salvage the distressed cell.

IRE1a is the most evolutionarily conserved transmembrane
kinase with endoribonuclease activity (10). The active IRE1a
cleaves the 26-nucleotide intron from XBP1 forming functional
XBP1s (11), which then enters the nucleus, and regulate UPR-
related genes. Interestingly, the XBP1u is degraded rapidly after
translation; however, during prolonged stress, XBP1u is reported
to accumulate and complex with XBP1s, to promote ubiquitin-
mediated degradation of XBP1s in HeLa cells (12). Therefore, a
balanced level of XBP1u and XBP1s partly dictates the functional
role of IRE1a. Another important regulatory mechanism
executed by IRE1a is through IRE1-dependent mRNA decay
(RIDD). IRE1a cleaves the transcripts that enter ER through the
translocon and prevents accumulation of unfolded proteins in
the ER (13). Nevertheless, RIDD can also be deleterious if
mRNAs that translate for pro-survival proteins are degraded
suggesting that a selective degradation of mRNA is favored. Of
note, in the recent past, the ability of RIDD pathway to degrade
microRNAs responsible for inhibiting the translation of CASP2
in mouse embryonic fibroblasts (MEF) have also been identified
signifying that fine-tuning the availability of non-coding RNAs
also contribute to the overall outcome of UPR (14) (Figure 1A).

PERK is a type 1 transmembrane serine/threonine kinase,
when bound to BiP, remains inactive (10). Dissociation of BiP
enables dimerization of PERK and promotes its kinase activity
and phosphorylates eIF2a causing a translational block to
manage ER stress. Another pivotal step that occurs at this
stage is the selective internal ribosomal entry site mediated
translation of ATF4 amidst the inhibitory phosphorylation of
eIF2a (15). Nuclear translocation of ATF4 promotes GADD34,
CHOP and miR-211 expression (16, 17) to mediate UPR in
mouse embryonic fibroblasts. Upon resolution of ER stress,
GADD34 complexes with PP1C and dephosphorylates eIF2a
to restore protein translation. Interestingly, PERK-induced miR-
211 abrogates the expression of CHOP/GADD34 suggesting the
pro-survival role of miR211 (17). However, if the ER stress
remains unresolved, CHOP activates the terminal UPR to
induce apoptosis in IEC (18, 19) (Figure 1B).

ATF6 is also a transmembrane kinase, with a basic leucine
zipper (bZIP) domain, unlike IRE1a and PERK. Once the BiP
dislodges from ATF6, it is trafficked from the ER to Golgi. S1P
and S2P cleaves ATF6 releasing the N-terminal cytosolic domain
of ATF6 (N) that translocate to the nucleus and promotes the
transcription of chaperones, ERAD complex and XBP1 to
mitigate ER stress (Figure 1C).

In addition to the three primary signal transducers, a few ER
stress transducers belonging to the OASIS family are identified
recently (20). These stress sensors share a region of high
sequence similarity with ATF6. One such example is CREBH,
which is also trafficked from ER to Golgi and proteolyzed by S1P
November 2020 | Volume 11 | Article 543022
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FIGURE 1 | Schematic depiction of unfolded protein response (UPR) signaling cascade, and the interplay between endoplasmic reticulum (ER) stress response and
inflammation. (A) Oligomerization of IRE1a in the presence of unfolded proteins promotes the endoribonuclease activity of IRE1a and unconventional splicing of
XBP1 generating functional XBP1 that regulates gene expression. IRE1a promotes RIDD-dependent mRNA decay and reduces protein overload in the ER lumen. (B)
Activated PERK drives phosphorylation of eIF2a resulting in translational block. At this juncture, selective IRES dependent translation of ATF4 is promoted to induce
chaperones and mitigate oxidative stress as well as apoptosis. (C) Dissociation of BiP from ATF6 leads to translocation of ATF6 from the ER membrane to Golgi
promoting its cleavage by S1P and S2P generating functional ATF6 that regulates UPR genes. (D) In IRE1a pathway, the RNase domain is involved in Xbp1 splicing
and RIDD mechanism upregulates the expression of pro-inflammatory cytokines TNFa, IL-6 and IL-1b; the kinase domain activates JNK and IKK signaling pathway
that results in apoptosis and inflammation respectively. Additionally, activation of proton-sensing OGR1 is responsible for ER-stress mediated response via IRE1a-
JNK-XBP1s axis. The kinase activity of ATF6 leads to phosphorylation of AKT ensuing inflammation via NF-kB signaling. The cleaved p50ATF6a acts as a
transcription factor and upregulates the expression of APR genes and ER co-chaperone p58IPK that in turn blocks the phosphorylation of eIF2a. PERK is one of the
kinases that phosphorylate eIF2a at Ser 51, which enables selective translation of ATF4. ATF4 drives the expression of CHOP and pro-inflammatory cytokines such
as IL-6, IL-8, and RANTES. Induced expression of CHOP abrogates pro-survival signaling leading to cell death. Notably, the translational block decreases further
translation of IkB ensuing inflammation due to increase in NF-kB. Nrf2, another notable target phosphorylated by PERK that is known to manifest antioxidant
response. Created with BioRender.com.

