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Parkinson’s Disease (PD) is a neurodegenerative disorder with early non-motor/motor

symptoms that may evade clinical detection for years after the disease onset due to

their mildness and slow progression. Digital health tools that process densely sampled

data streams from the daily human-mobile interaction can objectify the monitoring

of behavioral patterns that change due to the appearance of early PD-related signs.

In this context, touchscreens can capture micro-movements of fingers during natural

typing; an unsupervised activity of high frequency that can reveal insights for users’

fine-motor handling and identify motor impairment. Subjects’ typing dynamics related to

their fine-motor skills decline, unobtrusively captured from a mobile touchscreen, were

recently explored in-the-clinic assessment to classify early PD patients and controls. In

this study, estimation of individual fine motor impairment severity scores is employed

to interpret the footprint of specific underlying symptoms [such as brady-/hypokinesia

(B/H-K) and rigidity (R)] to keystroke dynamics that cause group-wise variations.

Regression models are employed for each fine-motor symptom, by exploiting features

from keystroke dynamics sequences from in-the-clinic data captured from 18 early

PD patients and 15 healthy controls. Results show that R and B/H-K UPDRS Part III

single items scores can be predicted with an accuracy of 78 and 70%, respectively.

The generalization power of these trained regressors derived from in-the-clinic data

was further tested in a PD screening problem using data harvested in-the-wild for a

longitudinal period of time (mean ± std :7 ± 14 weeks) via a dedicated smartphone

application for unobtrusive sensing of their routine smartphone typing. From a pool of 210

active users, data from 13 self-reported PD patients and 35 controls were selected based

on demographics matching with the ones in-the-clinic setting. The results have shown

that the estimated index achieve {0.84 (R), 0.80 (B/H−K)} ROC AUC, respectively, with
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{sensitivity/specificity :0.77/0.8 (R), 0.92/0.63 (B/H−K)}, on classifying PD and controls

in-the-wild setting. Apparently, the proposed approach constitutes a step forward to

unobtrusive remote screening and detection of specific early PD signs from mobile-

based human-computer interaction, introduces an interpretable methodology for the

medical community and contributes to the continuous improvement of deployed tools

and technologies in-the-wild.

Keywords: fine motor skills, Parkinson’s disease, keystroke dynamics, unobtrusive monitoring, data in-the-wild,

machine learning, digital medicine

1. INTRODUCTION

Parkinson’s Disease (PD) is the second most common
neurodegenerative disorder after Alzheimer’s Disease (Shulman
et al., 2011) with a wide clinical spectrum of motor and non-
motor symptoms (Chaudhuri et al., 2006), which are mild in the
early stages and are causing progressive disability at the later
ones. The underlying neuropathological process is preceding the
onset of relevant PD motor symptoms up to decades, leaving
the disease undiagnosed for years (Hawkes et al., 2010; Schrag
et al., 2015). PD is creating significant impact on patients’
quality of life, that, in part, is caused by a wide variety of motor
impairments, such as brady-/hypokinesia (B/H-K) and rigidity
(R), being, yet, less evident for the person concerned due to
their mildness in the early stages of the disease. Furthermore,
degradation in motor function is reflected to patient’s motor
behavioral patterns, e.g., fine motor movements, speed of
reflex movements and intermittent tremor. Diagnosis of PD is
made by a movement disorders specialist who assesses, usually
clinically, the patient’s overall condition using questionnaires
and standardized scales, such as the Unified Parkinson’s Disease
Rating Scale (Fahn et al., 1987). UPRDS Part-III (Goetz et al.,
2008) consists of 14 single items qualitatively measuring the
range of PDmotor symptomatology, evaluated by experts during
the examination of specific tasks.

Objective and frequent evaluation with quantitative measures
can assist the clinical decision making process on PD diagnosis
and patients’ monitoring. Nevertheless, in clinical examination,
subject’s self-reports are frequently involved as a source of
information, subjected to the experience of the physician to
assess the severity of the PD symptoms. Information and
Communication Technology (ICT)-based solutions (Mellone
et al., 2012) and plethora of related data can assist the relevant
stakeholders to better understand the disease’s impact on daily
habits, even in the early stages, as well as patient’s response to
drug therapy. An emerging field of ICT where large-scale data
streams are acquired from users’ habitual patterns is human-
mobile interaction. The latter can reveal everyday information
that could be transformed to useful behavioral indices, built in
a dynamic and personalized way across the time of interaction.
Design of digital monitoring tools for PD with diagnostic value
has been a research field with a great variety of applications, due
to the wide spectrum of PD clinical symptoms. Efforts processing
data streams as captured from ICT devices, have proven to be
robust in distinguishing populations facing motor symptoms

from healthy ones, in different sub-tasks in-the-clinic assessment,
such as voice (Orozco-Arroyave et al., 2016), gait or tremor
(Abdulhay et al., 2018).

