
October 2017 | Volume 8 | Article 14221

Review
published: 30 October 2017

doi: 10.3389/fimmu.2017.01422

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Chiara Romagnani,  

Deutsches Rheuma-
Forschungszentrum (DRFZ), 

Germany

Reviewed by: 
Jorg Hermann Fritz,  

McGill University, Canada  
Christoph Wilhelm,  

University of Bonn, Germany

*Correspondence:
David Voehringer  

david.voehringer@uk-erlangen.de

Specialty section: 
This article was submitted to NK and 

Innate Lymphoid Cell Biology,  
a section of the journal  

Frontiers in Immunology

Received: 28 July 2017
Accepted: 12 October 2017
Published: 30 October 2017

Citation: 
Symowski C and Voehringer D (2017) 

Interactions between Innate 
Lymphoid Cells and Cells of the 

Innate and Adaptive Immune System.  
Front. Immunol. 8:1422.  

doi: 10.3389/fimmu.2017.01422

interactions between innate 
Lymphoid Cells and Cells of the 
innate and Adaptive immune System
Cornelia Symowski and David Voehringer*

Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), 
Erlangen, Germany

Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also 
produced by Th2 cells and several cell types of the innate immune system. Work over 
the past few years indicates that ILC2s play a central role in regulating type 2 immune 
responses against allergens and helminths. ILC2s can interact with a variety of cells 
types of the innate and adaptive immune system by cell–cell contacts or by communi-
cation via soluble factors. In this review, we provide an overview about recent advances 
in our understanding how ILC2s orchestrate type 2 immune responses with focus on 
direct interactions between ILC2s and other cells of the immune system.

Keywords: allergic inflammation, helminths, mast cells, innate lymphoid cells, eosinophils, basophils, Th2 cells, 
alternatively activated macrophages

iNTRODUCTiON

Innate lymphoid cells (ILCs) are characterized by their lack of expression of rearranged antigen-
receptors and absence of cell surface markers present on other common hematopoietic cell line-
ages. They arise from a common lymphoid progenitor, requiring expression of the transcriptional 
repressor Id2 and relying on cytokine signaling through the common gamma-chain (γc chain) of 
the IL-2 receptor family. ILCs are classified into three distinct populations termed group 1, 2, and 
3 ILCs based on their ability to produce effector cytokines associated with Th1, Th2, or Th17 cells, 
respectively (1–4).

Group 2 ILCs (ILC2s) share the expression of the transcription factor GATA-3 and characteristic 
cytokines with Th2 cells indicating a similar role for both cell types in type 2 immune responses 
(5, 6). ILC2s respond extremely rapidly to epithelial cell-derived cytokines, such as IL-25, IL-33, 
and thymic stromal lymphopoietin (TSLP), associated with barrier disruption (7) and act as “early 
sentinel” cells of the innate immune system orchestrating type 2 immune responses at mucosal 
surfaces and adipose tissue (8–10).

The canonical type 2 immunity-associated cytokines IL-4, IL-5, and IL-13 are pivotal in immunity 
toward gastrointestinal helminths inducing eosinophilia, elevated IgE levels, goblet cell metaplasia 
with enhanced mucus production, and smooth muscle hyperreactivity (11, 12). It is evident that 
cells of the adaptive and innate immune system, including Th2 cells, ILC2s, eosinophils, basophils, 
and mast cells, produce significant levels of these cytokines inducing and sustaining ongoing type 

Abbreviations: ILC, innate lymphoid cells; PGD2, prostaglandin 2; CRTH2, cysteine-three-histidine protein 2; NK cell, natural 
killer cell; VAT, visceral adipose tissue; CLP, common lymphoid progenitor; ICOS, inducible T cell co-stimulator; VPAC2, 
vasoactive intestinal peptide receptor 2; FALC, fat-associated lymphoid cluster.
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2 responses (13, 14). Although the prominent role of Th2 cells 
in type 2 immune responses is well established, the secretion of 
IL-13 from ILC2s rather than Th2 cells is of particular importance 
for controlling the intestinal immune response and worm expul-
sion during infection of mice with the helminth Nippostrongylus 
brasiliensis (9, 10, 15). On the other hand, T cell-derived IL-4/
IL-13 are needed for effector cell recruitment, germinal center 
formation, IgE switching, and paracrine Th2 differentiation  
(16, 17).

