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The immune system plays pivotal roles in the occurrence and progression of cancers.

As blockade of immune-checkpoint has been proven effective at improving anti-tumor

immune response in multiple tumor types, the tumor immunotherapy still faces many

challenges. Emerging evidence indicates lymphoid organ-like structures, also called

tertiary lymphoid organs (TLOs) or ectopic lymphoid organs (ELOs), have been identified

in cancers, as the result of lymphoid neoorganogenesis. The prognostic value of TLOs

in cancer patients has been evaluated with debates, however, such well-organized

lymphoid structures in the site of cancer indicate TLOs are the important modulators

of cancer immunological microenvironment. TLOs have attracted remarkable efforts

to investigate their neoorganogenesis and function in immune responses, aiming to

develop new strategies for cancer immunotherapy. In this review, we summarize the

current understandings about the molecular and cellular mechanisms governing the

formation and function of TLOs in immune responses against cancer.

Keywords: tumor microenvironment, cancer immunology, tertiary lymphoid organ, non-canonical NF-κB,

immunotherapy

INTRODUCTION

In the revised hallmarks of cancer that suggests a conceptual rationale, the importance of tumor
microenvironment has been highly appreciated (1). The cancer cells do not manifest the disease
alone; the collaborative interaction of neoplastic cancer cells and immune cells is crucial for
tumorigenesis, local invasion, and metastases (2, 3). The immune cells that reside therein and those
that migrate to the tumor in response to various signals are the key contributors of the tumor
microenvironment (2). The remarkable achievements have been made to understand the function
of immune cells in surveillance and clearance of cancer providing important insight into how these
processes could be collaborative or misdirected in the context of cancer (4).

Most of the solid tumors have infiltrating immune cells; the presence of antigen-presenting
dendritic cells (DCs) and lymphoid cells in situ indicates that such solid tumors could be
recognized as the foreign and elicit an immune response (5). The presence of high numbers of
tumor-infiltrating lymphocytes (TILs) has been considered as the prognostic. The basic observation
or presumption of current immunotherapy strategies is that the immune system in tumor patients
is impaired without efficient immune surveillance, so in general, many strategies have been
developed to harness anti-tumor immune response, practically, blockade of immuno-checkpoints
has been approved by FDA to treat several cancers (6, 7). Meanwhile, the immune cells provide an
inflammatorymilieu for tumorigenesis, progression, andmetastasis (8, 9). The protumoral function
of immune cells relies on the inflammatory milieu mediated by inflammatory cells for recruitment
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and induction of alternatively activated macrophage, myeloid-
derived suppressor cells (MDSCs), and regulatory T cell
(Treg) (10–12). Emerging evidence has indicated that
even the same type or subpopulation of TILs sometimes
has different or opposite effects on patient outcome,
which becomes the greatest obstruction to design a
tumor-immunotherapy approach (13, 14). However, the
mechanisms driving this phenomenon are not fully understood
to date.

The lymph organs, referring the secondary lymphoid organs
(SLOs), such as spleen, lymph nodes, Payer Patches, and
mucosal-associated lymphoid tissue (MALT), etc., provide
the three-dimensional structure for the optimized cell-cell
interaction of different types of immune cells, to generate an
effective immune response (15). Immune response could be
triggered, independently of SLO, in tertiary lymphoid organs
(TLOs) that develop under the chronic inflammatory condition,
such as autoimmune disease, chronic infection, chronic graft
rejection, and tumors (16–18). Similar to SLOs, the TLOs are
histologically identified structures, characterized by presence
of stromal cells, B-cell follicles, T-cell zones, and specialized
vessels known as high endothelial venules (HEVs), although
without encapsulating and afferent lymphatics (19). The typical
histological structure and cell components of TLO detected
by immunofluorescence or immunohistochemistry staining
were showed in Figure 1 (20, 21). The spatial segregation
of lymphocytes and stromal cells confers TLOs the potential
capability to maintain a local immune response, which is
suggested by the relevance of ectopic follicle formation to the
diseases. In autoimmune non-obese diabetic mice, it would
promote local production of autoantibodies (22). And in human
autoimmune diseases, such as Hashimoto thyroiditis and Graves’
disease, lymphoid follicles (LFs) were generated in thyroid
gland which was assumed the main autoimmune response
site (23). This intrathyroidal LFs are functional and might
contribute to the expansion and perpetuation of autoimmune
response (24). On the other hand, the development of TLOs
may promote the eradication of pathogens and infectious
agents, suggested by multiple animal studies with infection
models (25, 26).