Digital health solutions with potential transferability to real-
life environments (in-the-wild) is a challenging step to capture
both useful disease indicators and achieve long-term adherence.
Bot et al. (2016) were the first ones that reported a large-
scale smartphone-based PD-related study, namely mPower, with
over 9,000 participants (both PD and healthy users), aiming
remote PD screening by suggesting patients to perform designed
digitized tests to assess motor-functionalities and self-reported
questionnaires. However, drop out rates highlighted that the
specific tests are not viable for long term user engagement.
Moreover, Zhan et al. (2018) have recently used a mobile
application to assess longitudinal PD patients via tests on five
scheduled scenarios, and by using sensorial data analysis, they
proposed an aggregated index that was correlated with the
total UPDRS Part III score. Although both aforementioned
studies paved the way for smartphone-based PD assessment,
they included the requirement of users’ active interaction with
the mobile application. This requirement, however, is a non-
resilient factor for avoiding drop outs and subjects are possibly
subjected to Hawthorne effect (Monahan and Fisher, 2010). Non-
obtrusive and passive sensing of data could overcome the latter
barriers in designing such monitoring tools. Such an example
is a recent study (Arroyo-Gallego et al., 2018) designed to
unobtrusively perform data collection from keystroke typing on
physical keyboard on subjects’ PCs, in order to detect subjects
with PD by using a machine learning approach. In fact, a
numerical index was produced that related hold time keystrokes
to the total UPDRS Part-III score. A possible drawback of this
approach (Giancardo et al., 2016), was the use of the total UPDRS
Part-III score as the regression target as it encapsulates both
relevant (e.g., B/H-K) and irrelevant (e.g., voice degradation,
gait) items with keystroke typing and fine-motor movement.
The produced index performed 0.83 Area Under Curve (AUC)
of the Receiving Operating Characteristic (ROC) with 0.77/0.72
sensitivity/specificity in classifying PD patients and healthy users,
when they were typing in-the-clinic setting, and 0.76 AUC and
sensitivity/specificity of 0.73/0.69 during the remote at-home-
setting assessment.

Fine-motor skills decline can also be detected from typing
patterns on mobile touchscreen as derived from recent similar
works on typing pattern analysis on mobile touchscreen
(Arroyo-Gallego et al., 2017; Iakovakis et al., 2018), during
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in-the-clinic experiments. In our latest study, we proposed a
feature vector representation of enriched keystroke information
and a two-stage machine learning-based pipeline to process
multiple typing sessions as captured from mobile touchscreen,
performing 0.92 AUC with 0.82/0.81 sensitivity/specificity
on early PD and healthy subject’s classification. Subjects
typed multiple typing sessions during in-the-clinic medical
examination, the derived typing sequences were analyzed and
the study findings resulted in four keystroke features with
high discriminative power, and a plausible connection with
symptoms.

Motivated by the aforementioned, the current study steps
further by analyzing keystroke information with respect to
specific motor symptoms that are possibly causing the variations
to PD patients’ typing patterns. The analysis direction is aiming to
increase the interpretation of the produced indexes, by targeting
the UPDRS Part III single item scores that are related to
the PD fine motor symptoms. The first part of this study is
the exploitation of the best performing features from mobile
touchscreen typing in the binary setting (control or PD patient),
as predictors of specific UPDRS Part III single items, in order
to predict each symptoms’ severity in the standardized medical
scale, so to be easily interpreted by medical experts. From a
methodological point of view, by employing regression models,
numerical indexes were produced, which describe the severity of
the motor symptomatology on typing kinetics, and tested with
a leave-one-subject-out (LOSO) validation of symptom’s severity
estimation, using keystroke features as dependent variables; the
target variables were the UPDRS Part III single item scores of
each symptom. The conceptualization of this analysis direction
was reinforced from the correlation results between both the
employed features and the specific UPDRS Part III single items,
and the variation that the symptoms had plausibly caused to
keystroke distribution coming from PD patients.

Furthermore, the second contribution of the present work
is the testing of the generalization power of these trained
regressors from the in-the-clinic to the in-the-wild data analysis.
Mobile touchscreen typing data were unobtrusively captured
from users via a dedicated smartphone application. More
specifically, the employment of the developed models in-the-
wild setting was used to investigate further their diagnostic
performance and their time response to a longitudinal manner.
Multi modal data were collected through a developed research
data donation application (i-Prognosis, 2017), and a third-party
keyboard was included to capture keystroke dynamics from
routine typing. The variance and noise induced to the data
from the daily activities in the uncontrolled setting, is a real-life
challenge when screening in an unobtrusive manner. However,
touchscreen typing is a high-frequent activity and usually is
an activity with cognitive attention; factors that contribute to
the retainment of user’s specific patterns in keystroke dynamics
across time.