In contrast to the protective function of ILC2s, dysregulated 
ILC2 responses contribute to inflammatory processes, such as 
airway hyperreactivity (18), allergen-induced lung inflamma-
tion (19, 20), and atopic dermatitis (21). Despite the substantial 
gain of knowledge about ILC2s development and mediators that 
positively or negatively modulate ILC2 homeostasis, activation, 
and functions (22, 23), the regulation of ILC2 functions is 
becoming more complex, and it is of high importance to under-
stand the immunoregulatory mechanisms to improve therapeu-
tic treatments of pathological type 2 immune responses. Besides 
producing cytokines, ILC2s may interact with other effector 
immune cells and coordinate immune responses as part of 
the complex immune system network important for immune 
defense and allergic reactions. Recent data indicate that ILC2s 
can influence T  cell responses in a reciprocal manner, either 
through cytokines, indirect effects on accessory cells, or direct 
cell–cell contact relaying signals to the adaptive immune sys-
tem. Additionally, ILC2s also contribute to the maintenance of 
eosinophils (24) and affect the functions of cells such as baso-
phils (25), macrophages (26), dendritic cells (DCs) (27, 28), and 
mast cells (29), which on the other hand can also activate ILC2s 
(30) or suppress their activity (31).

Defining the complex network of interactions and mutual 
communications of ILC2s with immune cells from the innate 
and adaptive immune system and understanding the specific 
contributions of ILC2s leading to protective immunity against 
helminths or development of pathologic responses may reveal 
critical checkpoints that can be manipulated for controlling 
type 2 immunity-mediated responses and will be important to 
investigate new possible therapeutic interventions.

iNTeRACTiONS OF iLC2s wiTH CeLLS  
OF THe ADAPTive iMMUNe SYSTeM

iLC2s and T Cells
Th2 cells are a major source of IL-4 and IL-13 and they play 
an important role in type 2 immune responses. Recently, our 
group revealed that specific depletion of IL-4/IL-13 in CD4+ 
T cells results in reduced accumulation of innate effector cells 
(eosinophils, basophils, ILC2s) in the lung of N. brasiliensis-
infected mice as compared to wild-type mice and that CD4+ 
T  cell-derived IL-4/IL-13 cytokines promote Th2 polarization 
in a paracrine manner (16, 17). Beside eosinophils, basophils, 
and mast cells, mouse ILC2s are also known to transcribe and 
produce low amounts of IL-4 induced by the lipid mediator 
leukotriene D4 (15, 32, 33). Leukotrienes can act in a synergistic 
manner together with IL-33 to activate ILC2s (34, 35). Human 

ILC2s appear to secrete larger quantities of IL-4 as compared 
to mouse ILC2s especially upon IL-33 stimulation and in the 
presence of TSLP (36). During infection with the helminth 
Heligmosomoides polygyrus, ILC2-derived IL-4 has been shown 
to contribute to ILC2 expansion and to drive early Th2 dif-
ferentiation without direct cell–cell contact (33). Furthermore, 
mice lacking ILC2s showed impaired Th2-skewed inflammatory 
responses following helminth infection or local exposure to 
the protease-allergen papain, or house dust mite antigens (27, 
37, 38). This suggests that ILC2s can promote Th2 responses 
under certain experimental conditions. In addition, IL-13-
producing ILC2s were shown to cooperate with CD4+ T  cells 
during N. brasiliensis infection to mediate larval killing in the 
small intestine during primary infection (38) and in the lung 
following secondary infection (26). Furthermore, N. brasiliensis 
could be expelled by transfer of ILC2s into IL-13-deficient mice, 
but not into Rag2-deficient mice (9). This indicates that IL-13 
from ILC2s is sufficient for clearance of primary N. brasiliensis 
infection, but CD4+ T cells are still required for effective worm 
expulsion Interestingly, T  cell-derived IL-2 can induce ILC2 
proliferation and IL-13 secretion (39). In addition, it was shown 
that in mice exposed to the pro-allergic protease papain ILC2-
derived IL-13 rather than IL-4 promotes migration of DCs into 
lung-draining lymph nodes, where activated DCs support Th2 
cell differentiation (27).