The function of TILs in the solid tumor is well-documented
and it is generally accepted that the typical T-cell mediated
anti-tumor immune response is initiated by DCs in the
inflamed tumor microenvironment which ingest, process, and
present the tumor-derived antigens to T-cell in SLOs, to
activate the antigen specific anti-tumor T-cells (5, 27). T-
cells, in turn, migrate back to the tumor tissue to eliminate
the target antigen-expressing tumor cells. The presence of
TLOs is correlated with better prognosis in many cancers
including breast, lung, and colorectal cancer, however, the
profound functions of TLOs in the immune response in tumor
microenvironment are largely unknown (19, 28, 29). In this
review, we will summarize the current knowledge of TLO in
tumor microenvironment, and discuss the cellular and molecular
mechanisms involved in the formation and function of TLO,
and its potential to be a prognostic immune signature and novel
immunotherapeutic target.

THE FUNCTION OF TLO IN CANCER

TLOs have been discovered for decades, mostly documented in
autoimmune diseases, chronic infection, and rejection of organ
transplantation. The immune response in these pathological
settings is activated by persistent antigens released from the
damaged tissues (30, 31). Since chronic inflammation is highly
correlated with origin of tumors, which also provides the suitable
microenvironment for neogenesis of TLOs, the prognostic
value of TLO has been estimated in many types of tumors.
Lymphocyte infiltration in tumor microenvironment, and the
spatial aggregation in lymphoid structures are crucial in dictating
patient outcomes. A great deal of studies has investigated the
numbers, locations, frequencies, and cellular components of
TLOs developed in tumor microenvironment, which indicates
that the occurrence of TLOs is associated with better prognosis
together with more infiltrating lymphocytes. Comparing to
traditional haematoxylin and eosin (H&E)-staining which is used
to identify lymphoid follicles, the immunohistochemistry-based
methodologies to detect specific lymphocytes surface markers,
combined with computer-based quantitative image assay, has
provided a detailed assessment of the prognostic role of TLO
subsets (32, 33). The prognostic relevance of TLOs in colorectal
cancer, non-small-cell lung cancer, breast cancer, and melanoma
cancer was summarized in Table 1.

TLO in Colorectal Cancer
TLOs in human colorectal cancer (CRC) have been detected
in multiple locations, intra-tumoral, and peritumoral regions,
as well as at the invasive front of tumor. Many types of
immune cells typically observed in SLO, including T-cell, B-
cell, CD21+ follicular dendritic cell (FDC), and mature DC,
together with CD31+ HEV and LYVE-1+ lymphatic vessels
are found in TLOs (45, 46). In the CRC patients, both CD3+

TLOs and TILs are prognostic biomarkers in both primary
and metastatic CRC (47). T cell-enriched TLOs and TILs
are correlated with immune components identified in low-risk
CRC, so the immunological events involved in tumor rejection
are enhanced in local tumor microenvironment with TLO
occurrence (31, 48). TLO frequency correlates with immune cells
infiltration which is coordinated in better prognosis of stage
II CRC patients (34, 36, 37). In the colitis-associated cancer
animal model, B-cell follicle formation is observed in the sites of
chronic inflammation associated with intestinal neoplasia (49).
Since chronic inflammation is involved in CRC tumorigenesis,
it is difficult to tell whether TLOs contribute to persistence of
tumor-associated inflammatory reaction or participate in anti-
tumor response. Another animal study indicates that adoptive
transferred GFP-positive splenocytes by intravenous injection
results in homing of those lymphocytes into TLOs, suggesting
TLOs might be the sites for immune cell migrating to mount an
efficient anti-tumor immune response in tumor area (35).

