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Lung macrophages are long living cells with broad differentiation potential, which reside
in the lung interstitium and alveoli or are organ-recruited upon inflammatory stimuli. A role
of resident and recruited macrophages in initiating and maintaining pulmonary inflamma-
tion in lung infection or injury has been convincingly demonstrated. More recent reports
suggest that lung macrophages are main orchestrators of termination and resolution of
inflammation. They are also initiators of parenchymal repair processes that are essential
for return to homeostasis with normal gas exchange. In this review we will discuss cellu-
lar cross-talk mechanisms and molecular pathways of macrophage plasticity which define
their role in inflammation resolution and in initiation of lung barrier repair following lung
injury.
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INTRODUCTION
Alveolar macrophages are tissue-resident or recruited cells with
key functions in recognition of pathogens, initiation of host
defense via protective inflammation, and in clearance of pathogens
from the airways. Forming the first line of defense toward for-
eign invaders, alveolar macrophages scavenge and phagocytose
pathogens and sense microbial patterns via toll-like receptors
(TLRs), NOD-like receptors (NODs), and intracellular helicases
like retinoic acid inducible gene I (RIG-I) and other pattern
recognition receptors. Upon activation they release early response
cytokines such as type I IFN, TNF-α, and IL-1β in an IRF- or
NF-κB-dependent way. These cytokines stimulate neighboring
alveolar epithelial cells and tissue-resident macrophages in an
auto- and paracrine manner to produce a variety of chemokines
which in turn mediate the recruitment of neutrophils, and later
on, exudate macrophages and lymphocytes to the site of infection,
ultimately resulting in clearance of pathogens.

Lung inflammation is not merely terminated when the
pathogen is cleared and pro-inflammatory signaling events, pre-
viously initiated by recognition of foreign antigen or host-derived
alarmins, decline. In fact, resolution of lung inflammation and
return to tissue homeostasis is an active, tightly coordinated
process which reverses all of the steps involved in initiation of
the inflammatory response and induces counter-regulatory mech-
anisms which terminate these. This process includes cessation of
granulocyte emigration from blood vessels, restoration of nor-
mal vascular permeability and removal of extravasated fluids,
termination of monocyte emigration and induction of their mat-
uration into resident alveolar macrophages, removal of apoptotic
neutrophils, and finally, repair of “bystander” injury to restore
functional endothelial and epithelial monolayers. Apart from their
well-known role in phagocytosis and recognition of foreign anti-
gens it is increasingly recognized that alveolar macrophages are

endowed with high functional plasticity allowing them to acquire
different pro- or anti-inflammatory as well as tissue-reparative
phenotypes during the course of inflammation, dependent on the
signals they receive from surrounding cells or from the pathogen
itself. The ability to integrate these various signals in the course
of inflammation and to mount a differential response empowers
the mononuclear phagocyte, either lung resident or recruited, to
terminate and resolve alveolar inflammation in the later phases
of acute lung injury and to tightly coordinate parenchymal repair
processes that are essential for return to homeostasis (Figure 1).

CHANGE IN LOCAL LIPID AND MEDIATOR PROFILE INITIATES
MACROPHAGE-MEDIATED RESOLUTION OF INFLAMMATION
LIPOXINS
Lipid mediators are key players in termination of pulmonary
inflammation and initiation of resolution (Serhan et al., 2008),
characterized by an active switch of the lipid mediator profile
found at the inflamed site (Levy et al., 2001). During the initial
inflammatory response, prostaglandins and leukotrienes, gener-
ated from arachidonic acid, an omega-6 polyunsaturated fatty
acid (PUFA) by endothelial cells, neutrophils, and tissue-recruited
and resident macrophages, amplify inflammation (Funk, 2001).
Later on, the prostaglandins PGE2 and PGD2, generated in a
cyclooxygenase-dependent way, gradually promote the synthe-
sis of lipid mediators with anti-inflammatory and pro-resolving
activity, such as the lipoxins. Lipoxins are lipoxygenase-derived
double oxygenated eicosanoids which were shown to inhibit neu-
trophil recruitment to inflamed sites and suppress their pro-
inflammatory actions, but promote recruitment of macrophage
precursors (Maddox et al., 1997; Chiang et al., 2006). Lipoxin A4

rapidly stimulates macrophages to phagocytose apoptotic neu-
trophils (Godson et al., 2000), induces RhoA- and Rac-dependent
cytoskeleton re-organization of macrophages (Maderna et al.,
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FIGURE 1 | Macrophages terminate and resolve alveolar inflammation

after acute inflammatory lung injury and coordinate structural and

functional parenchymal repair processes that are essential for return to

homeostasis. Inflammation resolution and tissue repair after injury involve
a variety of timely coordinated, active processes in which lung
macrophages are directly or indirectly involved: Inhibition of granulocyte

(PMN) and monocyte recruitment from the circulation, phagocytosis of
apoptotic neutrophils or parenchymal cells, removal of fibrin, clearance of
alveolar edema fluid, and repair of the endo- and epithelial barrier by
junctional sealing and induction of angiogenesis and proliferation/
differentiation of epithelial progenitor cells including type II alveolar
epithelial cells (AEC).

2002), and inhibits macrophage CXCL8 release (Jozsef et al.,
2002), supporting macrophage-mediated resolution of inflamma-
tion. In turn, as a result of engulfment of apoptotic neutrophils,
macrophages themselves become a primary source of lipoxins
(Freire-de-Lima et al., 2006). With regard to acute lung injury,
it was recently demonstrated that Lipoxin A4 acts as a potent pro-
apoptotic signal for alveolar neutrophils, thereby increasing their
engulfment by macrophages (El Kebir et al., 2009) and triggering
further release of anti-inflammatory agents.