Innate lymphoid cells not only contribute to Th2 cell differen-
tiation by cytokine secretion but can also directly interact with 
CD4+ T cells. Using an in vitro culture system, it was reported that 
ILC2s promote Th2 polarization in a cell–cell contact-dependent 
manner (39). In addition, both costimulation by OX40/OX40-L 
interaction and ILC2-derived IL-4 was shown to enhance Th2 
cell proliferation and Th2 cytokine production when the isolated 
cell populations were cultured together (40). Beside express-
ing costimulatory molecules, ILC2s have also been shown to 
express MHC class II (9, 39, 41). Recent data identified ILC2s 
as antigen-presenting cells (APC) able to process and present 
peptide antigens and modulate naive CD4+ T  cell activation 
in a cell contact-dependent manner (38, 39, 42). Expression of 
MHC-II on ILC2s was required to receive activating signals by 
T cell-derived IL-2 causing efficient secretion of IL-13 (38). This 
suggests that ILC2s and T cells can communicate in an antigen-
dependent manner. However, whether ILC2s play a significant 
role as APC during priming of the Th2 response remains to be 
investigated.

iLC2s and Treg Cells
Subsequent studies demonstrated that Treg cells and ILC2s 
engage in reciprocal regulation. Treg cells are regulators of adap-
tive immune responses through direct cell–cell contact, as well 
as through the suppressive activities of IL-10 and TGF-β. The 
importance of Treg cells on control of ILC2 activity and homeo-
stasis has recently been shown by inhibition of the transcription 
factors Id2 and Id3 in Treg cells, which lead to a spontaneous 
increase in ILC2 counts, as well as accumulation of eosinophils 
in the lungs and resulted in the development of fatal inflamma-
tory disease (43). While Treg cells regulate ILC2 expansion and 
suppress their pro-inflammatory cytokine secretion in vivo and 
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FigURe 1 | Interactions between innate lymphoid cells (ILC2s) and T cells or 
B cells. The figure illustrates how ILC2s interact with T cells or B cells as 
described in the main text. The dashed arrow indicates a potential feedback 
regulation for which there is currently no experimental evidence. Solid arrows 
indicate published evidence for activating mechanisms whereas Treg-derived 
IL-10 was shown to suppress ILC2s. Cell symbols where taken from http://
smart.servier.com website.
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in  vitro, ILC2-derived IL-4 plays a requisite role in mediating 
sensitization to food allergens by compromising allergen-
specific regulatory T cell function and thereby promoting food 
allergy (44). In contrast, ILC2-derived IL-9 was required for Treg 
activation and resolution of inflammation in an arthritis model 
(45). In addition, ILC2s may enhance the suppressive activity of 
Treg cells by secretion of amphiregulin as it has been described 
for mast cell-derived amphiregulin (46).

IL-33 can either directly activate ST2+ Treg cells in the intes-
tine (47) or promote their expansion indirectly by inducing IL-2 
secretion from DCs (48). Others have shown that accumulation 
of Treg cells in adipose tissue by IL-33 was directly dependent 
on ILC2s by a process requiring ILC2-intrinsic MyD88 signaling 
and cognate interactions between inducible T cell co-stimulator 
(ICOS) on Treg and ICOS ligand (ICOS-L) on ILC2s (49). 
As IL-33 alone can activate significant Treg cell proliferation 
independently of ILC2s, one can assume that ILC2s act mainly 
to promote Treg survival. Coculture experiments revealed that 
ICOS-L/ICOS interaction is important for the ILC2-mediated 
survival of Treg cells (49). Furthermore, ILC2-derived IL-4 may 
promote the conversion of Treg cells to Th2 cells after H. poly-
gyrus infection (50). A recent study demonstrated that induced 
Treg cells (iTreg), but not natural Treg cells, effectively suppressed 
human and mouse ILC2 function and this effect was dependent 
on ICOS/ICOS-L interactions (51). Autocrine ICOS/ICOS-L 
interactions on ILC2s were also reported to play an important 
role to enhance survival of ILC2s (42, 52). IFN-γ was found to 
counter-regulate the effects of IL-33 mediated ILC2 activation 
and Treg cell expansion (49), indicating that Th1-dominated 
immune responses can actively suppress the IL-33-ILC2-Treg 
axis and thereby cause loss of barrier tissue integrity and shifts in 
fat metabolism. Understanding the contributions of ILC2s and Tregs 
to optimal immune regulation might help preventing excessive 
tissue damage and the development of chronic inflammations.