TLO in Non-small-cell Lung Cancer
In human non-small-cell lung cancer (NSCLC) specimens, the
presence of TLO structures is also correlated with clinical
outcomes (38). The cellular components of TLOs are similar to
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FIGURE 1 | Histological structure and cell components of TLO detected by immunofluorescence or immunohistochemistry staining (20, 21). (A) T cells zone (CD3+),

B cells zone (CD20+), and HEVs cells (CD31+ MECA-79+) are detected in the TLO of breast cancer tissue (20). (B) In melanoma associated TLO, CD20+ B cells

form a follicle, with CD4+ and CD8+ T cells in the parafollicular cortex or marginal zones. CD86+ antigen presenting cells scatter the whole TLO structure. Only a few

Foxp3+ Tregs are detected (21). The data/figures are cited from the indicated literatures with permission, all the right are reserved to the original publishers.

TABLE 1 | Prognostic relevance of tertiary lymphoid tissue in primary tumors.

Type of

cancer

TLT cellular composition Prognostic marker Methodology Prognostic

value

Number of

patients

Tumor

stage

References

Colorectal n.a. H&E H&E Positive 843 I–IV (34)

T cells, B cells, FDCs Gene signature MA-GES Positive 21 0–IV (31)

T cells, B cells, HEV, FDCs,

DC-LAMP+DCs

CD3+ T cells IHC Positive 351 II–III (35)

T cells, B cells, CD68+macrophages,

CD83+DCs

CD3+ CD20+ CD68+ CD83+ IHC Positive 884 I–IV (27)

T cells, CD83+ DCs CD3+ T cells, CD83+ DCs IHC Positive 40 I–IV (36)

CD8+ T cell, DC-LAMP+DCs DC-Lamp+ mature DC IHC Positive 25 ND (37)

Lung T cells, B cells, DC-LAMP+DCs, FDCs DC-LAMP+ mature DC IHC Positive 74 I–II (38)

T cells, B cells, DC-LAMP+ DCs, HEV DC-LAMP+ mature DC, IHC Positive 362 I–IV (39)

T cells, B cells, DC-LAMP+ DCs, HEV,

GCs

DC-LAMP+, CD20+ B cells IHC Positive 196 I–III (40)

Breast Tregs, T cells, DC-Lamp+ DCs FoxP3+ IHC Negative 191 I–III (41)

T cells, B cells CD3+ T cells, CD20+ B cells H&E, IHC Positive 248 ND (42)

T cells, B cells, DC-LAMP+DCs, HEV DC-LAMP+ DCs IHC Positive 146 I–III (43)

T cells, B cells PNAD+ HEV IHC Positive 146 I–III (20)

Melanoma DC-LAMP+ DCs DC-LAMP+ IHC Positive 82 IA–IIIA (44)

DC-LAMP+ DCs Gene signature MA-GES Positive 21 IV (21)

IHC, immunohistochemistry; Tfh, T helper follicular cells; GC, germinal center; FDCs, follicular dendritic cells; H&E, hematoxilin and eosin staining; DCs, dendritic cells; HEV, high

endothelial venules; GES, gene expression signature; MA, microarray.

those in SLO, with mature DC/T-cell zones adjacent to B-cell
follicles, indication of activated immune responses. The density
of mature DCs (DC-LAMP+) is highly correlated with the
density of infiltrating CD4+ and T-bet+ T-cell into tumor, which
also is associated with a favorable long-time survival of patients
(38). While T-cells, both naive and central memory CD4+ and

CD8+ cells, are identified in TLOs, the overall T-cell infiltration
and density are less important than the density of mature DCs
in TLOs since the patients with high DC-LAMP+ mDC have a
dramatically improved clinical outcome (39).The infiltration of
DCs might be controlled by CXCL12 and CXCR4 interaction,
suggested by gene array analysis (50). As for B-cell, the germinal

Frontiers in Immunology | www.frontiersin.org 3 June 2019 | Volume 10 | Article 1398

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lin et al. TLO as New Cancer Immunotherapy Strategy

center-like structure may not exist in some cases, however, TLOs
are the local sites for priming and expansion of both B- and
T-cells (51). The prognostic value of B-cell seems to be more
dramatic which also provides a protective immune response
against lung cancer. Histologically, B-cell follicles aggregating
with CD21+ FDCs, form germinal-center like structures (38,
52). These B-cells mediate a tumor associated antigen specific
antibodies production locally, suggesting the B-cells are also
involved in the humoral immune response against lung cancer
(40). Additionally, the antitumor immune response could be
suppressed by Tregs within tumor-associated TLS (TA-TLS) in
a mouse model of lung cancer (53).