The present work is in line with the efforts toward
predictive analytics approaches, both in-the-clinic and in-the-
wild data analysis, in capturing PD-related early signs. This could
potentially add in building an effective PD prediction system,
taking into consideration the pragmatic conditions of everyday

living, for automatic remote inference and recommendation of
PD diagnosis and management.

2. MATERIALS AND METHODS

Based on the findings of our previous work (Iakovakis et al.,
2018), this study exploits the most discriminative features as the
representation of typing patterns on mobile touchscreen, and
make use of regression models to estimate individual UPDRS
Part III single items scores relevant to fine-motor impairment.
As it is depicted in Figure 1, the selected features are used as
the independent variables for estimating the symptoms’ severity
which are the UPDRS Part III single items scores, used as
the target variables for the training of the different regression
models. A LOSO evaluation with nested cross validation for
regressors’ optimization scheme is used in the development set
(DSet) in-the-clinic (Figure 1A), to identify the models and
symptoms that can be predicted, and the generalization of
the methods’ is tested in-the-wild scenario (Figure 1B). The
estimators are evaluated in their diagnostic properties using ROC
based performance in the binary setting of classifying PD and
healthy users. The goal of this employment is to investigate the
diagnostic properties of the method as well as the transferability
potential.

2.1. Data Collection
2.1.1. In-the-Clinic Data
The DSet consisted of data acquired from 33 subjects who
provided data on a day of visit at the clinic. The collection
protocol included a typing experiment of multiple text excerpts
on smartphones and a clinical evaluation. These data were
logged in a spreadsheet file and mapped to the subjects
coded IDs by the neurologist. The specific UPDRS Part
III single item scores used in the regression analysis were
item 31/ 21/ 22/ 23 for Bradykinesia-Hypokinesia/ Tremor/
Rigidity/ Finger Taps, respectively. The DSet study protocol
was approved by the Aristotle University of Thessaloniki,
Greece (Bioethics Committee of Medical School, approval
no. 359/3.4.17). Written informed consent was obtained from
all subjects prior to their participation in the study and
the procedures carried out were according to institutional
and international guidelines on research studies involving
adult human beings. Subjects held the right to withdraw
from the procedure at any time, without providing any
justification. Recruitment and study procedures were carried
out according to institutional and international guidelines on
research involving adult human beings. PD patients under
medication (14) has mean/std Levadopa equivalent dose of
237/156, and were asked to refrain from taking it for at least 8
h before their visit. More detailed information about the dataset
acquisition and study cohort can be found in Iakovakis et al.
(2018).

2.1.2. In-the-Wild Data
The data captured in-the-wild (GData) were collected by the
i-PROGNOSIS remote data collection study (GData study).
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FIGURE 1 | Schematic representation of the methodological steps referring to: (A) the DSet keystroke data from touchscreen typing captured in-the-clinic setting and

(B) the extension of the best resulted models from the DSet to the GData. LOSO-based training/testing is used to evaluate which regressor can achieve better

estimation of motor symptoms via the use of keystroke dynamics features as inputs and UPDRS Part III single item scores as targets. The regressors that efficiently

capture the scale of symptoms severity are used in-the-wild setting for subjects characterization as PD or control.

Subjects from four countries across EU contributed pseudo-
anonymised multi modal data remotely (e.g., voice, handling)
via downloading the mobile application from Google Play store
and enrolling in the study. The application provides information
regarding the study details on its first launch and gives subjects
the option to communicate with medical representatives in each
country in case of additional questions. An electronic informed
consent was obtained from all subjects enrolled, within the
smartphone application, by digitally signing a dated consent
form. Due to the remote nature of the study, obtaining written
consent was impractical. Subjects held the right to withdraw
from the procedure at any time via the available option within
the application and even request the deletion of the collected
data. Subjects of GData have the option to use the third-
party keyboard included in the application named iPrognosis
App, as to capture the keystroke dynamics during their routine
typing activities. All the experimental and ethical protocols were
approved by Ethik-Kommission an der Technischen Universität
Dresden, Dresden, Germany (EK 44022017), Greece, Bioethics
Committee of the Aristotle University of Thessaloniki Medical
School, Thessaloniki, Greece (359/3.4.17), Portugal Conselho
de Ética, Faculdade de Motricidade Humana, Lisbon, Portugal
(CEFMH 17/2017), and United Kingdom London, Dulwich
Research Ethics Committee (17/LO/0909).

Two hundred and ten total users provided 42,812 typing
sessions (mean/std 204/460 typing sessions per user). However,
only subjects who self-reported to be aged between 48 and 80
years old were included in the analysis in order to be in the same

age group with the subjects in the DSet, resulting in a total of 48
subjects.