RESOLVINS AND PROTECTINS
Resolvins and protectins represent another class of pro-resolving
lipid mediators derived from omega-3 PUFA, eicosapentaenoic
acid (EPA), and docosahexaenoic acid (DHA; Serhan et al., 2002,
2008; Ariel and Serhan, 2007). Resolvin (Rv)E1 binds to the recep-
tor ChemR23 expressed on macrophages and their precursors
and attenuate TNF-mediated NF-κB activation, thus activating an
anti-inflammatory signaling pathway (Arita et al., 2007). Ligation
of the pro-inflammatory leukotriene B4 receptor BLT1 on leuko-
cytes by RvE1 has antagonizing, anti-inflammatory effects (Arita
et al., 2005, 2007). Similar to the lipoxins, RvD1 and the related
DHA-derived lipid mediator protectin D1 stimulate clearance of
inflammatory infiltrates by macrophage phagocytosis (Schwab
et al., 2007). Recently, another anti-inflammatory lipid media-
tor termed macrophage mediator in resolving inflammation 1

(maresin 1) was identified (Serhan et al., 2009) which is syn-
thesized by conversion of DHA by resident tissue macrophages
involving 12/15-lipoxygenase. Similarly to resolvins, maresin 1 was
found to decrease neutrophil accumulation while enhancing the
recruitment of macrophage precursors to sites of inflammation in
a murine peritonitis model. Furthermore, maresin 1 induces the
uptake of zymosan particles by macrophages and might therefore
promote macrophage uptake of apoptotic neutrophils (Serhan
et al., 2009). Recent evidence highlights a crucial role of resolvins
in mediating the emergence of a “pro-resolution” CD11blow tissue
macrophage subset, which was characterized by a distinct pro-
tein expression profile, enhanced apoptotic leukocyte engulfment,
unresponsiveness to TLR ligands, and increased emigration to
draining lymph nodes (Schif-Zuck et al., 2011). Resolvins were
demonstrated to be important players in resolution of chronic
(Uddin and Levy, 2011) and acute lung injury, as demonstrated
in mouse models of aspiration and intratracheal LPS challenge,
by decreasing the pro-inflammatory potential of macrophages via
cross-talk with the lipoxin A4 pathway (Seki et al., 2009; Wang
et al., 2011). Increasing the Rv precursor omega-3 PUFA in the
transgenic fat-1 mouse model likewise attenuated LPS-induced
lung injury (Mayer et al., 2009). Acute administration of these
PUFA seems to exert beneficial effects on alveolar macrophages
and monocytes by decreasing the adhesion and release of pro-
inflammatory cytokines like TNF-α. These effects were mediated
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in part by platelet activating factor (PAF), another important
lipid mediator (Mayer et al., 2002; Schaefer et al., 2007).However,
other pathways seem to be operative under chronic exposure as
in fat-1 mice (Mayer et al., 2009) the TNF-α generation remained
unchanged.

CHEMERIN
A similar role was recently ascribed to chemerin-derived peptides.
Chemerin is a chemoattractant present in diverse inflammatory
exudates. It was identified as a natural ligand for the G protein-
coupled receptor ChemR23 expressed by epithelial cells (Campbell
et al., 2007), dendritic cells (Vermi et al., 2005), and macrophages
(Luangsay et al., 2009). ChemR23 binds RvE1 and shares phyloge-
netic homology with other chemoattractant receptors, including
those for lipoxin A4 and the neutrophil chemotaxins C5a and C3a.
Recently, another chemerin receptor, GPR1, was identified (Cash
et al., 2008, 2010). In a murine model of LPS-induced acute lung
injury, chemerin binding to ChemR23 decreased both neutrophil
invasion into the lung and pro-inflammatory cytokine genera-
tion while increasing recruitment of macrophages (Luangsay et al.,
2009).

MACROPHAGES ACTIVELY TERMINATE AND RESOLVE
NEUTROPHIL INFILTRATES
TERMINATION OF NEUTROPHIL INFLUX
Apart from initiating neutrophil influx after recognition of
pathogens or intrinsic danger signals, macrophages acquire func-
tional profiles which actively terminate neutrophil recruitment.
As recently outlined by our group, GR-1highCCR2high exudate
macrophages express IL-1ra upon recruitment into the lung
parenchyma in LPS- and Klebsiella pneumoniae-induced lung
injury. Upon blockade of IL-1β actions at the receptor IL-1R1
expressed on alveolar epithelium, macrophage-derived IL-1ra
downregulates alveolar release of the neutrophil chemokine MIP-2
and of the epithelial adhesion molecule ICAM-1, attenuating alve-
olar neutrophil recruitment (Herold et al., 2011). In a model of
LPS-induced lung inflammation (Dean et al., 2008), MMP12 that
is mainly macrophage-derived cleaves CXC-chemokines within
the ELR motif, which is crucial for receptor binding resulting in
loss of neutrophil-recruiting activity. MMP-dependent chemokine
cleavage also affects CC-chemokines such as CCL7, which may
result in dampened inflammation. Similar findings were reported
for CCL2, CCL8, and CCL13 following cleavage by MMP1 and
MMP3 (McQuibban et al., 2000, 2002).

INDUCTION OF NEUTROPHIL APOPTOSIS
Neutrophils are rather short-lived cells, but once they have reached
inflammatory sites they might initially be exposed to survival sig-
nals such as G-CSF or IL-1β (Kantari et al., 2008) to prolong
their anti-bacterial actions. By providing IL-1β antagonism at the
receptor level, it is likely that exudate macrophage-derived IL-1ra
might force neutrophil apoptosis (Herold et al., 2011) as a first
step to clear the inflammatory infiltrate in the lung. Furthermore,
alveolar macrophages are a primary source of TNF-α in different
models of pulmonary inflammation (Herold et al., 2006; Cabanski
et al., 2008; Cakarova et al., 2009) which, at higher concentrations
such as found during human ARDS (Maus et al., 1998; Park et al.,

2001), promotes apoptosis of neutrophils (van den Berg et al.,
2001). Similarly, resident and GR-1highCCR2high exudate alveolar
macrophages were found to highly express the death ligand TRAIL
in murine and human influenza and RSV infection (Zhou et al.,
2006; Herold et al., 2008; Bem et al., 2010) and TRAIL signifi-
cantly contributed to neutrophil apoptosis in LPS-induced lung
injury (McGrath et al., 2011).