Eugene et al. ER Stress and Inflammation
and S2P (21). Studies indicate that ATF6 and CREBH regulate
inflammatory gene expression during the early phase of infection
or injury.
UPR AND INFLAMMATION

Recent studies have extended a clear understanding of the
relationship between UPR signaling and inflammation (Figure
1D). Activated IRE1a, in addition to its role as bifunctional
enzyme, interacts with TRAF2 to activate JNK and NF-kB (22,
23) regulating inflammatory gene expression. Studies also indicate
that XBP1s induces TNFa and IL-6 (24, 25) which in turn activate
NF-kB (23, 26); thus amplifying the inflammatory responses.
Interestingly, degradation of miR-17, a microRNA that represses
the expression of thioredoxin-interacting protein (TXNIP) by
IRE1a results in stabilization of TXNIP and expression of IL-1b
(27, 28). At the molecular level, identification of IRE1a-TXNIP axis
to activate NLRP3 inflammasome, IL-1b expression and
programmed cell death (27) through miR-17 degradation hint
that ER stress regulates inflammation. Furthermore, activation of
IRE1a-GSK3b axis induces the expression of IL-1b and regulates
the expression of TNFa (29). It is also a known fact that GSK-3b
requires priming kinase to phosphorylate the substrate first for
recognition and phosphorylates the phosphorylated substrate at a
different site (30). Therefore, it is conjectured that the
phosphorylated kinase domain of IRE1a acts as the priming
kinase for GSK-3b to phosphorylate the riboendonuclease domain
of IRE1a rendering it inactive leaving the hypothesis to be tested as
a future prospect. Inhibition of global translation upon activation of
PERK lowers the levels of IkBa ensuing massive activation of
NF-kB (31). On the other hand, the selectively translated ATF4
binds to IL-6 promoter and regulates its expression (32). Of note,
TLR4 signaling is also responsible for the induction of ATF4,
independent of ER stressors, resulting in the transactivation of Il6,
Il18, and Rantes in macrophages and monocytes (32, 33).
Additionally, PERK also directly phosphorylates NRF2, regulating
the antioxidant response by nullifying the ROS production during
ER stress in fibroblasts (34). Recent investigations, however, direct
toward an alternative NRF2 regulation in response to oxidative
stress via PERK-eIF2a-ATF4 axis in human cells (NCI-H358) (35).
Reversible sulfenylation of cysteine residue (C663) of IRE1a by
Frontiers in Immunology | www.frontiersin.org 4
ROS results in the attenuation of UPR and promotes activation of
NRF2-mediated antioxidant response in human cells (36). Overall
activation of PERK inhibits eukaryotic translation, prevents the
accumulation of unfolded proteins that promote inflammatory gene
expression, and regulates apoptosis through ATF4. Interestingly,
similar to IRE1a and PERK, ATF6 also contributes to NF-kB
signaling through transient phosphorylation of AKT, however,
prolonged ER stress resulted in downregulation of AKT
phosphorylation (37). The phospho-refractory nature of AKT
after ATF6-mediated ER stress is further confirmed by
subsequent TLR4 stimulation of ischemic Kupffer cells (38).
However, the ability of ATF6 to regulate inflammatory gene
expression remains unexplored to a large extent.
ER STRESS AND UPR IN INTESTINAL
INFLAMMATION

Continual exposure to a myriad of gut microflora, exogenous
antigens, dietary metabolites, and toxins impede the functional
ability of IECs. Although nature has bestowed with
evolutionarily conserved and sophisticated mechanisms to
overcome these impediments, disruption in any of these
mechanisms can cause chronic inflammation in the gut.
Accordingly, there are two ways to look at the cause for the
collapse of these mechanisms: i) IECs are pushed to synthesize
copious amounts of proteins, cytokines, and peptides; activating
UPR. In this scenario, cells that are competent enough will
survive and the rest will succumb to stress. ii) Genetic
deficiency of the genes that are involved in UPR, autophagy,
secretion, immune response and inflammation can have various
impacts and confer a genetic predisposition to IBD owing to
decreased protein folding capacity and heightened immune
response. Mechanistic studies conducted on murine models
deficient in these genes facilitated the understanding of
phenotypic outcomes in correlation to IBD (Table 1).

