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The prominent role of tolerogenic dendritic cells (tolDCs) in promoting immune tolerance 
and the development of efficient methods to generate clinical grade products allow the 
application of tolDCs as cell-based approach to dampen antigen (Ag)-specific T  cell 
responses in autoimmunity and transplantation. Interleukin (IL)-10 potently modulates 
the differentiation and functions of myeloid cells. Our group contributed to the identifica-
tion of IL-10 as key factor in inducing a subset of human tolDCs, named dendritic cell 
(DC)-10, endowed with the ability to spontaneously release IL-10 and induce Ag-specific 
T regulatory type 1 (Tr1) cells. We will provide an overview on the role of IL-10 in mod-
ulating myeloid cells and in promoting DC-10. Moreover, we will discuss the clinical 
application of DC-10 as inducers of Ag-specific Tr1 cells for tailoring Tr1-based cell 
therapy, and as cell product for promoting and restoring tolerance in T-cell-mediated 
diseases.
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inTRODUCTiOn

Interleukin (IL)-10 is a powerful anti-inflammatory cytokine that plays an essential role in damp-
ening immune responses and in preventing chronic inflammatory pathologies (1). Deficiency 
or aberrant expression of IL-10 or IL-10 receptor (IL-10R) enhance inflammatory responses 
to microbial challenge and lead to the development of inflammatory bowel disease (2–4) and 
several autoimmune diseases [as reviewed in Ref. (5, 6)]. Some pathogens can harness the immu-
nosuppressive capacity of IL-10 to limit host immune responses, leading to persistent infection  
[as reviewed in Ref. (7)].

Human IL-10 was cloned (8) from a tetanus toxin-specific CD4+ human T-cell clone isolated 
from peripheral blood of a patient with severe combined immunodeficiency successfully trans-
planted with fetal liver and thymus, who spontaneously developed tolerance (9). From its discovery, 
IL-10 has been demonstrated to be produced by almost all leukocytes, including all T cell subsets, 
monocytes, macrophages, dendritic cells (DCs), B and natural killer (NK) cells, mast cells, neutro-
phils, and eosinophils [reviewed in Ref. (10)]. In addition, epithelial cells and keratinocytes can also 
secrete IL-10 in response to infection or tissue damage as well as tumor cells (11, 12).

Interleukin-10 upon interaction with IL-10R regulates the expression of several genes resulting 
in the downregulation of pro-inflammatory mediators, the inhibition of antigen (Ag) presenta-
tion, and the upregulation of immune-modulatory molecules. Overall, IL-10 modulates antigen-
presenting cells (APCs), inhibits, directly and indirectly, effector T cell proliferation and cytokine 
production, and promotes regulatory cell differentiation [reviewed in Ref. (13, 14)].
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Here, we present an overview on the role of IL-10 in pro-
moting the differentiation of myeloid regulatory DCs, focusing 
on the induction of a subset of human tolerogenic (tol) DCs, 
termed DC-10. Moreover, we discuss the role of DC-10 in 
modulating T cell responses in vitro and in vivo and the cur-
rent clinical application of DC-10 for cell-based therapeutic 
approaches.