PHAGOCYTOSIS OF APOPTOTIC NEUTROPHILS – “FIND ME” AND
“EAT ME”
Coordinated removal of apoptotic cells by alveolar macrophages
prevents the release of their toxic, tissue-damaging intracellu-
lar contents. In contrast to necrosis, apoptosis of neutrophils
provides signals to alveolar macrophages to initiate clearance to
limit tissue injury and to promote resolution, rather than per-
sistence, of inflammation. First, apoptotic neutrophils advertise
their own presence at the earliest stages of death and attract their
scavengers via specific “find me” signals. Apart from the well-
described lysophosphatidylcholine, recognized by the G-protein-
coupled macrophage chemotaxis receptor G2A (Peter et al., 2008),
these include fractalkine (CX3CL1), the nucleotides ATP and uri-
dine 5′ triphosphate (UTP), S19 ribosomal protein dimer, split
tyrosyl-tRNA synthetase, thrombospondin 1, and sphingosine-
1-phosphate (S1P; Savill and Fadok, 2000; Ravichandran, 2010;
Soehnlein and Lindbom, 2010). Just recently, Pannexin 1 channels
were identified as mediators to release nucleotides as “find me”
signals (Elliott et al., 2009). All of these are capable of attracting
macrophages or their precursors, although only fractalkine and
nucleotides have been shown to act as “find me” signals in vivo
(Truman et al., 2008; Elliott et al., 2009). Whereas ATP and UTP are
recognized by the G-protein-coupled macrophage receptor P2Y2,
the receptor for CX3CL1, CX3CR1, defines a GR-1lowCCR2low

circulating lung macrophage precursor (Landsman et al., 2007)
which has been attributed a wound healing and tissue-reparative
phenotype similar to the one ascribed to “alternatively activated”
macrophages (Geissmann et al., 2010).

Surfaces of dying cells express or allow the access to a num-
ber of “eat me” signals that replace the native “don’t eat me”
signals such as CD31 or CD47/SIRP-α present on living cells
(Janssen et al., 2008). These signals may be membrane-associated
(e.g., phosphatidylserine) or are released from intracellular com-
partments at later stages of programmed cell death (Savill and
Fadok, 2000). Macrophages express a variety of receptors that
bind either directly to the exposed “eat me” flags or indirectly
through bridging molecules. These receptors include a phos-
phatidylserine receptor, the tyrosine kinase receptor MeR, inte-
grins, scavenger receptors, and complement receptors (Mevorach
et al., 1998; Grimsley and Ravichandran, 2003; Li et al., 2003;
Greenberg et al., 2006; Miyanishi et al., 2007; Kennedy and DeLeo,
2009). Soluble innate immune pattern recognition proteins iden-
tifying non-self or altered-self molecular patterns are found in
the immune-privileged surfaces of the lung and serve as bridging
molecules. These include ficolins, pentraxins, thrombospondin,
sCD14, MFG-E8, natural IgM, collections, C1q, and annexin A1
(Janssen et al., 2008; Kennedy and DeLeo, 2009; Litvack and
Palaniyar, 2010). Annexin A1, released from neutrophil granules
upon activation, inhibits the recruitment of leukocytes including
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inflammatory macrophage precursors, promotes neutrophil apop-
tosis, and acts on macrophages to enhance removal of dead neu-
trophils (Perretti and D’acquisto, 2009). In a mouse model of LPS-
induced acute lung injury alveolar recruited, exudate rather than
resident macrophages were shown to clear apoptotic granulocytes
from the airways (Janssen et al., 2008).

INGESTION OF APOPTOTIC NEUTROPHILS CHANGES THE
MACROPHAGE PHENOTYPE
Following ingestion of apoptotic neutrophils, macrophages are
stimulated to release anti-inflammatory and pro-repair media-
tors. One of the first studies in this field showed that co-culture
of LPS-activated monocytes with apoptotic lymphocytes inhib-
ited monocyte expression of the pro-inflammatory TNF-α and
increased the release of the immunosuppressive cytokines TGF-
β and IL-10 (Voll et al., 1997). In following studies, ingestion of
apoptotic neutrophils by macrophages,more recently termed“effe-
rocytosis,” had a similar effect on human monocyte-derived and
murine alveolar macrophages, inducing the anti-inflammatory
mediators TGF-β, PGE2, and PAF (Fadok et al., 1998; Medeiros
et al., 2009). Phagocytosis of apoptotic – but not of necrotic – cells
not only prevented these macrophages from killing tissue-resident
cells but also triggered the release of growth factors such as vas-
cular endothelial growth factor (VEGF; Golpon et al., 2004) or
hepatocyte growth factor (HGF; Amano et al., 2004) being crucial
for tissue repair after injury. Impairment of efficient phagocytosis
of apoptotic airway cells may therefore contribute to the patho-
genesis of chronic airways diseases like COPD, asthma, and cystic
fibrosis (Krysko et al., 2010; Mukaro and Hodge, 2011).