TLO in Breast Cancer
The presence of TLO is frequently correlated with better clinical
outcome in HER-2 positive and triple-negative breast cancer
(TNBC) (54). Both the density and spatial organization of TLO
are the determining factors of their prognostic value. A recently
report suggests that TLO is associated with higher tumor grade,
lymphovascular invasion, and more TILs, as well as hormone
receptors negativity, HER2 positivity, and c-kit expression (42).
TLO is dramatically related to better disease-free survival in
HER2+ breast cancer, which is independent of TIL status,
indicating TLO, and TIL might be the independent favorable
factors associated with disease-free survival in these cases (42).
Two independent studies suggest that HEV in TLOs related with
T- and B- lymphocyte infiltration and have favorable prognosis in
breast cancer (20, 43). Foxp3+ Tregs infiltration in TLO indicates
the high risk of disease relapse and death in primary breast
cancers (41).

TLO in Melanoma Cancer
The presence of TLO in human primary melanoma is associated
with better prognosis. Immunohistochemical analysis of 82
patients with cutaneous malignant melanoma shows that
presence of peritumoral DC-LAMP+ mature DCs combined
with OX40+ activated T cells, suggesting a functional immune
response, associate with significantly longer survival (44). In
the case of metastatic melanoma, TLOs identified in patients
havemore profound structures, including T-zones surrounded by
mature DCs, distinct B-zone, HEV, and germinal centers. Strong
B-cell mediated antibody production specific against melanoma
has been provoked indicated expression of activation-induced
cytidine deaminase (AID), the enzyme which is required for
somatic hypermutation of Ig and affinity maturation (55).
Chemokine expression in melanoma cell are critical for TLO
induction, indeed, analysis of 12-chemokine gene expression
signature (GES) on genomic arrays of 14,492 solid tumor
samples revealed that the presence of TLO directly correlates
with the expression level of these 12-chemokine GES score
(21). However, formation of TLO surrounding tumor might be
immune suppressive. Recruitment of CCR7+ lymphoid tissue
inducer (LTi) cells by CCL21-expressing melanomas leads to
TLO formation, which also recruit immune suppressive cells like
CD4+ Treg cells and MDSCs to suppress anti-tumor immune
response (56). Further study is required to illuminate the key

factor(s) to induce anti-tumor, but not immune suppressive
microenvironment of TLO.

MOLECULAR MECHANISMS OF TLO
DEVELOPMENT AND FUNCTION

In the regard to the similarity of structure and function
between SLO and TLO, our knowledge of TLO development
derived from studies of SLO organogenesis. The initialization
of SLO development is the presence of LTi and lymphoid
tissue organizer (LTo), followed by the dynamic interaction
between hematopoietic cell and stromal cell. As for TLO
development, which is related to chronic inflammation often
the time, the inflammatory cytokine-activated signal pathways
are critical, besides the shared signal pathways involved in SLO
development (Figure 2).

Inflammatory Factors
The chronic inflammatorymicroenvironment provides the initial
signal for TLO formation, which is the major difference between
TLO and SLO in development (57). The over-expression of TNFα
in mice could overcome the deficiency of LTi cell to induce
SLO formation (58). In regard to TLO, it is also notable that
supporting microenvironments for TLO development are very
devised, since TLO could be raised in different scenarios. Studies
using different animal models suggest that ILC3/LTi are not
always essential for TLO development, and chronic inflammation
is sufficient to induce TLO formation (59–61) (Figure 3).

IL-17 is an inflammatory cytokine family with six members to
activates the MAPK, NF-κB, PI3K, and C/EBP signal pathways
functions through a heterotrimeric receptor of two IL-17RA
and one IL-17RC subunit (62). The function of IL-17 in
immune response is involved in host defense, inflammation
and autoimmunity. IL-17 is mainly produced by Th17 cell,
as well as by γδT-cell and ILC3 (LTi). Indeed, LTi and Th17
share some crucial developmental and phenotypic characters.
RORγt and AHR are essential transcription factors to induce
the development and maintain their function of both Th17
and LTi. Both of them also express CCR6+ and IL-7R for
cell migration and survival (63). Given the similarity of LTi
and Th17 cells, Th-17 directly contributes to lymphoneogenesis
and development of TLOs (64). In the T-cell transfer induced
experimental autoimmune encephalomyelitis (EAE) model, the
Th17 cells infiltrated in the central nervous system induced the
TLO formation in the subarachnoid space. As for the infection-
associated TLO formation (iBALT), IL-17 produced by Th17
alone overruns the absence of LTi cell and mediates formation
of iBALT (65). However, studies indicate iBALT formation might
also have IL-17-independent mechanism, since iBALT formation
is normal in RORγt KO, IL-17A, and IL-17F double deficient
mice (66).