2.1.3. Data Capturing
The application for capturing keystroke-related data includes a
custom software keyboard developed for the Android Operating
System (OS) by three authors (DI, SH, and VH). The users have
to enable the software keyboard after the application installation
and set it as the default input method. Subjects of the in-the-clinic
assessment performed the typing task using the custom keyboard
and a common smartphone provided by the authors, whereas
in-the-wild subjects used the keyboard with their own mobile
devices. In the background, a class of the software keyboard
captured the timestamps of press and release touch events for
each key tap, as well as the normalized pressure (0.000–1.000)
on each press event as outputted by the OS. Each key tap was
also flagged as a long-press event, corresponding to deliberate
special keyboard actions, or not. The characters typed were not
captured, as the context of what is being typed is not required
for the analysis, rendering our data collection process privacy-
aware. For each typing session (keyboard shown and afterwards
hidden, with at least one key tap in the meantime), sequences of
captured data were stored in JSON format and were indexed as
database entry in a local SQLite database, available only to the
application. The application periodically transmitted database
entries to a remote cloud server (Microsoft Azure) when the
user’s device was connected to Wi-Fi and charging. Each entry
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was accompanied by a unique coded ID of the user to ensure
privacy.

2.2. Feature Extraction and Regression
Analysis
2.2.1. Keystroke Dynamic Features
The derivatives of time-stamp sequences of touchscreen key press
t
p
n and release trn produce the so-called hold time (HT) and flight
time sequences (FT). The HT sequences, containing values of
HTsHTn = trn − t

p
n, n = 1,2,...,N, i.e., the differences between the

time-stamp a key was released and the time-stamp the key was
pressed, are pre-processed, in order to discard deliberate long-
presses. Similarly, the FT sequences, containing values of FTs
FTn = t

p
n+1 − trn, n=1,2,...,N-1, i.e., the differences between the

time-stamp a key is pressed and the time-stamp the previous key
was released, were also pre-processed to minimize the effect of
typing dexterity and subjective factors. In particular, the filtering
process included an upper bound of 3 s for sequence elements,
a normalization procedure per typing session and a conditional
filtering step to the produced normalized FT (NFT) sequences, as
follows:

NFTn = FTn − FTn,NFTn ∈ [−1.27, 1.7]s, n = 1, 2, ...,N − 1.
(1)

Each typing session is represented by a feature vector consisting
of mean of mean µ of Hold time (HT), mean of standard
deviation (σ ) of HT as long as skewness S of normalized flight
times, as derived by aggregating non-overlapping windows of 15
(s) of keystroke sequences:

X = {HTµ,HTσ ,NFTS} (2)

The aforementioned typing features are drawn from our previous
study (Iakovakis et al., 2018), in which statistical representations
of sequences of HT, FT, and normalized pressure (NP) values
were examined in-the-clinic data. However, in some cases,
operational system implementations do not provide the value of
NP, therefore the NP-related feature was omitted from in-the-
wild data analysis, as no consistency in same smartphone devices
was secured across the GData users.

2.2.2. Regression
For each of the UPDRS Part III items related to upper-extremity
fine-motor symptoms, scores can be directly associated with
the symptom severity, a regression model (transformation)
was trained/tested, under a leave-one-subject-out (LOSO)
scheme with inner cross validation for regressors’ parameters
optimization, to estimate the score of the corresponding item
(target) on a typing session level. The total 275 typing sessions
of DSet were assigned with the quantized target score of UPDRS
Part III single items for each subject. By design, UPDRS scores
(integer between 0 and 4) were quantized. Quantization levels
span the severity of the underlying symptom with the lowest
value (0) denoting a normal behavior, values between (0 and 2)
exhibiting mild symptoms, and values from 3 up to 4 severe
impairment or inability. Regression can granularize the target
domain and provide an index of higher resolution, based on the

continuous input predictors (i.e., the keystroke dynamics features
of X). The UPDRS single items scores under investigation
are B/H-K (B), tremor of right/left hand (Tr/Tl), rigidity (R)
of right/left hand (Rr/Rl) and alternative finger tapping of
right/left (AFTr/AFTl). In general, regression models involve:
(a) the unknown parameters, denoted as β , (b) the independent
variables, X and the dependent variable, Y . In our case, the
regression analysis aims to investigate if the regressors fi can
approximate the scale of Yi-th symptom’s severity on each
subject, i.e.,

Yi ≈ fi(X;β), i ∈ {B,Tr ,Tl,Rr ,Rl,AFTr ,AFTl} (3)

An inner cross validation loop is used to optimize the β

parameters of the different models under test. The models
that were evaluated for the regression training were Support-
Vector-Regression (Smola and Schölkopf, 2004), Lasso and
Ridge Regression (Tibshirani, 1996), Random Forests (Liaw and
Wiener, 2002), and Bagging of Linear Regressors (Breiman,
1996). We evaluated the accuracy of each regressor on a subject
level to measure the ability to capture the scale of the severity,
as long as the test error, by employing the Pearson’s correlation
coefficient and the mean absolute error (MAE). The regression
analysis was applied in-the-clinic data and the learned functions
fi that can explain a significant part of the underlying symptom
and the mean absolute test error is below 0.5 (the half distance
between the quantized scores), were further evaluated in-the-wild
setting, as explained in the succeeding section.