iLC2s and B Cells
In addition to their mutual interactions with T cells, ILC2s may 
also interact with B cells. It is known that fat-associated lymphoid 
clusters (FALCs), found in human and in mouse mesentery, con-
tain large proportion of B1 cells and contribute to innate B cell 
activation and germinal center differentiation (53). So far, it is 
described that ILC2s from FALCs maintain homeostasis of the 
self-renewing B1 cells in an IL-5-dependent manner and sup-
port production of parasite-specific antibodies by B cells (8, 54). 
Interestingly, it was described that lung ILC2s not only enhance 
the proliferation of B1 but also follicular B2 type B  cells and 
promote the secretion of IgM, IgG1, IgA, and IgE by these cells 
in the absence of T cells (55). It is also assumed that ILC2s have 
the ability to promote T  cell-dependent antibody responses as 
serum IgE levels are reduced in ILC2-deficient mice challenged 
with papain (27). Human ILC2s were found to directly activate 
B cells isolated from tonsils (56).

Furthermore, it has been described that ILC2s can enhance 
IgE production from B cells in vitro, raising the possibility that 
ILC2s orchestrate IgE-dependent allergic sensitization (57). 
Whether ILC2s can interact with ICOS-L-expressing B  cells 
is still an open question and additional studies are required 

to identify B  cell-derived mediators that feedback on ILC2s. 
However, the addition of anti-ICOS antibodies showed no effect 
on the ability of ILC2s to enhance B cell IgM and IgG1 produc-
tion indicating that cytokines like IL-5 and other soluble factors 
that are secreted by ILC2s may play a key role (55).

Still, many questions remain to be answered regarding the 
interactions between ILC2s and cells of the adaptive immune 
system. Taken together, ILC2s regulate and dictate the nature 
of downstream T cell- and B cell-mediated immune responses, 
while T cells also influence the survival, proliferation, and func-
tion of ILC2s (Figure 1).

iNTeRACTiONS OF iLC2s wiTH CeLLS OF 
THe iNNATe iMMUNe SYSTeM

The alarmins IL-25, IL-33, and TSLP initiate a local inflammatory 
response through the recruitment and activation of ILC2s and 
other innate effector cells. Investigating the role of ILC2s during 
coordination of this early innate immune response is critical to 
uncover their contribution for type 2 immunity during infections, 
allergic responses, or autoimmune diseases.

iLC2s and Macrophages
Innate lymphoid cells can promote the differentiation of so-called 
“alternatively activated” or M2 macrophages, which have protec-
tive functions in some helminth infection models and contribute 
to tissue repair responses (58). Using a mouse model for cerebral 
malaria, IL-33-elicited ILC2s were found to promote M2 polari-
zation and Treg cell expansion resulting in protective immunity 
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(59). It was further described that IL-33- or IL-2-elicited ILC2s are 
sufficient to induce M2 macrophage-mediated larval killing of N. 
brasiliensis helminths in the lung (26). Antifungal type 2 immune 
responses are also regulated by ILC2-mediated M2 polarization 
as demonstrated with a Cryptococcus neoformans infection model 
(60). In addition, IL-25-elicited ILC2-derived IL-13 was shown to 
promote activation of lung-resident macrophages to a profibrotic 
phenotype, driving collagen deposition from fibroblasts (61).

M2 macrophages in visceral adipose tissue (VAT) play an 
important role for glucose and fat metabolism and ILC2s as well 
as eosinophils have been described to promote M2 macrophage 
accumulation in VAT during helminth infection (62, 63). 
Furthermore, it has been reported that IL-33-activated ILC2s 
elicit the differentiation of alternatively activated macrophages 
through IL-4 receptor signaling and regulate directly beige 
fat biogenesis (64). However, recent studies indicate that IL-4-
mediated macrophages have no relevant effect on white and 
brown adipocyte function and do not likely modulate adipocyte 
metabolism by catecholamine production (65, 66).