iL-10 AnD MODULATiOn  
OF MYeLOiD CeLLS

Interleukin-10 signaling in monocytes/macrophages and DCs 
converges, via several mechanisms, to regulate nuclear tran-
scriptional events, inducing the initiation of homeostatic and 
anti-inflammatory programs. IL-10 interacts with a tetrameric 
receptor consisting of two IL-10Rα and two IL-10Rβ subunits. 
IL-10Rα binds IL-10, while IL-10Rβ, interacting with accessory 
molecules, mediates intracytoplasmic signals (14). IL-10/IL-10R 
interaction leads to phosphorylation of Janus kinase 1 (JAK1) 
associated with IL-10Rα and of Tyrosine Kinase 2 (TYK2), 
associated with IL-10Rβ. These kinases further phosphorylate 
two tyrosine residues located on the intracellular domain of 
IL-10Rα that act as temporary docking sites for STAT3 and 
STAT1 (15). Phosphorylated STATs homo/hetero-dimerize and 
translocate into the nucleus, where they bind to STAT-responsive 
genes (1, 16). Although the mechanisms underlying the IL-10/
STAT3-mediated responses are still to be fully understood, it 
has become evident that both IL-10 and STAT3 are required for 
anti-inflammatory responses. In macrophages, one of the major 
effects of IL-10/STAT3-mediated signaling is the transcription 
inhibition of up to 20% of the LPS-induced genes (17). This anti-
inflammatory activity is mediated primarily by STAT3 that, upon 
nuclear translocation, promotes the expression of specific genes, 
including those encoding for transcription factors, the ultimate 
effectors of the IL-10-mediated anti-inflammatory responses 
(18). Among molecules involved in inhibiting activation of 
myeloid cells, BCL3 has been shown to suppress LPS-induced 
TNF-α expression by inhibiting NF-kB (19), and NFIL3 has been 
demonstrated to specifically target a distal enhancer of Il12b and 
repress IL-12p40 expression (20, 21). IL-10/STAT3-mediated 
signal in macrophages promotes the expression of suppressor of 
cytokine signaling 3 (SOCS3) (22), a member of the SOCS pro-
tein family that plays important roles in the negative regulation 
of cytokine signaling pathways (23) (Figure 1). Although both 
IL-10 and IL-6 promote via STAT3 the expression of SOCS3, 
its inhibitory effects are restricted to IL-6R-mediated signaling 
(16). This evidence indicates that SOCS3 plays a role in regulat-
ing the pro-inflammatory effects of IL-6 (24).

In macrophages, upon activation with LPS or TNF-α, IL-10 
prevents the activation and nuclear translocation of the classical 
NF-kB by inhibiting IkB kinase (IKK) activity (25–27), and ham-
pers NF-kB DNA binding (28). This mechanism has been applied 
also to in vitro differentiated myeloid DCs, in which pre-treatment 
with IL-10 results in NF-kB inhibition that correlates with sup-
pression of IKK and Akt activities (29). Similarly, the addition 
of IL-10 during TLR-mediated activation of monocyte-derived 

DCs hinders MyD88 signaling, leading to the downregulation of 
NF-kB family members c-Rel and p65, and interferon regulatory 
factor (IRF)-3 and IRF-8, an effect mediated by the inhibitory 
activity on the PI3K/Akt pathway (30). The IL-10-mediated 
inhibition of the PI3K/Akt signaling pathway leads also to the 
activation of the glycogen synthase kinase 3 beta (GSK3beta) 
and of the downstream microphthalmia-associated transcription 
factor (MITF) that translocates to the nucleus and drives the 
expression of the inhibitory molecule glycoprotein (GP) NMB 
(30) (Figure 1). At steady state and upon activation of myeloid 
cells, IL-10 signaling induces the selective nuclear translocation 
of NF-kB p50/p50, overall preventing the expression of several 
pro-inflammatory mediators, including IL-6 and MIP-2α (27). 
Interestingly, in activated macrophages, BCL3, a member of the 
IkB protein family localized in the nucleus and tightly associated 
with NF-kB p50 (31), acts to repress the transcription of pro-
inflammatory cytokines, and positively regulates the expression 
of IL-10 (32).

An additional effect of IL-10 in myeloid cells is the down-
regulation of MHC class II (33, 34) and costimulatory molecules 
(35) expression (Figure  1). The mechanism of IL-10-mediated 
deregulation of MHC class II expression involves the transport 
inhibition of mature and peptide-loaded MHC class II complex 
to the plasma membrane (36). These IL-10-mediated effects are 
completely reversed by blocking STAT3 (37), although the role of 
STAT3 in these mechanisms has not been fully elucidated.