IL-22 is Th17-related cytokine which is not only produced
by Th17, but also by LTi. IL-22-/-mice have significant defect
in early TLO maturation, and abolished lymphoid chemokine
expression. In the virus-induced TLO formation model, IL-
22 signaling is necessary for CXCL12 and CXCL13 expression
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FIGURE 2 | The schematic diagram indicating the development of SLO and TLO. (A) Schematic model of SLO lymphoid organogenesis. The interaction lymphoid

tissue organizer (LTo) and lymphoid tissue inducer (LTi) is crucial for the initiation of SLO development. The signaling pathways activated by LTβR-lymphotoxin-α1β2

(LTα1β2), RANK-RANKL, and IL-7-IL-7R lead to the expression of a group of chemokines and adhesion molecules. The formation of high endothelial venules (HEVs)

facilities the recruitment of naïve lymphocytes from circulation. Further, CCL19 and CCL21 produced by stromal cells regulate the homing of CCR7+ T cells and

migration DCs to T-cell areas, whereas CXCL13 produced by follicular dendritic cells (FDC)s and DCs in germinal center attract CXCR5+ B cells into the follicles. (B)

The inflammatory response is mediated by various innate immune cells (such as macrophages and DCs), leading to the recruitment of lymphocytes into the inflamed

tissue. stromal cell in inflamed tissue are also activated to produce chemokine for lymphocyte recruitment which is suppressed when the inflammation is resolved.

However, the chronic inflammation leads to activation of innate and adaptive immune cells in the inflamed tissue with expression of LTα1β2 by activated B- and T-cells,

and lymphoid chemokines expressed by resident stromal cells, infiltrating macrophages, DCs, and other parenchymal cells. Recruitment of B cells, T cells, and DCs to

TLO is facilitated by acquisition of a HEV-like phenotype by activated endothelial cells. CCL19 and CCL21 produced by stromal cells promote the formation of T-cell

zone. Activated by LTα1β2, stromal cells acquire the phenotypic and functional features of FDCs and promote GC organization.

in epithelial and fibroblastic stromal cells, which leads to B-
cell recruitment and TLO formation (67). Colonic lymphoid
patches (CLPs) and isolated lymphoid follicles (ILFs) are TLOs in
colon induced by chronic infection. In the Citrobacter rodentium
infection model, IL-22 induced by LTα1β2 is required for the
organization and maintenance of mature CLPs and ILFs in
colon (68). Blockade of either the IL-22 or LTα1β2 pathway
significantly reduced the number of ILFs, and IL-22may function
similarly in the formation of ectopic lymphoid follicles in
other tissues during inflammation (68). It also possible that
IL-22 and lymphotoxin synergistically contribute to chemokine
production, thus coregulating the enlargement, organization, and
maintenance of the inflammatory aggregates.

Non-canonical NF-κB in the Development
of TLOs
NF-κB is a family of transcriptional factors that plays
critical roles in various biological processes. According to the
different activating mechanisms, NF-κB could be divided into

canonical and non-canonical NF-κB pathway, both of which
are important for TLO development (69). The canonical NF-
κB is often associated with inflammation, which is discussed
above; meanwhile the non-canonical NF-κB is involved in the
development and homeostasis. Compared to the transient and
robust activation of canonical NF-κB pathway, the activation of
non-canonical NF-κB pathway is slow but persistent, which is
correlated with their biological functions (70).