The other way round, alveolar macrophages are able to secrete 
IL-33, which is likely important for direct activation of ILC2s to 
produce substantial amounts of IL-13, as mice lacking the IL-33 
receptor failed to develop AHR or airway inflammation inde-
pendently of adaptive immunity (67). Thus, cross talk between 
macrophages and ILC2s might be critical to promote an early feed 
forward process during type 2 immune responses.

iLC2s and DCs
Type 2 innate lymphoid cell (ILC2)-derived IL-13 was reported 
to induce migration of DCs into the draining lymph node, where 
DCs drive naive T cells to become Th2 cells (27). However, how 
IL-13 controls the migratory function of DCs still remains to be 
defined. Furthermore, ILC2-derived IL-13 promotes the secre-
tion of the chemokine CCL17 from DCs for the recruitment of 
CCR4+ memory Th2 cells to the site of allergen exposure (28). 
Eosinophils recruited into tissues and lymph nodes can also 
control DC activation and migration and promote Th2-cell-
mediated immunity via degranulation of eosinophil peroxidase 
(68), demonstrating how innate cells work in a complex network 
to drive type 2 inflammatory responses.

The tumor necrosis factor (TNF) family cytokine TL1A is 
known to be produced by DCs and macrophages in response to 
toll-like-receptor and Fc receptor cross-linking and regulates the 
adaptive immune response by co-stimulating T cells (69). It was 
demonstrated that TL1A synergizes with IL-25 in vivo to directly 
promote ILC2 expansion, survival, and function (70, 71). The 
activation of ILC2s by TL1A could provide new insight into 
interaction of ILC2s and activated myeloid cells.

Recent observations revealed that type I and type II IFNs as 
well as IL-27 play a critical role as negative regulators of ILC2s 
to restrict type 2 immunity and its associated pathologies (49, 
72–74). It has been reported that plasmacytoid dendritic cells 
(pDC) play a critical role in dampening the function and survival 
of ILC2s in the context of allergic pulmonary inflammation. 
IFN-α production by activated pDCs can inhibit proliferation 
and increases the apoptosis rate of ILC2s (31). Similarly, pol-
yinosinic–polycytidylic acid (pI:C) activated NK  cells inhibit 

the proliferation and cytokine production of ILC2s via IFN-γ 
during the early stage of lung inflammation, reminescent of 
the classic antagonism between Th1 and Th2 differentiation 
(75). As interferons are produced by many different cell types 
including Th1 cells, NKT cells, and others, one can assume that 
ILC2s may be suppressed by various cellular sources of these 
mediators.

iLC2s and eosinophils
Innate lymphoid cells are a major source of IL-5 and thereby 
enhance proliferation, survival, and recruitment of eosinophils 
(24, 49). By comparing Rag2−/− and Rag2−/− γc −/− mice, lung ILC2s 
were shown to promote eosinophilia independently of signals 
from the adaptive immune system (76). Naive lung ILC2s secrete 
IL-5 constitutively, as indicated by elevated Il5 mRNA levels and 
fluorescent signals in Il5-reporter mice (24, 77). ILC2-derived 
IL-5 is required for systemic maintenance of eosinophils and 
during type 2 inflammation ILC2s are induced to co-express 
IL-13, resulting in localized eotaxin production for recruitment 
and activation of eosinophils during allergic inflammation and 
helminth infection (24, 62, 78). It was further shown that vasoac-
tive intestinal peptide, a hormone regulated by caloric intake, 
stimulates ILC2s via the vasoactive intestinal peptide receptor 2 
receptor to release IL-5, linking eosinophil levels with metabolic 
cycling (24). IL-33 can directly stimulate eosinophil survival (79) 
and activate the production of IL-4 (80), which can stimulate 
ILC2s and thereby mediate the cross talk between eosinophils 
and IL-5-producing ILC2s (81).