Interleukin-10 regulates at post-transcriptional levels, via 
micro (mi)RNAs, the expression of pro-inflammatory cyto kines 
(38). IL-10 inhibits the expression of LPS-induced miR155, allowing 
the expression of SH-2 containing inositol 5′ polyphosphatase 1 
(SHIP-1), which in turn negatively regulates PI3K-mediated acti-
vation of NF-kB and MAPK, and switches off the pro-inflamma-
tory response (39). On the contrary, upon LPS stimulation, IL-10 
rapidly and transiently enhances miR146b and sustains miR187 
expression in myeloid cells. miR187 acts as negative modulator 
of LPS responses by directly limiting TNF-α production at post-
transcriptional level and by reducing IL-6 and IL-12p40 transcrip-
tion via silencing the transcription factor IkB (40) (Figure  1). 
miRNAs have been also involved in regulating IL-10 expression 
upon LPS-mediated activation: upregulation of miR21 indirectly 
increases IL-10 production via downregulation of programmed 
cell death 4 (41). Overall, these evidences indicate that, through 
a complex network of miRNAs, IL-10 drives anti-inflammatory 
responses by upregulating miR146b and miR187 and by down-
regulating pro-inflammatory miRNAs, such as miR155.

In summary, IL-10 directly and indirectly, via inducing STAT3 
responsive genes and/or modulating NF-kB and MAPK activi-
ties, inhibits pro-inflammatory cytokine gene transcription in 
activated myeloid cells, and the expression of MHC class II and 
costimulatory molecules, overall preventing the ability of myeloid 
cells to efficiently present Ags to T cells and to activate effector 
T cells [reviewed in Ref. (7)].

Besides being an anti-inflammatory mediator, IL-10 pro-
motes the expression of several tolerogenic molecules in human 
monocytes, macrophages, and DCs, including IL-10 itself (15), 
heme-oxygenase (HO-1) (42, 43), and immunoglobulin-like 
transcript 3 (ILT3) and ILT4 (44). HO-1 is a protein of heme 
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FigURe 1 | IL-10-mediated modulation of myeloid cells. IL-10 binds to a tetrameric receptor consisting of two IL-10Rα and two IL-10Rβ subunits. 1. IL-10/IL-10R 
interaction leads to JAK1 and TYK2 phosphorylation and the consequent STAT3 and STAT1 phosphorylation. P-STATs, and in particular P-STAT3, dimerizes and 
translocates to the nucleus, where it promotes the transcription of specific molecules (i.e., SOCS3) or transcription factors (i.e., BCL3 and NFIL3), and inhibits the 
transport of MHC class II to the plasma membrane. 2. IL-10 signaling inhibits LPS-mediated activation of IKK that in turn prevents NF-kB-p65/p50 nuclear 
translocation and the expression of pro-inflammatory cytokine. In parallel, IL-10 promotes the selective NF-kB-p50/p50 nuclear translocation, which concurs in 
downregulating pro-inflammatory cytokine expression, and, in association with BCL3, promotes IL-10 expression. 3. IL-10 inhibits PI3K/Akt pathway that prevents 
LPS-mediated activation of MyD88, resulting in the inhibition of the expression of IRF-3 and IRF-8. 4. IL-10-mediated inhibition of PI3K/Akt pathway leads to GSK3β 
and MITF activation, responsible for the upregulation of the transcription of GPNMB. 5. IL-10 downmodulates LPS-induced expression of miR155, which directly 
inhibits SHIP1 and favors the negative regulation of TLR4 signaling by counteracting PI3K activity. 6. IL-10 enhances LPS-mediated induction of miR146b and 
miR187, which post-transcriptionally regulate mRNA encoding for TNF-α and reduce IL-6 and IL-12p40 transcription via inhibition of the transcription factor IkB.  
TYK, tyrosine kinase; JAK, Janus kinase; PI3K, phosphoinositide 3-kinase; Akt, protein kinase B; MyD88, myeloid differentiation primary response 88; STAT, signal 
transducer and activator of transcription; IKK, IkB kinase; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; GSK3β, glycogen synthase kinase 
3 beta; MITF, microphthalmia-associated transcription factor; MAPK, mitogen-activated protein kinase; SHIP1, SH-2 containing inositol 5′ polyphosphatase 1; Bcl3, 
B-cell lymphoma 3-encoded protein; NFIL3, nuclear factor interleukin 3; TFs, unknown transcription factors; SOCS, suppressor of cytokine signaling; GPNMB, 
glycoprotein NMB; HO-1, heme-oxygenase-1; ILT, immunoglobulin-like transcript; IRF, interferon regulatory factor; IL-10R, IL-10 receptor.
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degradation pathway playing a central role in tissue homeostasis 
and protection against oxidative stress (42). HO-1 is involved in 
the polarization of anti-inflammatory macrophages, which in 
turn acquire the ability to secrete high levels of HO-1 (45, 46).  
In human DCs, HO-1 inhibits their ability to stimulate allogeneic 
(allo) T  cells and promotes their suppressive effects (43). ILT3 
and ILT4 display a long cytoplasmic tail containing immune-
receptor tyrosine-based inhibitory motifs that upon binding to 
HLA class I molecules transduce a negative signal through the 
recruitment of the tyrosine phosphatase SHP-1. This leads to 
inhibition of NF-kB activation and, consequently transcription 
of genes encoding for costimulatory molecules (47, 48). Finally, 
IL-10 upregulates the transcription of the non-classical HLA class 