The signaling pathways activated during the phagocytosis-
dependent induction of an anti-inflammatory macrophage pro-
gram in the resolution phase of tissue injury were studied in detail
(Patel et al., 2007). The anti-inflammatory activity of apoptotic
cells lead to an inhibition of the release of pro-inflammatory
mediators from phagocytosing macrophages (Voll et al., 1997;
Fadok et al., 1998). In contrast, necrotic cells, which are rec-
ognized by another distinct mechanism, rather enhance a pro-
inflammatory macrophage program (Cocco and Ucker, 2001).
Acquisition of anti-inflammatory activity consists in the loss of
the pro-inflammatory response to inflammatory stimuli and a
shift to an anti-inflammatory profile that is induced by the apop-
totic neutrophil. This anti-inflammatory potential is maintained
at all stages of neutrophil apoptotic cell death, irrespective of cell
membrane integrity (Cocco and Ucker, 2001; Cvetanovic and
Ucker, 2004; Patel et al., 2006). Recognition of apoptotic cells
targets the pro-inflammatory transcriptional machinery of inter-
acting macrophages, without apparent effect on proximal steps of
TLR signaling. This modulatory activity is exerted directly upon
binding to the macrophage and decreases IL-6, IL-8, and TNF-α
expression in an NF-κB-dependent way. These effects were depen-
dent on apoptotic cell recognition and independent of engulfment
(Cocco and Ucker, 2001; Cvetanovic and Ucker, 2004). Apart from
the counter-inflammatory response, phagocytosis (but not mere
recognition of apoptotic cells) provides a PI3K/AKT-dependent
survival signal to prolong the macrophage life-span to facilitate
clearance of neutrophil corpses (Reddy et al.,2002). In contrast, the
effects of apoptotic versus necrotic targets on the MAPK pathway

depended on recognition. Exposure to apoptotic cells strongly
inhibited phosphorylation of ERK1/2 but induced activation of
JNK1/2 and p38, a process which did not require phagocytosis.
Exposure to necrotic cells stimulated proliferation and activated
ERK1/2 (Reddy et al., 2002; Patel et al., 2006).

MECHANISMS AND EFFECTS OF ALTERNATIVE
MACROPHAGE PROGRAMMING
MACROPHAGE SUBSETS AND POLARIZATION
Pathogen elimination and restoration of homeostasis following
infection and tissue damage requires resident tissue macrophages
and a coordinated mobilization of two circulating precursor sub-
sets defined according to lineage marker and chemokine recep-
tor expression in mice, namely the GR-1lowCCR2lowCX3CR1high

and the GR-1highCCR2highCX3CR1low peripheral blood mono-
cytes. GR-1lowCCR2lowCX3CR1high monocytes patrol the resting
vasculature, populate normal or inflammatory sites CX3CR1-
dependently, and participate in resolution of inflammation and
tissue repair (Auffray et al., 2007; Geissmann et al., 2010). GR-
1highCCR2highCX3CR1low monocytes are predominantly inflam-
matory and migrate to injured and infected sites. In humans, most
monocytes are CD14hiCD16− and are referred to as “classical”
monocytes, whereas CD14+CD16+ monocytes are referred to as
“non-classical” monocytes. CCR2 and its major ligand, CCL2,
are evidently important in both emigration of these cells from
the bone marrow into the blood stream and their immigration
into inflamed tissues, where they undergo differentiation into
macrophages that are categorized as either classically activated
(CAM, M1) or alternatively activated (AAM, M2; Benoit et al.,
2008; Martinez et al., 2008; Gordon and Martinez, 2010). Several
genes define CAM and AAM, e.g., inos, tnf, il-12, and arg 1, ym1,
ym2, fizz1, mrc1, ccl22, respectively, although a clear-cut associ-
ation of those genes with the functional profile of the respective
subset is lacking, except for Fizz1, also known as RELM-α (Nair
et al., 2009). The M1 program is associated with release of pro-
inflammatory mediators such as iNOS-derived NO, TNF-α, IFN-
γ, and IL-12 and critically contributes to pathogen elimination
(Benoit et al., 2008; Serbina et al., 2008). In contrast, AAM, which
secrete anti-inflammatory cytokines like IL-1ra, IL-10, and TGF-
β, downregulate IL-12, upregulate scavenger receptors, promote
angiogenesis, and support wound healing and tissue remodel-
ing (Mosser and Edwards, 2008). They are renowned for their
heterogeneity and plasticity, which is reflected by their further sub-
division into M2a, M2b, and M2c subsets (Mosser and Edwards,
2008; Ricardo et al., 2008; Gordon and Martinez, 2010).

SIGNAL INTEGRATION IN THE SHAPING OF PULMONARY
MACROPHAGE PHENOTYPES
As a key component of the inflammatory response that determines
lung tissue destruction or recovery, increasing evidence suggests
that pulmonary macrophages do not remain committed to a sin-
gle activation profile. They may regress to a resting state and can
subsequently be reactivated with a different polarization. Func-
tionally distinct subsets of macrophages may exist in the same
tissue and play critical roles in both initiation and recovery of
inflammation. Therefore, the origin and activation state of the
macrophages and the microenvironment, in which they reside, are

Frontiers in Immunology | Inflammation November 2011 | Volume 2 | Article 65 | 4

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Inflammation
http://www.frontiersin.org/Inflammation/archive


Herold et al. Macrophages in lung tissue repair

critical determinants of their response to lung injury. The hetero-
geneity of macrophages, their diverse role in lung inflammation
and tissue remodeling, and the coordinated activation and pro-
gramming by other inflammatory and parenchymal cells are not
fully understood. However, it becomes increasingly evident that
cross-talk of various signals at different levels impinges on the
generation of functional macrophage programs, with a variety of
signals being integrated to shape a distinct phenotype at a defined
stage of inflammation.