The function non-canonical NF-κB pathway in the

development and architectural organization of SLOs, including

spleen, lymph nodes, and mucosal lymphoid tissues, is well-

established using the transgenic or gene knockout mice models

(71). Loss-of-function of NIK, and deficiency of downstream

signaling components impairs the development of lymph nodes,
PPs, and disturbed spleen architecture (72). LTα1β2, the well-
defined ligand of LTβR, has essential function in lymphoid organ
development, by activating non-canonical NF-κB pathway. This
cytokine predominately produced by LTi, functions through
LTβR expressed on LTo. LTα1β2-induced non-canonical NF-κB
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FIGURE 3 | The schematic diagram indicating the development of TLO in the chronic inflammatory conditions. Chronic inflammation leads to activation of innate and

adaptive immune cells (such as macrophages, neutrophil, T-, and B-cells) in the inflamed tissue. Multiple chemokines (such as CXCL12, CXCL13, CCL19, and

CCL21) are released by activated local stromal cells to recruit T-, B-cells, and DCs for TLO formation with distinct B cell zone and T cell zone.

(p52/RelB) pathway is essential for chemokine (CXCL13, CCL21,
and CCL19) and adhesion molecules (MAdCAM-1) expression
by LTo, which mediates the recruitment of immune cells as well
as LTi for the growth and development of lymph nodes (73–75).

The functions of lymphotoxin dependent pathway in TLO

formation have been examined. Ectopic expression of LTα, under

the control of rat insulin promoter II (RIP) causes the formation

of TLO in pancreas and kidney, with accumulated T and B cell,
DC, macrophages, HEV, and lymphoid chemokine expression
(76). This lymphangiogenesis might be more inflammation-
related, since overexpressed LTα forms LTα3 homotrimer and
activates TNFR1 dependent signaling pathway. In the aged
NOD (non-obase diabetic) and ApoE−/− mice, LTβR mediated
non-canonical NF-κB pathway induces CXCL13, CCL21, and
MAdCAM-1 expression, to recruit and activate immune cells
forming TLOs in metabolic diseases condition (77).

Several strategies have been developed to induce TLO
formation for cancer immunotherapy by activating LTβR
signaling pathways. Administration of agonistic antibody against
LTβR promotes immune cell infiltration into tumor tissues
and anti-tumor immunity (78). Overexpressed LIGHT (another
ligand of LTβR) in tumor cells promotes TLO formation,

with enhanced T-cell mediated anti-tumor immune response
(79). Another study reported that mesenchymal stem cells with
overexpressed LIGHT could migrant into tumor sites and cause
tumor regression (80). The strategies above highlight the critical
role of LTβR-activated non-canonical NF-κB pathway in TLO
formation and functions in anti-tumor immunity. LTα1β2 also
induce IL-22 production by LTi during C. rodentium infection,
but LIGHT fails to do (81).

IL-7 in TLO Development
IL-7 is responsible for development of multiple immune cells
and immune homeostasis. The IL-7 receptor is heterodimer,
consisting of IL-7 receptor alpha chain (IL-7Rα) and a common
gamma chain (γC). The binding of IL-7 and its receptor complex
activates JAK3-STAT5, PI3K-AKT, and mTOR pathway (82).
The function of IL-7 in formation of SLO is well-established.
Several types of lymph nodes were hardly detectable in IL-7
and IL-7Rα knockout mice, which is not simply because of
deficiency of T- and B-cell. VCAM1+ICAM1+ mesenchymal
cells and lymphatic endothelial cells are important source of
IL-7 for LTi survival (50). Additionally, IL-7, or together with
RANKL, induces LTi to secrete LTα1β2, which further interact
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with LTβR of stromal cell to promote the maturation of LTo
and chemokine production (CXCL13, CCL19, and CCL21) for
lymphocyte recruitment (83). Consistently, in the transgenic
mice model with overexpressed IL-7, the CD4−CD3+IL-7Rα+

LTi is accumulated leading to the increased PPs numbers and
formation of multiple TLOs. This phenotype is attenuated by
deficiency of RORγt or LTα1β2, suggesting RORγt is the key
factor for LTi linage dependent, meanwhile IL-7 signal is for LTi
survival (83).