I molecule HLA-G (49, 50), one of the ILT4 ligands (47) with 
known immune-modulatory functions.

Overall, IL-10 via several mechanisms regulates activation 
and function of myeloid cells, thereby playing an important 
role in modulating immune responses in healthy and patho-
logical conditions.

iL-10-MeDiATeD MODULATiOn  
OF MOnOCYTe-DeRiveD DCs

Interleukin-10 has been repetitively applied to modulate in vitro 
differentiation of monocyte-derived DCs with contradic tive 
results (51–53). Allavena et  al. (51) demonstrated that IL-10 
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prevents DC differentiation by promoting a macrophage-like 
cell phenotype, whereas other studies reported that monocytes 
treated with IL-10 express markers associated with DCs (52, 53). 
Our group demonstrated that monocyte-derived DCs generated 
in the presence of IL-10 are a distinct subset of DCs with regu-
latory activities [(54), see next paragraph].

Interleukin-10 has been also applied to regulate already dif-
ferentiated monocyte-derived immature (55) or matured (56, 57) 
DCs. In both settings, DCs exposed to IL-10 treatment express 
reduced levels of MHC class II and costimulatory molecules, 
show decreased Ag-presenting capacity, and become regula-
tory cells with the ability to promote anergic T  cells (55, 56)  
with suppressive activity in vitro (57). More recently, it has been 
demonstrated that DCs matured in the presence of IL-10, termed 
IL-10-induced DCs, consist of two phenotypically and function-
ally distinct populations: CD83highCCR7+ and CD83lowCCR7− 
cells. The former cells display a strong migratory activity toward 
secondary lymphoid organs, have a stable phenotype, and induce 
in vitro T regulatory (Treg) cells with high suppressive activity. 
Based on these observations, the authors indicate that CD83high 
CCR7+ IL-10-induced DCs are promising candidates for cell-
based approaches to induce/restore tolerance in vivo (58).

DC-10 A DiSTinCT POPULATiOn OF 
HUMAn TOLeROgeniC DenDRiTiC 
CeLLS (tolDCs)

DC-10 are an inducible subset of human tolDCs characterized 
by the ability to secrete high levels of IL-10 in the absence of 
IL-12, and by the expression of a specific set of markers includ-
ing CD14, CD16, CD11c, and CD11b, but not CD1a, M-DC8, 
or CD68 (54). Despite being generated from precursors in the 
presence of IL-10, DC-10 are mature cells expressing CD80, 
CD86, and HLA class II molecules. Importantly, DC-10 
express a bunch of tolerogenic molecules such as ILT2, ILT3, 
ILT4, and HLA-G. Functional assays showed that, although 
DC-10 have a low stimulatory activity, they promote T  cell 
anergy and induction of allo-specific T regulatory type 1 (Tr1) 
cells (50, 54, 59, 60). Tr1 cells are a subset of CD4+ T  cells 
that co-express the integrin alpha2 subunit (CD49b) and the 
lymphocyte-activation gene 3 (LAG-3) (61), and secrete IL-10, 
TGF-β, variable amounts of IFN-γ and low/no IL-2, IL-4, and 
IL-17. Tr1 cells suppress immune responses via the secretion of 
IL-10, TGF-β, and of granzyme B [as reviewed in Ref. (13, 62)].  
We demonstrated that DC-10 promote Tr1 cell differentiation 
via the IL-10-dependent ILT4/HLA-G pathway (54). Inte-
restingly, DC-10-mediated induction of Tr1 cells is associated 
with high HLA-G expression (50).