With respect to lung inflammation and injury, several of those
signal steps have been defined. First, growth factors such as
granulocyte macrophage colony-stimulating factor (GM-CSF) or
M-CSF drive differentiation and activation of macrophage prog-
enitors or lineage precursors but also of well-differentiated alveolar
macrophages (Berclaz et al., 2002, 2007; Baleeiro et al., 2006;
Ballinger et al., 2006). In addition, GM-CSF was shown to induce
an M1 phenotype (Krausgruber et al., 2011). Second, at the stage
of transendo/epithelial recruitment to the airspace, macrophages
obtain signals from chemokines or CAMs (Srivastava et al., 2005).
Then, at the site of inflammation, macrophages are primed by
cytokines like IFN-γ (M1) or IL-4 and IL-13 (M2), or via Th2

cell-expressed IL-25 and IL-33 (M2; Gordon and Martinez, 2010).
Next, PAMPs or DAMPs deliver signals via TLR, NLR, or other pat-
tern recognition receptors. Exposure to LPS promotes the differen-
tiation toward M1-like cells, whereas addition of further cytokines
differentiates them toward M2-like macrophages (Martinez et al.,
2008; Cabanski et al., 2009; Arora et al., 2011). Recently, a critical
role for type I IFN/IFNAR signaling in differentiation of peripheral
blood monocytes toward defined lung macrophage phenotypes,
either classical or alternative, with different functions in control
of alveolar inflammation, was demonstrated in influenza virus-
induced lung injury (Seo et al., 2011). Later on, phagocytosis of
apoptotic neutrophils by macrophages may add on these signals
and support an anti-inflammatory, resolving and tissue-reparative
phenotype with release of IL-10, TGF-β, VEGF, and HGF, as out-
lined above. IL-10 and TGF-β, for example, were shown to be
protective in P. aeruginosa- (Buff et al., 2010) or LPS-induced lung
injury (D’alessio et al., 2009) by abrogating alveolar neutrophil
recruitment and by mediating counter-inflammatory effects of
CD4+CD25+FoxP3+ regulatory T cells, respectively (Figure 2).

With respect to the role of macrophage phenotypes in acute
lung injury, the M1 program clearly correlates with pathogen

FIGURE 2 | Different extracellular signals are integrated to shape

pulmonary macrophage phenotypes during lung inflammation. First,
growth factors such as GM-CSF, M-CSF, or type I interferons (IFN) drive
differentiation and activation of macrophage progenitors or lineage
precursors (1), second, macrophages obtain signals from chemokines or
cellular adhesion molecules upon transendo/epithelial recruitment to the
alveoli (2), third, macrophages receive signals from cytokines like GM-CSF
and interferons (M1) or IL-4, IL-13, IL-25, or IL-33 (M2) (3); fourth,

pathogens, PAMPs, or DAMPs deliver signals via TLR, NLR, or other
pattern recognition receptors (4). Later on, cell–cell communications
during phagocytosis of apoptotic neutrophils (PMN) or via CD200–CD200R
interaction with AEC add on these signals and may support an
anti-inflammatory macrophage phenotype (5). JAMs, junctional adhesion
molecules; HSP, heat shock proteins; HMGB-1, high mobility group box-1;
S. pn., Streptococcus pneumoniae; K. pn., Klebsiella pneumoniae; AEC,
alveolar epithelial cells.
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clearance, but as well with inflammation and mortality, e.g., after
S. pneumoniae infection (Smith et al., 2007). A mouse model
of Sendai virus infection demonstrated that NKT cells produce
IL-13 through a CD1d-glycolipid-dependent mechanism, initiat-
ing pulmonary M2 amplification in late stages of infection, when
virus had already been cleared from the lungs (Kim et al., 2008).
Similarly, macrophage-derived IL-13 induced an M2 phenotype
via STAT6 in an autocrine way upon RSV-induced lung injury
(Shirey et al., 2010). GR-1highCCR2high exudate macrophages,
which are tissue-recruited in LPS- or K. pneumoniae-induced lung
injury, express high levels of IL-1ra, a classical M2 marker (Benoit
et al., 2008) which directly antagonizes IL-1β derived from (M1
activated) resident alveolar macrophages, thereby exerting anti-
inflammatory and tissue-protective effects. Adoptive transfer stud-
ies using IL-1ra−/− monocytes revealed that IL-1ra-expressing,
M2 polarized exudate macrophages reduced alveolar epithelial cell
damage and increased pulmonary barrier function (Herold et al.,
2011).

These data suggest that, in the inflamed lung, different
macrophage phenotypes are induced by distinct signals at
defined time points to fulfill discriminative tasks during infec-
tion, resolution, and repair. Moreover, these differentially pro-
grammed macrophage populations cross-talk during the time
course of acute pulmonary inflammation. While resident ver-
sus recruited macrophages were found to be differentially polar-
ized (Herold et al., 2011), the question arises to what extent a
functional macrophage program might be lineage-confined in
monocyte/macrophage subsets (Nahrendorf et al., 2007).

TRANSCRIPTIONAL AND EPIGENETIC REGULATION OF MACROPHAGE
POLARIZATION
The signal transduction pathways and transcription factors
involved in macrophage polarization, especially with respect to
lung inflammation, are still incompletely understood. Activation
of the transcription factor NF-κB subunit p50 has been associ-
ated with the inhibition of M1-polarizing genes including IFN-
β in vivo (Porta et al., 2009), whereas induction of the basic
region-leucine zipper transcription factors CREB and C/EBPβ

has been shown to upregulate M2 genes in macrophages, which
promoted tissue repair after injury (Ruffell et al., 2009). Subse-
quent data suggested that in mice, an IRF4-dependent pathway
initiates an M2 program by stimulating the expression of M2-
specific markers (Satoh et al., 2010). In contrast, M1 macrophages
were characterized by increased expression of IRF5, which was
induced by GM-CSF during their differentiation. Forced expres-
sion of IRF5 in M2 macrophages drove M1-specific cytokines,
chemokines, and costimulatory molecules and led to a potent Th1–
Th17 response, whereas induction of M1-markers was impaired
in irf5−/− macrophages (Krausgruber et al., 2011). Together with
the data of Satoh et al. (2010) these findings establish a new
paradigm of IRF5–IRF4 balance mediating M1–M2 polarization.
Liao et al. (2011) identified Krüppel-like factor 4 (KLF4) as a
critical regulator of macrophage polarization. KLFs represent a
large family of transcription factors involved in development,
differentiation, and activation of leukocytes. Macrophage KLF4
expression was robustly induced in M2 macrophages and strongly
reduced in M1 macrophages, and was found to cooperate with

Stat6 to induce an M2 genetic program and inhibit M1 targets via
sequestration of coactivators required for NF-κB activation. KLF4-
deficient macrophages demonstrated enhanced pro-inflammatory
gene expression and increased bactericidal activity. Whether these
transcriptional programs are operative during processes of lung
macrophage polarization in lung infection, injury, and repair,
however, remains to be established.