2.3. Regression Models Exploitation
In-the-Wild
Each subject Kd ∈ G, where G is denoted the set of GData
subjects, has produced a sequence of sj typing sessions, and a
corresponding feature vector Xsj where j ∈ {1, .., nd} is the total
number of sessions for subject Kd.

2.3.1. Session Level Analysis
The feature extraction pipeline of typing session as captured
in-the-wild (GData), depicted in Figure 2A, includes a post-hoc
filtering component that discards recordings with less than eight
keystrokes, to foster the statistical validity of the subsequent
feature extraction. Therefore, each typing session is subjected to
a windowing process that discards windows with less than four
keystrokes to be consistent with theDSet processing pipeline. The
values of Xsj are computed via aggregation across valid windows.

Each session is represented by a feature vector Xd
j for the subject

Kd ∈ G. Three features are extracted from each valid typing
session from GData and the learned mappings (fi) are applied to
each session.

2.3.2. Subject Level Analysis
From a subject’s perspective, an aggregation mechanism F(·)
over the estimates fi(Xsj) that belongs to a period of time δ, is
used to characterize the subject’s distribution during this time
period (see Figure 2B). Each time window δ can contain a
different number of estimates associated with a time-stamp t.
Subject’s contribution with less than 10 valid feature vectors

Frontiers in ICT | www.frontiersin.org 5 November 2018 | Volume 5 | Article 28

https://www.frontiersin.org/journals/ICT
https://www.frontiersin.org
https://www.frontiersin.org/journals/ICT#articles


Iakovakis et al. In-the-Wild Parkinson’s Screening via Typing

FIGURE 2 | Procedural pipeline for processing GData (A) per typing session and (B) per subject. Typing sessions with at least eight keystrokes are considered valid

for processing, whereas the rest are omitted. The keystroke dynamics consist of hold time (HT) and flight time (FT) sequences and are both split by non-overlapping

15 s windows (Wj ). Only windows with at least four keystrokes within the 15 s interval are used further in order to extract features by computing the mean feature

distribution for the valid corresponding windows. Each subject Kd has contributed typing features that are grouped by a time window δ, which is considered valid if

contains more than 10 sessions. Each session Xd
j
is transformed with a learned mapping fk , k ∈ B/H− K,R which was previously trained on a the DSet, computes a

single numerical score from each typing session. An aggregation mechanism F (·) is applied to each time window δ to characterize subject’s time window contribution

over time.

Xd
j during the period δ is omitted from the analysis, in order

for the δ to contain enough number of typing sessions. In
the current context of analysis, we examine the median as
the aggregation mechanism F(·) to get the most representative
sample from the distribution. Moreover, two time windows δ ∈

{1, 52}weeks are used for validating the discrimination power of
the estimators. In particular, the time frame of a week (δ =

1) is chosen to include all patterns and habits that can vary
during a week (micro-level), whereas all 52 weeks (δ = 52) are
set as the global time frame of the analysis for a macro-level
perspective.

2.3.3. PD Classification Performance Evaluation
The motor estimates resulted from the aforementioned
subject-level analysis, are evaluated in the binary classification
performance (PD vs. control), by estimating the area under curve
(AUC) of the ROC curve. ROC based performance of the indexes
discrimination power is computed with Confidence Interval (CI)
with 1,000 bootstraps. Additionally, the sensitivity/specificity
metrics, corresponding to the optimal ROC-based cut-off point
(decision threshold), are estimated by maximizing the Youden
Index (Fluss et al., 2005), under the assumption that costs for
false positives and false negatives are equal.

2.3.4. Statistical Analysis
Logistic regression tests using the subject status (PD or
control) as dependent variable and symptoms predictions,
sex, age, years of education, and usability of smartphones as
independent variables, are performed for statistical significance
evaluation of the variables discrimination power. The two
groups (PD and controls) of the GData setting are tested in
terms of demographics using a two-sided Mann–Whitney U-
test. Moreover, a two-sided Kolmogorov–Smirnov test for the
null hypothesis that two samples are drawn from the same
continuous distribution is used to examine the statistically
significant difference of the raw keystroke dynamics between PD
and controls. Statistically significant difference is set at the level
of p < 0.05.