DC-10 are present in peripheral blood and secondary lymphoid 
organs of healthy subjects and accumulate in human decidua in 
the first trimester of pregnancy (63). Interestingly, in peripheral 
blood of pregnant and non-pregnant women, the frequency of 
DC-10 is comparable, suggesting that either DC-10 migrate into 
decidua during pregnancy or are induced within the endometrium. 
Human decidua microenvironment is enriched in GM-CSF and 
IL-10 (64), both known to promote DC-10 differentiation, thereby 

decidual DC-10 can be either de novo induced from monocytes 
or derived from the conversion of resident decidual APCs. In the 
decidua of women with early miscarriage, DC-10 frequency is low 
(65), suggesting that in an inflammatory microenvironment dif-
ferentiation of DC-10 is impaired. In line with this conclusion, in 
women with preeclampsia a subset of decidual CD14+DC-SIGN+ 
APCs with reduced HLA-G and ILT4 expression and impaired 
ability to promote Tregs in vitro have been identified. The authors 
speculated that the reduced IL-10 levels observed in preeclampsia 
may lead to reduced HLA-G and ILT4 expression and impaired 
tolerogenic activity of these CD14+DC-SIGN+ APCs (66).

An altered frequency of DC-10 has been reported in peripheral 
blood of cancer patients. In patients affected by acute myeloid leu-
kemia, a significantly higher frequency of DC-10 compared with 
that observed in healthy donors was described. Interestingly, the 
percentage of DC-10 is higher in patients with HLA-G-expressing 
blasts compared with patients with HLA-G negative blasts (67). Even 
though the primary source of HLA-G was unclear, it was postulated 
that the presence of HLA-G-expressing DC-10 is involved in sustain-
ing the expression of HLA-G on blasts contributing to inhibition of 
the immune system promoting tumor immune-escape. According 
to this hypothesis, an increased frequency of DC-10 expressing high 
levels of HLA-G has been identified in peripheral blood of patients 
with gastric cancer. Interestingly, the percentage of HLA-G+DC-10 
strongly associates with advanced disease stage (68).

Overall, these studies indicate that DC-10 represent a subset 
of regulatory DCs contributing to IL-10-mediating tolerance and 
immune-escape.

DC-10 AS inDUCeRS OF Ag-SPeCiFiC  
Tr1 CeLLS

DC-10 have entered the clinical arena as inducers of Ag-specific 
Tr1 cells for tailoring Treg-based cell therapy. We established and 
validated in Good Manufacturing Practice (GMP) conditions 
an efficient and reproducible in vitro method to generate, with 
minimal cell manipulation, allo-specific Tr1 cells (69, 70). Indeed, 
stimulation of T cells with allo-DC-10 induces a population of 
allo-specific Tr1 cells actively suppressing allo-specific effector 
T cells (50, 54, 59, 60). Recently, two improved GMP-compatible 
protocols using DC-10 have been developed for generating Tr1 
cells for cell-based therapy. The first method generates allo-
specific Tr1 cells (named T-allo10 cells, Bacchetta and Roncarolo, 
ClinicalTrials.gov identifier: NCT03198234) by culturing puri-
fied CD4+ T  cells isolated from hematopoietic stem cell donor 
with patient-derived DC-10 in the presence of IL-10 (Figure 2). 
T-allo10 cells will be used as Tr1-based cell therapy in leukemia 
pediatric patients to prevent graft-versus-host disease (GvHD) 
(ClinicalTrials.gov identifier: NCT03198234). In the second pro-
tocol, CD4+ T cells isolated from patients on dialysis are cultured 
with donor-derived DC-10 in the presence of IL-10 to generate 
donor-specific Tr1-enriched cell medicinal product (named T10 
cells) (Figure  2). T10 medicinal products will be injected in 
kidney transplant recipients to prevent graft rejection (60).