With respect to epigenetic control of macrophage polarization,
reports showed that induced M2 signature genes of IL-4-treated
mouse macrophages like arg 1, ym1, fizz1, and mrc1, revealed rec-
iprocal changes in histone H3K4 and H3K27 methylation (Ishii
et al., 2009). These modifications depended on STAT6 activation,
which bound to the demethylase Jmjd3 promoter, contributing to
decreased H3K27 methylation, as well as to transcriptional acti-
vation of M2 marker genes. Moreover, the kinase AKT regulated
LPS-induced microRNA in macrophages and was implicated in
LPS tolerance. AKT1 and AKT2 isoforms thereby had differential
effects on TLR4 and SOCS1 signaling in macrophages, depending
on the microRNAs let7e and miR155 (Androulidaki et al., 2009).
A possible effect of IL-4 and IL-13 on AKT isoforms has not been
reported. Other studies have linked microRNA-dependent regula-
tion with macrophage activation programs (Taganov et al., 2006;
Tili et al., 2007).

AIRWAY EPITHELIAL–MACROPHAGE CROSS-TALK CONTROLS
MACROPHAGE RESPONSES
Recently, a new concept of the pulmonary “innate immune rheo-
stat ” arose from findings by Snelgrove et al. (2008) demonstrating
that the phenotype of airway macrophages depends on the fine-
tuned balance between negative regulatory pathways and those
that amplify immunity (Snelgrove et al., 2008; Wissinger et al.,
2009). As innate immunity at lung surfaces requires restraint
to prevent inflammation to innocuous antigens or commensals
to guarantee gas exchange, the threshold above which airway
macrophages become activated must be increased by local factors.
Furthermore, excessive and prolonged pathogen-induced inflam-
mation has to be controlled to resolve infiltrates after pathogen
clearance and to prevent collateral lung tissue damage. Data from
an influenza virus pneumonia model demonstrated that one such
key regulator is CD200R, transmitting a suppressive signal and
critically regulating activation of airway macrophages on which
it is expressed at high levels. CD200R levels are maintained by
epithelial expression of IL-10 and TGF-β. Its ligand, CD200, is
exposed on the apical side of the airway epithelium and lim-
its alveolar macrophage-mediated inflammation. Cd200−/− mice
displayed increased pro-inflammatory macrophage activity and
enhanced sensitivity to influenza infection, with delayed resolu-
tion of inflammation and increased mortality. These data suggest
that macrophage pro- versus anti-inflammatory phenotypes are
under tight control of nearby airway epithelial cells during the
course of infection, which on one side represent primary targets for
infection (that has to be effectively cleared by a mounted immune
response) but on the other side have to maintain lung barrier
integrity and organ function. Epithelial–macrophage cross-talk
by soluble and surface-expressed factors therefore seems to be an
important mechanism to keep the balance between efficient host
defense and excessive inflammation and injury during pneumonia.
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LUNG MACROPHAGES IN TISSUE REPAIR AND REMODELING
REPAIR OF THE AIRWAY EPITHELIUM
Acute lung inflammatory diseases or infection and the follow-
ing innate and adaptive host responses leave a damaged alveolar
endo/epithelial barrier. Alveolar epithelial cell apoptosis was found
as major underlying cause of severe lung parenchymal damage in
sterile or infectious lung injury (Albertine et al., 2002; Herold et al.,
2008; Ma et al., 2010; Budinger et al., 2011). Re-epithelialization
(given an intact basement membrane) and endothelial re-sealing
following bronchoalveolar injury is considered as critical step to
re-establish normal gas exchange conditions in the lung. Alveolar
epithelium is comprised of two morphologically and functionally
distinct cell types, alveolar epithelial cells type I (AEC I) and type
II (AEC II). The flattened AEC I, covering a high percentage of the
alveolar surface, are presumed to be terminally differentiated and
exhibit a very limited potential to divide, features that make them
particularly susceptible to irreparable damage (Fehrenbach, 2001;
Tesfaigzi, 2003). The smaller, cuboidal AEC II retain progenitor
cell properties and therefore, together with the CCSP+ Clara cells,
represent a distal transit-amplifying cell pool (Stripp, 2008; Rock
and Hogan, 2011). AEC II are assumed to play a central role in
alveolar repair processes after injury by trans-differentiation into
AEC I. This involves tightly regulated alveolar epithelial cell pro-
liferation, migration, and polar differentiation with restoration of
junctional structures (Fehrenbach, 2001). More recently, studies in
mice revealed that endogenous airway epithelial progenitor cells
are located within the adult lung in the basal layer of the upper
airways, or within bronchoalveolar junctions.. These cells, termed
bronchoalveolar stem cells (BASCs) and expressing both AEC II
and Clara cell properties, are defined as EpCamhigh CD104+ inte-
grin α6β4+, are resistant to damage, proliferate after injury in vivo,
are multipotent in clonal assays in vitro and give rise to different
ciliated and non-ciliated epithelial cell populations of the distal
lung (McQualter et al., 2010; Chapman et al., 2011). In humans,
recent data define lung stem cells as positive for c-kit (Kajstura
et al., 2011), whereas others found them included in the p63+ck5+
basal cell pool (Whitsett and Kalinichenko, 2011). Following acute
lung injury, in accordance with data obtained from a rat model
(Berthiaume et al., 2006), we demonstrated that alveolar repair
processes in terms of AEC II proliferation were initiated 4 days
after LPS instillation, when alveolar inflammation decreased virtu-
ally to baseline levels. However as a first step, trans-differentiation
of existing AEC II into AEC I might occur fast and precedes AEC
II proliferation peaking at 48–96 h post injury. We were able to
delineate this feature from the notion that alveolar leakage was
associated with AEC I apoptosis and declined upon recovery of
the AEC I pool (Cakarova et al., 2009).