Of the three pathways, IRE1a-XBP1 axis of UPR has been
extensively studied and known to play an essential role in regulating
immunity and inflammation. Additional evidence from the studies
suggests that Xbp1 is linked to IBD. Cell-specific loss of Xbp1 in
intestinal epithelial cells (Xbp1DIEC) displayed amplified ER stress
(40). Additionally, deep-sequencing studies have revealed rare
November 2020 | Volume 11 | Article 543022
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variants/SNPs of the Xbp1 gene that contributes to the susceptibility
and severity of the inflammatory disorders in humans (40).
Furthermore, Xbp1 deletion resulted in hyperactivation of IRE1a
and enhanced the susceptibility to experimentally induced
inflammation in mice suggesting a pivotal role of IRE1a in
intestinal inflammation. Studies demonstrated that IRE1a recruits
TNFR1 during ER stress to activate TNF-independent JNK
signaling and apoptosis (51). This was further supported by the
fact that the deletion of Tnfr1 in Xbp1DIEC mice failed to develop
intestinal inflammation and the deletion of Xbp1 in IECs resulted in
the apoptotic loss of Paneth cells that maintain homeostasis (40). Of
note, ER stress can also activate TNF-independent TNFR1-
mediated necroptosis, a programmed RIPK1/RIPK3/MLKL-
dependent necrosis, in L929 cells. Inhibition of JNK, however,
resulted in the inhibition of both TNFR1-mediated apoptosis and
necroptosis (52). On the other hand, the induction of CHOP in
Xbp1DIEC upregulated the expression of induced NKG2D ligand,
which activates natural killer cell-mediated cytotoxicity establishing
the involvement of CHOP in innate immune responses (53).
Moreover, genetic deletion of IRE1a led to impaired XBP1
splicing and JNK-driven phosphorylation of eIF2a through PERK
that promotes apoptotic cell death, suggesting a prominent pro-
survival role of IRE1a as well. Furthermore, the study indicated
compromised intestinal epithelial barrier integrity, lymphocyte
infiltration and induced expression of TNFa, IL-1b and IL-6
leading to the development of spontaneous colitis in the mice
(39). Altogether, these studies implicate a homeostatic role of
IRE1a in mucosal immunity.

At later stages of ER stress, the PERK-ATF4 axis of UPR is
predominantly active and induces CHOP. Whole-body deletion
of Chop in mice suppressed the induction of Mac-1, Ero-1a, and
caspase-11 with reduced intestinal epithelial cell apoptosis (43,
44). Another important component of the PERK pathway is
phosphorylated eIF2a and its role has been studied using IEC-
specific non-phosphorylatable S51A mutant AADIEC mice (45).
The translocation machinery to recruit mRNA into ER has been
found to be defective in AADIEC mice leading to defective
antimicrobial peptides, cryptidin, and lysozyme resulting in the
breach of epithelial integrity by commensals and hyperactivation
of immune cells. Another notable feature is that a family of
protein kinases such as PKR, GCN2, and HRI other than PERK
phosphorylate eIF2a and regulate ER stress. Although these
Frontiers in Immunology | www.frontiersin.org 5
protein kinases are activated by different stimuli including
infections and inflammatory cytokines, they culminate into
phosphorylation of eIF2a at Ser51 emphasizing the importance
of eIF2a in maintaining IEC homeostasis (54).

The functional role of Atf6a has been experimented using
Atf6-/-mice wherein deletion of Atf6a led to reduced expression of
ER chaperones BiP and p58IPK and showed signs of apoptosis
(46). p58IPK-/- mice showed amplified ER stress and were more
susceptible to DSS-induced colitis (55). Deletion of bothAtf6a and
p58IPK resulted in embryonic lethality, suggesting either ATF6a
or p58IPK is required to oversee protein-folding defects (56). It is
important to note that p58IPK is an ER co-chaperone that
negatively regulates eIF2a, which in turn down regulates ATF4
and CHOP. As indicated previously, owing to the structural and
sequential similarity,Oasis-/-mice developed characteristics of IBD
as observed in Atf6-/- mice impacting goblet cell maturation (57,
58). Studies in a similar mouse model elucidated the role of S1P-
ATF6 axis in IBD and concluded that missense mutation in
Mbtps1 impaired ATF6 arm of UPR (59). Deficiency of Atg16l1
and Xbp1 genes shows increased activity of ATF6a. Interestingly,
inhibition of the ATF6a co-activators, CSNK2B and ASCL1
reduced the activity of ATF6a and attenuated CXCL1 and
TNFa expression (49). Furthermore, Atg16l1DIEC is responsible
for IL-22-mediated activation of IFN1-TNF axis and ER stress
response (50). Increased levels of TNF potentiate IL-22-induced
necroptotic epithelial cell death, contradicting the previously
reported protective role of IL-22. In addition, targeting IL-22 in
TRUC mice model alleviated ER stress response and colitis (60).
Hence, the paradoxical nature of IL-22 challenges its prospect as a
treatment for IBD.