3. RESULTS

3.1. Keystroke Dynamics Distributions
In Figure 3, the raw keystroke dynamics variables under
investigation are compared with respect to their distribution as
drawn from the DSet and the GData settings. From this figure,
a clear similarity in the trend between the two settings can be
observed. Moreover, both HT and FT values, are statistically
different (p < 0.001) for group-wise comparisons of PD and
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FIGURE 3 | Box plots of keystroke dynamic variables (FT and HT) distributions when comparing the two data capturing settings (DSet and GData).

controls in the two settings. This justifies the initial assumption
of the robustness of the proposed approach to transfer knowledge
from analysis in-the-clinic to the one in-the-wild, as described
below.

3.2. In-the-Clinic Setting
From the LOSO analysis results it was found that the best
performing regression models achieved 0.83 (0.39), 0.69 (0.41),
and 0.68 (0.55) Pearson’s correlation coefficient (MAE) for
predicting dominant-hand R, B/H-K and right-handed finger
tapping, respectively. As MAE was greater than 0.5 for the case
of right-handed finger tapping, overlapping the quantized levels
of UPDRS Part III scores, dominant hand R and B/H-K were
only involved in the consequent analysis. The predictions of
the latter two symptoms and the UPDRS Part III single item
scores are visualized in Figure 4. In particular, the dominant-
hand R and B/H-K median predicted scores are depicted along
with the medical scores, using error-bars of 0.5 height. The
produced indexes achieve 78 and 70% in predicting the quantized
UPDRS medical scores on R and B/H-K scores during the
LOSO experiment, respectively. The rest UPDRS single items
(Tl/r ,Rl,AFTl ) related to motor activity can not be predicted
from the keystroke features. This is due to the low Pearson’s
correlation coefficient values (< 0.35), which are probably
caused by the use of dominant hand during typing (all of them
were right-handed) and the possible subtle relation of finger
movement coordination with hand tremor (see also section 4).

3.3. In-the-Wild Setting
As it was mentioned in the section 2.1, GData subjects have
matched demographic characteristics of the ones participated in
DSet, in order to avoid any inhomogeneity across the two data
settings, after appropriate subject filtering process. Moreover,
results from the statistical analysis tests, tabulated in Table 1,

show that data from a PD patient’ and a healthy controls’
group, are matched in terms of demographics. Furthermore,
ROC curves of the the two estimated indexes estimated for each
subject are depicted in Figure 5, considering as time-frame δ =

52 weeks. In particular, estimation of R achieves 0.84 (0.75/0.93
is the 95%CI) AUC with 0.77/0.8 sensitivity/specificity and 0.79
accuracy, where the estimation of B/H-K achieves 0.80 (0.7/0.92
is the 95%CI) AUC with 0.92/0.63 sensitivity/specificity and 0.70
accuracy in the GData cohort (more diagnostic properties are
tabulated in Table 2). In addition, when assessing diagnostic
properties of subjects’ contribution in time frame (δ = 1week),
the indexes achieve lower discrimination performance with 0.80
AUC for R with 0.82/0.65 sensitivity/specificity and 0.78 AUC
with 0.86/0.60 sensitivity/specificity for B/H-K. Finally, statistical
significance discriminative performance of the estimated indexes
was found (p < 0.001) with logistic regression models
including gender, age, years of education, and mobile usability
time as co-variates, achieving p < 0.001, where the other
dependent variables (see section 2.3.4) did not show any
statistical significance.

4. DISCUSSION

Digital Health is an emerging field that could enhance disease
detection and management via the realization of objective and
accessible tools that could quantify behavioral characteristics.
Unobtrusive capturing of data via the natural interaction with
digital devices is a key factor of digital tools’ design to meet the
need of long-adherence. User’s habitual patterns are influenced
by motor symptoms, even in the early stage of PD where the
motor manifestation is subtle. The underlying behavior can
be detected via algorithmic transformation of high frequency
sampled data streams to useful medical indicators, that can
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FIGURE 4 | Regression estimates (green dots) of LOSO experiment using keystroke dynamic features and UPDRS Part III single items scores. The median of the

predicted values distribution across the typing session predictions are also plotted per subject. Moreover, error bars of height ±0.5 are superimposed to show if the

symptom estimation lies within the span of the physician’s score.

TABLE 1 | Summary of GData study cohort (48 subjects) demographic and

clinical characteristics with respect to each group ( PD patients and Healthy).

PD patients Healthy Statistical

significance

n (total n = 48) 13 35 N.A.