Since the earliest reports on alternatively activated M2
macrophages, it has been assumed that these cells promote repair
of host tissues after inflammation, e.g., by expression of fibronectin
1 (FN-1), the TGF-β-induced matrix associated proteins BIG-H3,
and IGF-1, which provide signals for tissue repair and prolifer-
ation (Gordon, 2003). However, although involvement of resi-
dent or tissue-recruited macrophages in these processes has been
demonstrated for several organ systems like liver, skin, heart,
kidney, and gut mucosa (Duffield, 2003; Takaba et al., 2010; Harel-
Adar et al., 2011; Lee et al., 2011; Lu et al., 2011; Mahdavian

Delavary et al., 2011), studies demonstrating a direct contribu-
tion of macrophages in lung epithelial regeneration after injury,
e.g., by using macrophage depletion strategies, are lacking.

Several studies at least indirectly suggest that these cells are
similarly involved in repair of the injured lung. In this regard,
the cytokines keratinocyte growth factor (KGF, FGF7), VEGF, epi-
dermal growth factor (EGF), heparin-binding EGF-like growth
factor, platelet-derived growth factor (PDGF), GM-CSF, fibrob-
last growth factors 2 and 10 (FGF2, FGF10) were shown to act
as potent lung epithelial mitogens (Panos et al., 1993; Melloni
et al., 1996; Huffman Reed et al., 1997; Van Winkle et al., 1997;
Li et al., 2001; Ray, 2005; Mura et al., 2006; Pogach et al., 2007;
Gupte et al., 2009; Crosby and Waters, 2010). Anti-inflammatory
or regenerative alveolar macrophages were noted to directly release
the epithelial growth factors PDGF, FGFs, HGF, TGF-β, and VEGF
following inflammation or lung injury (Melloni et al., 1996; Leslie
et al., 1997; Morimoto et al., 2001; Miyake et al., 2007; Medeiros
et al., 2009; Granata et al., 2010). Notably, our own studies demon-
strate that epithelial repair processes were primed already in the
pro-inflammatory phase of acute lung injury and elucidate a key
role of alveolar macrophage TNF-α inducing AEC repair via induc-
tion of autocrine epithelial GM-CSF signaling (Cakarova et al.,
2009). In support of these findings, GM-CSF has been recognized
as potent growth factor for AEC in vitro and in lung injury models
in vivo (Huffman Reed et al., 1997; Paine et al., 2003). Furthermore,
we demonstrated proliferative effects of the macrophage cytokine
MIF (macrophage migration inhibitory factor) which were medi-
ated by the MIF receptor CD74 expressed on AEC II (Marsh et al.,
2009). The M2 phenotype-associated cytokines IL-4 and IL-13
stimulated proliferation and migration of both murine and human
bronchial epithelial cells (Booth et al., 2001; White et al., 2009). As
opposed to data derived from our group, demonstrating a detri-
mental, tissue-damaging role of pro-apoptotic, highly inflamma-
tory GR-1highCCR2+ exudate macrophages in murine influenza
virus pneumonia (Herold et al., 2008), Narasaraju et al. (2010)
argued that HGF produced by this macrophage population may
contribute to the resolution of inflammation and regeneration of
alveolar epithelium.

RESTORATION OF STRUCTURAL AND FUNCTIONAL LUNG BARRIER
INTEGRITY
Successful lung barrier repair after injury is critically linked to
the survival of the patient (Ware and Matthay, 2001). Epithe-
lial junction formation during alveolar repair represents a crucial
event for restoration of alveolar barrier function. Tight junctions
are important to maintain discrete compartments in the lung
and tightly regulate the flow of molecules between apical and
basolateral compartments, whereas gap junctions permit direct
transmission of small signaling molecules between neighboring
cells. Transmembrane proteins of the occludin and claudin fam-
ilies are the major transmembrane structural elements of tight
junctions. It has previously been shown that alveolar epithelial cells
express occludins and zona occludens 1 protein (ZO-1) as part of
the tight junctional complex. Tight junctions are highly dynamic
structures, whose degree of sealing varies in response to exter-
nal stimuli (e.g., cytokines) via MAPK, PI3K, and PKC-mediated
re-organization of their sub-structures (Gonzalez-Mariscal et al.,
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2008). Ganter et al. (2008) previously demonstrated that IL-1β

causes alveolar endothelial and epithelial permeability increase via
integrin-mediated epithelial TGF-β release which induced phos-
phorylation of endothelial VE-cadherin and stress fiber formation.
Although reports on the role of macrophages herein are limited,
there is evidence that IL-1ra-expressing exudate macrophages pre-
vent disruption and disassembly of the tight junctional protein
ZO-1 in alveolar epithelial cells by IL-1β antagonism (Ganter et al.,
2008; Herold et al., 2011). Macrophage-released growth factors
might in turn increase tightness of junctions in airway epithelial
cells (Terakado et al., 2011).

To restore normal gas exchange in the alveoli, edema fluid accu-
mulating in the airspaces during lung injury is cleared by active
sodium transport via apical membrane epithelial Na+ channels
(ENaC). The electrochemical gradient for Na+ influx is main-
tained by the basolateral Na, K-ATPase. Transport of sodium pro-
motes a transepithelial osmotic gradient, causing water to move
passively from the airspaces to the interstitium thereby removing
excess alveolar fluid (Morty et al., 2007; Eaton et al., 2009). Infec-
tion of the lung epithelium and release of pro-inflammatory medi-
ators such as IL-1β and TNF-α, but as well TGF-β, were shown to
inhibit ENaC function (Dickie et al., 2000; Kunzelmann et al., 2000;
Chen et al., 2004; Roux et al., 2005; Hickman-Davis et al., 2006;
Wolk et al., 2008). Similarly, LPS-stimulated, pro-inflammatory
alveolar macrophages were found to decrease ENaC expression
and activity (Dickie et al., 2000). In contrast, the epithelial growth
factors KGF and EGF upregulated transepithelial sodium trans-
port and increased alveolar fluid clearance in animal models of
acute lung injury by affecting the Na, K-ATPase (Morty et al.,
2007), and at least EGF was shown to be expressed by lung tis-
sue macrophages in vivo (Temelkovski et al., 1997). Moreover,
recombinant IL-1ra increased ENaC α and β subunit expression
in primary murine and human AEC by antagonizing IL-1β in vitro,
and IL-1ra-expressing M2-programmed GR-1highCCR2+ exudate
macrophages similarly reverted IL-1β-induced downregulation of
ENaC expression in lung parenchyma in an LPS injury mouse
model in vivo (Herold et al., 2011).