Emerging evidence suggested that IL-7 is also critical for TLO
development. IL-7 transgenic mice develop spontaneous TLOs,
and chronic inflammation such as chronic colitis, dermatitis
(84). Studies from RA patients indicated that expression level
of IL-7, IL-7R, and JAK3 were significantly increased in the
samples with TLOs, compared to tissues without non-organized
T- and B-cell infiltration (85, 86). IL-7 promotes monocytes,
macrophage, and dendritic cell to produce more chemokine,
adhesion molecule, and co-stimulatory molecules to enhance
pro-inflammatory effector T-cell function, which correlates
with clinical symptoms in RA patients (87). Collectively, IL-
7 promotes inflammatory response mediated by T-cell and
macrophage, and TLO formation.

TLO AS THE NEW THERAPEUTIC TARGET
OF CANCER IMMUNOTHERAPY

As discussed above, TLO could serve as the powerhouse for anti-
tumor immune response. Interestingly, TLO could be induced by
traditional immunotherapy, in those cases, TLO are considered
to orchestrate immune cell infiltration and activation to generate
an immunogenic microenvironment to eliminate tumors (88). In
the clinical trial with irradiated granulocyte-macrophage colony
stimulating factor (GM-CSF)-secreting pancreatic tumor vaccine
(GVAX), intratumoral TLO formation was observed in most of
patients enrolled.

To design a clinical potent immune therapy for solid
tumor, it is crucial to enhance the delivery of targeted
lymphocytes to tumor sites and to ensure the sufficient expansion
of activated lymphocytes in the immunosuppressive tumor
microenvironment. A bioactive polymer implant near tumor
tissue could facilitate the delivery, expanding, and dispersing
of tumor-reactive T cells, which has been proved to cause
the regression in a multifocal ovarian cancer model (89). This
method might be valuable for CAR-T or TCR-T therapy for the
solid tumor, since the major challenge of the adoptive transfer of
CAR-T or TCR-T is that defective mobilization of T cells to the
tumor sites.

Ganss’s group established a de novo method to induce
intratrumoral TLO and vessel normalization which could
enhance immunotherapy in resistant tumors (88). A compound
composed of mouse LIGHT protein and carboxy-terminal
vascular targeting peptide (VTP) was designed to specific
introduce LIGHT signal to tumor vessel, to induce intra-
tumoral TLO formation. After LIGHT-VTP injection, TLOs
were developed in majority of solid tumors, detected by

immunohistochemistry and immunofluorescence. Among of
group of pro-inflammatory cytokine and chemokine, IL-6, IL-1β,
and CCL21 are critical for TLO induction. Adaptive transfer
experiments indicate that macrophage and T-cell are required for
the formation and maintain of TLO. In vivo studies show that
LIGHT-VTP leads to anti-tumor immune response, with more
immune cells infiltrating into tumor sites and induction of more
effector and memory T-cells. Although LIGHT-VTP increases
the efficacy of checkpoint-blockade therapy, the anti-tumor
immune response is maximized when combined with tumor
vaccine and checkpoint-blockade therapy, LIGHT-VTP therapy
dramatically enhances anti-tumor immune response (88).

Similar strategy has been used in the study using a fusion
protein containing LIGHT and anti-EGRF antibody which could
specifically target EGFR+ tumor cell (90). By activating LTβR in
stroma cell, this treatment up-regulates the expression of various
cytokine and chemokine in tumor microenvironment, resulting
in the increased T-cell infiltration and T cell-inflamed tumor
microenvironment. Interestingly, the fusion protein synergizes
with immune checkpoint blockade therapy (90). Taken together,
TLO induction combined with immune checkpoint blockade
could maximize anti-tumor effect with better outcome.

PROSPECT

A great amount of experimental and clinical studies has
established TLOs as the functional immune organs to recruit
and activate T cells in the tumor site, mediating an effective
anti-tumor immune response. These experiments established
that induction of a lymphoid neogenesis favorable environment
in tumor tissue could be effective in local T-cell response and
tumor regression; thus, the key players of molecular pathways
of TLO development are the promising targets to induce TLO
as the alternative immunotherapeutic strategies. However, there
are several questions need to be answered: what are the reasons
that the TLOs develop only in certain portion of tumor patients,
but not all? Where do TILs migrate from before and after TLO
neogenesis? Could TLO be a boot camp for TILs? After all,
the occurrence of TLO could the result of that immune system
exerts an effective anti-tumor activity, in this scenario, TLO
has been proposed as a very promising strategy to promote
the delivery of an effective T cells into inaccessible areas of
solid tumors.
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