DEMOGRAPHICS

Women # (%) 5 (38%) 14 (40%) n.s. (p = 0.92)

Men # (%) 8 (62%) 21 (60%) n.s. (p = 0.92)

Avg. Age, years (std) 62 (6) 57 (8) n.s. (p = 0.09)

No. of participants that

completed education level

E1/E2/E3/E4/E5

0/0/5/7/1 1/1/7/18/8 n.s. (p = 0.08)

No. of participants that used

a smartphone for S1/S2 /S3

2/0 /11 4/0/31 n.s. (p = 0.7)

Levels of education: E1: 0–8 years in school, E2: 8–10 years in school, E3: >10 years in

school and no other studies, E4: University or college degree, E5: Post graduate degree

(master, Ph.D.) Smartphone usage period: S1: <6 months, S2: 6–12 months, S3: >12

months. N.A., not applicable; sig., significant; n.s., non-significant.

be interpreted from physicians and assist the longitudinal
process of passive monitoring, diagnosis, and treatment. The
current study design aims to amalgamate the aforementioned
requirements, while the results contribute to the interpretation
and the real life transferability of the developed methods, by
exploiting keystroke dynamics during routine typing on mobile
touchscreen, a fine-motor activity which is of high frequency
due to the booming of mobile technology (Sarwar and Soomro,
2013). A machine learning-based estimation of dominant-hand
rigidity and bradykinesia/hypokinesia severity is employed using
captured keystroke typing features.

The individual items of R and B/H-K, related to fine-motor
skills decline in PD, are used as regression targets to provide
a granular data driven estimation about the specific fine motor
symptom, which is more interpretable than a high-level label
for the subject (e.g., a binary label or total UPDRS Part III
single item score). The regression results show that dominant-
hand R and B/H-K predictions achieve a low test error and
can sufficiently capture the severity of symptom. Hand tremor
and non-dominant hand UPDRS Part III single item scores,
however, could not be predicted during the proposed analysis,
which resulted in low correlation coefficients (<0.35). The latter
can be explained by the nature of the finger typing information,
which can be disentangled to the finger reflexes of pressing
the keys (can expressed via HT) and the finger movements
across the digital screen (FT); actions that can be influenced
by R and B/H-K but not directly from tremor. In addition, PD
patients were at the early stage of the disease and their UPDRS
Part III single item scores were in the lower scales 0 − 2 for
both symptoms. The latter reinforces the added value of the
results toward capturing PD specific fine-motor impairment at
the early stage of the disease, where the symptoms are mild.
Moreover, the expansion of the developed in-the-clinic method
to the uncontrolled setting in-the-wild constitutes a step toward
remote passive monitoring of users’ fine-motor symptoms. The
unobtrusive capturing of GData containing more than 40,000
typing sessions (mean/std: 204/406 per subject) from 210 total
users (mean/std weeks of each subject’s data contribution:
7/14), highlights the positive effect of the unobtrusive data
collection in the long-term adherence. This overcomes the
dropouts seen in recent smartphone-based studies for PD, which
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FIGURE 5 | Classification performance of the median predicted estimates of R

and B/H-K during the time frame of δ = 52. ROC curves demonstrating the

classification performance of the proposed models for estimating individual

motor symptoms on the GData (13 PD patients/35 controls). Solid lines

represent the mean ROC curve, while shadowed areas delimit the 95%

confidence intervals, computed over 1,000 bootstraps. From the ROC curves

the corresponding AUC values are for the R 0.84 (0.75/0.93 is the 95%CI) and

for the B/H-K is 0.80 (0.7/0.92 is the 95%CI), respectively.

require active user’s involvement (Bot et al., 2016; Zhan et al.,
2018).

The diagnostic properties of the produced indexes achieved
up to 0.8/0.77 sensitivity/specificity on classifying PD and
healthy subjects in the wild setting, when aggregating for the
whole time period of data contribution, which matches the
satisfactory performance seen in-the-clinic setting analyses, i.e.,
0.81/0.82 in Iakovakis et al. (2018) and 0.81/0.81 in Arroyo-
Gallego et al. (2017). The results are also compliant with the
findings of Arroyo-Gallego et al. (2018), who suggests that
keystroke dynamics on physical keyboard can be used for remote
PD screening with sensitivity/specificity of 0.73/0.69. Estimated
indexes were also aggregated across the time frames of hour,
weekday, and week, as to compute the variance and consistency
of the indices over time. Figure 6 exemplifies the longitudinal
estimates of the median of indices coming from a PD patient and
a healthy GData user for hour/weekday and for six continuous
weeks of data contribution. Estimated indexes of both subjects
have a constant behavior over the time frames of week and
weekday, whereas intra day data are more variant.