iLC2s and Basophils
Basophils were shown to promote ILC2 proliferation by secretion 
of IL-4 in lung and skin inflammation models (25, 82). Basophils 
are relatively short-lived circulating cells, which have specified 
effector functions in type 2 immunity such as protective func-
tions against helminths and ticks as well as pro-inflammatory 
functions in response to allergens. Lung ILC2 activation and 
numbers are reduced in basophil-specific IL-4-deficient mice, 
indicating that the ILC2s respond to basophil-produced IL-4  
(25, 83). Furthermore, clusters of basophils and ILC2s where 
shown to accumulate in a mouse model for atopic dermatitis 
where basophil-derived IL-4 was required for ILC2 accumulation 
and proliferation in inflamed skin (82). Whether basophil activ-
ity, survival, or tissue recruitment is regulated by ILC2-derived 
factors remains to be analyzed.

iLC2s and Mast Cells
Innate lymphoid cells have been found in proximity to tissue 
mast cells in human lung (84). Furthermore, dermal ILC2s and 
skin-resident mast cells have been reported to physically interact 
in contact dermatitis models in mice using intravital multiphoton 
microscopy, supporting the idea that ILC2s can directly com-
municate with mast cells (85). It was shown that ILC2s have 
the potential to dampen pro-inflammatory mast cell response 
through the production of IL-13, thereby reducing IL-6 and 
TNF-α production by mast cells (85).

The close proximity of ILC2s and mast cells could be caused 
by production of inflammatory mediators such as PGD2 by mast 
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FigURe 2 | Interactions between innate lymphoid cells (ILC2s) and cells of the innate immune system. The figure illustrates communication pathways between 
ILC2s and other cells of the innate immune system by secretion and recognition of soluble factors as described in the main text. Solid arrows indicate published 
evidence for activating mechanisms whereas ILC2-derived IL-13 was shown to suppress mast cells and IL-27 or interferons inhibit ILC2 functions. Cell symbols 
where taken from http://smart.servier.com website.
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cells, which induces the chemotaxis of ILC2s through activation 
of cysteine-three-histidine protein 2 and promotes IL-13 produc-
tion in a synergistic manner with airway epithelial cytokines IL-25 
and IL-33 leading to tissue eosinophilia (84, 86–88). Moreover, 
mast cells can influence ILC2 activity indirectly by releasing non-
caspase proteases chymase and tryptase that cleave IL-33 into a 
more bioactive isoform (89).

Mast cells can also release IL-33 upon antigen-specific IgE-
mediated activation (90) and in response to extracellular ATP, 
which in turn activates ILC2s to produce IL-13 resulting in 
clearance of helminth infection (30). Conversely, recombinant 
IL-33 can directly activate mast cells to produce several cytokines 
including IL-4 and IL-5. IL-33-activated mast cells are known 
to produce IL-2, which was shown to indirectly limit ILC2 
proliferation by the expansion of Treg cells and their produc-
tion of IL-10 (91). On the other hand, mast cells also produce 
IL-2 when activated by IL-9 from IL-33-elicited ILC2s. This 
mast cell-derived IL-2 leads to expansion of pro-inflammatory 
CD25+ ILC2s, which in turn activate Th9 cells leading to an 
amplified allergic inflammation (92). However, comparing N. 
brasiliensis-infected wild-type mice with IL-9 receptor-deficient 
mice showed similar mast cell accumulation in the lung arguing 
against a major role of ILC2-derived IL-9 for mastocytosis in 
this model (93).

CONCLUSiON

Innate lymphoid cells are important “early sentinel” cells, which 
bridge the gap between the innate and adaptive type 2 immune 
response by sensing environmental changes and releasing 
immune-regulatory cytokines. A large variety of pathways that 
regulate the functions of ILC2s have been identified in the recent 
past and key interactions between ILC2s and cells of the innate 
and adaptive immune system were characterized (Figure  2). 
Apart from cross talk with various immune cell types, ILC2s 
may also have effects on structural cells including epithelial cells, 
smooth muscle cells, and fibroblasts. These interactions in mice 
and humans include communications by direct cell–cell contact 
and by secretion and recognition of soluble factors like cytokines, 
chemokines, hormones, and lipid mediators. However, regula-
tion of ILC2 functions in various tissues during steady state 
conditions and upon infection with different pathogens becomes 
more and more complex and many pathways are still unknown. 
Further investigations will help to improve our understanding 
of how interactions between ILC2s and other immune cells are 
regulated. This information is essential to dissect the complexity 
of type 2 immune responses with the hope to identify critical 
checkpoints that are accessible for therapeutic interventions in 
allergic inflammation and immunity against helminths.
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