In addition to the aforementioned genes, there are other IBD risk
genes such as AGR2 and Ormdl3. AGR2 belongs to the PDI family;
expressed strongly in tissues that secretes mucus and expressed
abundantly in the inflamed mucosa of UC patients (61, 62). Agr2-/-

knockout mice developed spontaneous granulomatous ileocolitis
(63). In addition to its intracellular role, modifications in the KTEL
motif of AGR2 implicate its role in protein secretion (64). To
emphasize an interesting hypothesis that inflammation can induce
ER stress, the Il10-/- mice model was studied and found that IL-10
mitigates intestinal inflammation during ER stress (65). A recent
study, however, demonstrated ER stress in LPS-stimulated
macrophages, abrogated the immunosuppressive effects of IL-10
TABLE 1 | List of endoplasmic reticulum (ER) stress-related genes in inflammatory bowel diseases (IBD).

Gene Function Implications

Ire1a Xbp1 splicing, RIDD, activation of JNK and NF-kB signaling (8, 9) Xbp1 splicing, Enhanced CHOP – induced apoptosis (39)
Xbp1 Transcription factor – Chaperones, ERAD complex, Lipid

biosynthesis (8, 9)
Ire1a hyperactivation, Amplified ER stress, Increased JNK phosphorylation,
Heightened expression of pro – inflammatory genes (40)

Ire1b Selective repression of ER – localized secretory proteins (41) Aberrant accumulation of secretory proteins (42)
Chop Transcription factor – Increases protein load in ER by

dephosphorylation of eIF2a, Induction of apoptotic signalling (18,
43)

Decreased apoptosis (44)

eIF2a
phosphorylation

Regulatory node in maintaining cellular homeostasis, Attenuation of
global mRNA translation, Selective translation of ATF4 (9)

Defective expression of UPR genes, Defective recruitment of secretory protein
coding mRNAs into the ER leading to compromised protein secretion (45)

Atf6a Membrane – bound transcription factor – Xbp1, Chaperones,
ERAD complex (8, 9)

Diminished expression of ER chaperones BiP and P58IPK, CHOP – induced
apoptosis (46, 47)

Atg16l1 Regulates autophagy; autophagosome formation Impaired granule exocytosis pathway in Paneth cells (48), increased ATF6a
activity (49) and IL-22 induced TNF expression leading to necroptosis (50)
November 2020 | Volume 11 | Article 543022
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(66). Acidic milieu in IBD activates OGR1 receptor found in
abundance lining the mucosal region. Further evidence indicates
the role of TNF (67) in the expression of OGR1 that in turn
mediates ER stress and exacerbates inflammation via IRE1-JNK-
XBP1s axis and blocks autophagy (68). Interestingly, deletion of
OGR1 in Il10-/- female mice protected from the development of
spontaneous colitis (67).
MICROBIOTA, ER STRESS AND
INFLAMMATION

Asmentioned earlier, activation of UPR cascade as a consequence of
ER stress potentiates inflammation and IBD (Figure 1D). Of note,
evidences report impaired UPR signaling cascade in IBD (69, 70). In
the recent past, the impact of diet, nutrients and gutmicrobiota have
been implicated in ER stress and IBD (71). Prevalence of
Fusobacterium activates UPR and promotes inflammation in UC
patients (72). Probiotic bacteria such as Lactobacillus paracasei
ameliorated intestinal inflammation through ER stress-UPR
pathway (73). On the contrary, Lactobacillus acidophilus mitigated
intestinal inflammation by suppressing NF-kB and thereby
inhibiting ER stress (74). Adding to this, methyl deficient diet
aggravates DSS-induced colitis by promoting ER stress (75).
Interestingly, HFD driven ER stress has been found to be harmful
as well as beneficial in ERs stress-mediated inflammation-driven
osteoarthritis and liver pathology respectively (76, 77). Likewise,
three cancer mice models fed with low protein diet reportedly
activated IRE1a/RIG pathway in tumor cells limiting tumor growth
(78). DSS treatment disrupts ER homeostasis and membrane
integrity (79). Dietary administration of Lachnum Polysaccharide
(LEP) to DSS-induced colitis mitigated ER stress-mediated
inflammation not only by precluding immune cell infiltration, but
also improved epithelial barrier integrity by regulating tight junction
(TJ) proteins, mucus layer protecting proteins, and antimicrobial
peptides (80). Altogether, these results, suggest a pivotal role for
dietary components, microbiota and ER stress in inflammation of
the intestine. However, a detailed investigation still remains to
understand the molecular association among these to cause IBD.
POTENTIAL THERAPEUTICS TARGETING
ER STRESS IN IBD