Macrophages or subsets thereof are involved in neoangiogene-
sis either by secreting cytokines/growth factors or by providing a
physical scaffold fostering endothelial cell fusion. However, signal-
ing pathways activating an angiogenic program in macrophages,
especially in the lung, are still poorly defined, and most data
derive from in vitro studies in the field of tumor angiogene-
sis. Hence, it was shown that apoptotic cells release the lipid
mediator sphingosine-1-phosphate (S1P), which activates S1P1/3
on macrophages to upregulate cyclooxygenase-2. The liberation
of PGE2 then stimulates migration of endothelial cells in vitro
(Brecht et al., 2011). Other findings demonstrated a role for M2
macrophages in angiogenesis which was linked to release of IL-8
(Medina et al., 2011). In the lung microvasculature, the angiopoi-
etin (Ang)-Tie ligand-receptor system has a key regulatory role
in endothelial integrity and quiescence. Whereas Ang-1-mediated
Tie2 activation is required to maintain the quiescent state of the
resting endothelium, Ang-2 destabilizes the quiescent endothe-
lium and primes it to respond to exogenous stimuli, thereby facil-
itating the activities of inflammatory mediators, but as well of the
angiogenic cytokine VEGF to promote endothelial barrier repair

(Fiedler and Augustin, 2006). As outlined above, the ingestion
of apoptotic cells results in release of VEFG from macrophages,
one of the most important growth factors for endothelial cells
(Golpon et al., 2004; Granata et al., 2010). However, although
recent data suggest a link between decreased pulmonary VEGF and
impaired endothelial barrier function and angiogenesis (Jesmin
et al., 2011), a clear role of macrophage-derived VEGF and pul-
monary microvascular angiogenesis after injury has not been
defined.

LUNG TISSUE REMODELING AND FIBROSIS
Tightly controlled remodeling processes are important to restore
tissue homeostasis after injury and involve transient fibroblast
proliferation and production and degradation of matrix compo-
nents. Excessive scarring and tissue fibrosis may result from an
imbalanced action of M1 and M2 polarized macrophages after
prolonged lung inflammation. Whereas M1 macrophages play a
role in resolution of scarring and matrix degradation by release
of a variety of anti-fibrotic cytokines such as CXCL10 (Tighe
et al., 2011) or of matrix metalloproteinases (Strieter, 2008),
M2 macrophages were found to support fibroproliferative tissue
remodeling (Meneghin and Hogaboam, 2007; Strieter, 2008) by
increased expression of TGF-β, fibronectin, proline, arginase, and
tissue inhibitors of metalloproteinase (TIMPs). Prolonged IL-13
effects on alveolar macrophages, as found in several lung infectious
diseases (Meneghin and Hogaboam, 2007), promotes the presence
of M2-programmed macrophages and, ultimately, excessive fibro-
genesis. They also express the pro-fibrotic cytokines IL-10 (Sun
et al., 2011), and CCL17 which binds CCR4, and the interaction
between these two drives fibrogenesis in several mouse models
of lung disease (Meneghin and Hogaboam, 2007). Arginase-1-
mediated metabolism of l-arginine in M2 macrophages may result
in the formation of l-proline, which is used by myofibroblasts to
produce collagen (Strieter, 2008). M2 macrophage numbers were
increased in the lungs of patients with idiopathic pulmonary fibro-
sis (IPF; Prasse et al., 2006; Pechkovsky et al., 2010). Analyses of
cellular cross-talk within the lung mononuclear phagocyte system
revealed that Gr-1+ circulating macrophage precursors directed
M2-programmed, pro-fibrotic, tissue-resident macrophages to
enhance lung fibrosis in a mouse model of bleomycin injury (Gib-
bons et al., 2011). Apart from macrophage-mediated fibrogenic
tissue remodeling, as often observed after acute or chronic infec-
tious lung disease (Meneghin and Hogaboam, 2007), a role for M2
polarized macrophages was described in similar processes result-
ing in COPD or pulmonary hypertension (Benoit and Holtzman,
2010; Vergadi et al., 2011). However, although there is increasing
interest in the field of macrophage polarization in tissue remod-
eling, the definite role of the M1/M2 balance in the process of
(scarless) alveolar regeneration after acute lung injury/pneumonia
is still poorly defined.

CONCLUSION
Although numerous studies clearly demonstrate a crucial role
of resident and recruited lung macrophages with an anti-
inflammatory, regenerative potential in resolution of pulmonary
inflammation and in initiation of tissue repair processes, much
remains to be learned about the underlying signaling pathways and
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the mechanisms of cell–cell communications herein. Important
questions to be answered include the putative cross-talk between
these macrophages and other anti-inflammatory, injury-resolving
immune cells such as regulatory T cells, or their interaction
with local endothelial or airway epithelial progenitors during the
process of alveolar regeneration. Further issues to be addressed in
future studies concern organ-related plasticity of macrophages in
vivo, the question whether or to what extent macrophage pheno-
types are lineage-confined or induced by an organ-specific inflam-
matory milieu, and the definition of robust markers for ´beneficial´

macrophage phenotypes in the context of acute lung disease, to
ultimately decipher how their polarization can be manipulated to
improve the outcome of acute lung disease.
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