Stimulation of Th2 cells isolated from house dust mite allergic 
patients with autologous in vitro differentiated DC-10 pulsed with 
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FigURe 2 | DC-10 and cell therapy approaches. DC-10 are differentiated in vitro from CD14+ cells in the presence of GM-CSF/IL-4/IL-10. In allergy and 
autoimmunity, patient-derived DC-10 pulsed with the specific antigen (Ag) can be used to induce differentiation of autologous Ag-specific T regulatory type 1 (Tr1) 
cell products (1), or directly infused into patients (2). In hematopoietic stem cell (HSC) transplantation, patient-derived DC-10 can be used to differentiate patient-
specific Tr1 cell products (3), or directly infused into transplanted patients (4). In solid organ transplantation, donor-derived DC-10 can be used to promote 
differentiation of donor-specific Tr1 cell products (5), or directly infused into transplanted patients (6).

5

Comi et al. DC-10 for Cell-Based Approaches

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 682

the allergen promotes their conversion of into IL-10-producing 
T  cells (59). Moreover, DC-10 differentiated from monocytes 
of healthy subjects and peanut allergic patients and pulsed with 
relevant allergen induced the differentiation of peanut-specific 
Tr1 cells (71).

These findings indicate that patient-derived DC-10 can be 
in vitro pulsed with a given Ag and used to generate Ag-specific 
Tr1 cells for Treg-based cell approaches aim at restoring tolerance 
in allergy and autoimmune diseases.

DC-10-BASeD CeLL THeRAPY

The prominent role of DCs in promoting T-cell tolerance and the 
development of a GMP-compatible method to generate tolDC 
products allow their clinical application. Thus far, the few clinical 
trials performed demonstrated the safety and feasibility of tolDC-
based cell therapies in the settings of autoimmunity and trans-
plantation (72, 73). Nevertheless, the stability of the infused tolDC 
products and the maintenance of their tolerogenic properties 
in vivo remain open issues to be tackled for improving the safety 
and the efficacy of these therapies. Moreover, due to the increasing 
number of tolDCs that have been described, the optimal subset to 
be used as medicinal product is still to be defined. A comparative 
analysis of different populations of in vitro differentiated tolDCs 
examining their stability, cytokine production profile, and sup-
pressive activity indicated that IL-10-modulated mature DCs are 
the best-suited cells for tolDC-based therapies (74, 75).

The observation that DC-10 are functionally more effi-
cient than IL-10-modulated mature DCs in inducing hypo- 
responsiveness in allo-specific T  cells (59) suggests that DC-10 
represent a good alternative for cell-based approaches. Moreover, 
DC-10 are stable, since upon LPS stimulation, they maintain unal-
tered transcription profile and phenotype, and importantly the abil-
ity to induce Tr1 cells (76). DC-10 stability has been confirmed also 
in vivo, as their adoptive transfer modulates human T cell responses 
in a humanized mouse model. More recently, we demonstrated 
that DC-10 modulate allo iNKT cell induction and functions (Wu, 
under revision), indicating a broaden immunoregulatory function 
of DC-10, not limited to the CD4+ T cell compartment. The potency, 
stability, and widespread immunoregulatory activity of DC-10 make 
feasible their application in clinical setting. Specifically, autologous 
DC-10 pulsed with a given Ag and allo-DC-10 can be infused in 
patients to restore tolerance in autoimmune diseases and allergy and 
to prevent allograft rejection and GvHD, respectively (Figure 2).

COnCLUSiOn AnD PeRSPeCTiveS

The discovery that DC-10 can be generated in  vitro and induce 
Ag-specific Tr1 cell differentiation prompt their development 
as a tool for clinical approaches aimed at promoting/restoring 
Ag-specific tolerance in immune-mediated diseases. Protocols to 
generate alloAg-specific Tr1 cells with DC-10 for adoptive Tr1-
based cell therapy have been developed and validated in GMP 
and are currently using in clinical applications. We believe that 
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DC-10 represent a good candidate for DC-based therapies as they 
modulate effector immune responses, including pathogenic T cells, 
while leading to long-term tolerance via the in vivo induction of 
Ag-specific Tr1 cells. Studies in humanized mouse models are 
ongoing to establish the best route and dose of administration, 
lifespan, and homing kinetic of DC-10 and will be instrumental to 
design clinical protocols to test the safety and efficacy of DC-10-
based cell therapy.
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