As discussed earlier, dysfunctional ER stress and UPR is one of the
contributing factors in the etiology of IBD (40, 81). Therefore, drugs
targeting to alleviate ER stress appear as a convincing choice to treat
IBD. Chemical chaperones such as TUDCA and 4-PBA augment
protein folding and suppress ER stress in IECs in vitro (46, 82).
Moreover, oral administration of TUDCA and 4-PBA reduced ER
stress in Il10-/-mice and DSS-induced colitis in P58IPK-/- and Atf6-/-

mice (46, 83). Recent studies conducted on NEC mouse models
showed that TUDCA is capable of reducing the ER stress markers
and apoptosis by inhibiting PERK-eIF2a via activation of the PI3K/
Akt pathway (84). Salubrinal, a specific eIF2a phosphatase
inhibitor, reduces tunicamycin-induced ER stress and TNFR1-
Frontiers in Immunology | www.frontiersin.org 6
independent necroptosis in hepatocytes by selectively preventing
eIF2a dephosphorylation (85). The secondary bile acid UDCA
protects the intestinal barrier by inducing epithelial cell migration
at the site of injury (86) and ameliorates LPS-induced intestinal
inflammation (87). In addition, studies conducted on DSS-induced
colitis mice model demonstrated the ability of UDCA and LCA to
mitigate colonic inflammation by inhibition of epithelial apoptosis
(88). Amino acids such as L-glutamine and L-arginine have been
reported to regulate proliferation and differentiation of IECs
suggesting the role for dietary supplements to regulate ER stress
(89, 90). Moreover, it has been proved that L-glutamine and glycine
supplementation can salvage IECs from ER stress and apoptosis by
improving the intestinal epithelial barrier function (91) upregulating
tight junction proteins (92). Plant-based active ingredient berberine
(BBR) has long been known to alleviate ER stress response as an
alternative to chemical compounds. Accordingly, a recent study
asserted the ability of berberine to reduce inflammation and
apoptosis in DSS-induced colitis mice model (93). Furthermore,
evidences suggest that PERK, and IRE1a inhibitors may be
extended to IBD pathogenesis. Accordingly, STF-083010, a small
molecule inhibitor that specifically targets IRE1a has been proven to
reduce ER stress-driven inflammation in atherosclerosis and
diabetes (94, 95). Similarly, pharmacological inhibition of PERK
by GSK2656157 and GSK2606414 ameliorate tumor growth and
enhance neuroprotection (96–98) and PKR inhibitors such as
imoxin and 2-aminopurine reduced ER stress in mouse beta TC-
6 cell line (99). Activator of ATF6, Compound 147 has shown to
reduce the risk of infarction and preserve cardiac function (100).
Nevertheless, the efficacy and implications of these small molecules
in ER stress-driven intestinal inflammation remains to be
largely unexplored.
CONCLUSION

The incidence rate of IBD, which has been once considered the
disease of the developed nations, is alarmingly at a rise globally.
Efforts have been placed to rationalize the root cause by
postulating various hypothesis including hygiene (101) and
cold chain hypothesis (102) culminating to a single root cause
‘microbial dysbiosis. There are numerous factors at play in
disrupting the gut microbiome and integrity of the intestinal
barrier (40). As a result, the compromised epithelial barrier
allows breaching by microbes and exogenous antigens
attracting the attention of the host’s immune system that tries
to salvage but ends up damaging the host tissue due to
inflammation. Chronic inflammation is one of the hallmark
features of IBD, identical to a ‘wildfire’ that if uncontrolled
causes collateral damage. There is also growing evidence that
deregulated ER stress and UPR signaling pathways can instigate
or magnify the inflammatory response in IBD (103–106).
Therefore, restoring a robust ER stress and UPR mechanism
could be a potential therapeutic target. Nevertheless, the lack of
well-demarcated molecular pathways is downright challenging to
develop targeted therapies to preclude overlapping adverse
effects. However, the development of optimized therapeutics is
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possible if a profound understanding of the phenotype and
pathogenesis of the disease can be established by delineating
the cellular and molecular pathways.
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