Additionally, in Figure 7 group-wise comparisons of the
time response of the indexes are depicted, with an obvious
discrimination of the two groups across different time
frame resolutions. The corresponding standard deviation of
PD/controls; 0.37/0.34 for hours 0.27/0.3 for weekday and
0.24/0.3 for week. The latter denote more variant behavior
during the day rather than the weekday and week for both

groups. In fact, intra-day variations of controls’ fine-motor skills
have been previously reported (Van Vugt et al., 2013) to be
affected by the circadian rhythm, which can also be considered as
a factor that might influence the findings here, due to its relation
with fine motor movements during smartphone interaction.
Also, dopamine plays a substantial role on circadian regulation
and timing behavior (Agostino et al., 2011), whereas recent
works (Videnovic and Golombek, 2017) present increasing
evidence to disruption of circadian function in PD, where a
dopamine-based therapy may increase the circadian oscillations.
Healthy population tends to have the peak of their motor
coordination and fast reflexes between the time zone of 14:00
and 16:00 (Bass, 2012; Smolensky and Lamberg, 2015), which
may explain the groups’ median indexes divergence during that
specific period of time, as it can be seen in Figure 7. Though
circadian rhythm in PD is a novel area of research and recent
studies state it as a new therapeutic target (Videnovic and Willis,
2016), applications of digital health with interpretability can
enhance the understanding of the underlying patterns of the
human behavior, setting the direction for the future work.

From a wider perspective, smartphone interaction has been
a promising research direction (Pan et al., 2015) for detecting
individual PD-related symptoms, such as gait difficulties and
hand tremor through accelerometer recordings during the
execution of specific scenarios using a smartphone. Furthermore,
fusion of data associated with different PD symptoms captured
via smartphone-based tests (Arora et al., 2015) and machine
learning have been explored toward PD screening, resulting
in classification performance of 0.96/0.97 sensitivity/specificity.
Although the latter study provides proof-of-evidence for the
feasibility of assessing a wide range of motor symptoms through
smartphone interaction, data were recorded during guided
scenarios, constraining the scalability of data collection due to
the requirement of users’ active participation. The novelty of the
current study is that it sets up an interpretable framework for
unobtrusive assessment of individual PD symptoms, which can
be further used in combination with other data sources, e.g.,
background and privacy-aware capturing of accelerometer data
for tremor assessment during typing or microphone data (voice)
for dysarthrophonia assessment during phone calls, to broaden
symptom assessment and pave the way for a holistic objective
PD detection tool. Following the same approach proposed in this
work, the additional data sources can potentially yield explainable
symptom severity indicators, that if combined, can form a fused
behavioral vector based on which the final decision of the
subject’s status against PD can be reached, in a similar way that
diagnosis takes place in clinical practice. The fusion approach
can include the feeding of the time-aggregated (e.g., every
week) behavioral vectors to a decision system, similar to that
of (Arora et al., 2015), allowing for high frequency monitoring
of the time evolution of both the overall decision, as well as
the individual PD symptoms indicators. This is the direction
that the i-PROGNOSIS European research project (http://www.
i-prognosis.eu) follows toward early PD screening in daily living,
in the context of which this study has been carried out.

One possible limitation of our study is that patients under
dopaminergic therapy that were included in the DSet data
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TABLE 2 | Diagnostic properties of the typing features and the symptoms estimated scores as calculated in the GData cohort.

Metrics Single metrics Estimated indexes

HT µi HT σ i NFT Si RS BS

AUC, 95% CI 0.76 (0.67–0.86) 0.67 (0.59–0.77) 0.74 (0.62–0.86) 0.84 (0.75–0.93) 0.8 (0.70–0.92)

Sensitivity, 95% CI 0.62 (0.32–0.86) 0.77(0.46–0.95) 0.31 (0.09–0.61) 0.77 (0.46–0.94) 0.92 (0.64–0.99)

Specificity, 95% CI 0.83 (0.66–0.93) 0.71 (0.53–0.85) 0.89 (0.75–0.97) 0.8 (0.63–0.92) 0.63 (0.44–0.78)

Positive predictive value, 95% CI 0.57 (0.36–0.75) 0.5 (0.35–0.64) 0.5 (0.22–0.77) 0.59 (0.41–0.74) 0.48 (0.37-0.59)

Negative predictive value, 95% CI 0.85 (0.74–0.92) 0.9 (0.70–0.97) 0.79 (0.72–0.84) 0.9 (0.77–0.96) 0.95 (0.76–0.99)

Diagnostic accuracy, 95% CI 0.77 (0.62–0.87) 0.73 (0.58–0.84) 0.74 (0.60–0.85) 0.79 (0.65–0.89) 0.71 (0.63-0.88)

Thresholds were computed by maximizing the Youden Index of the corresponding bootstrapped ROC curves. CI, Confidence Interval; RS, Rigidity Scores, BS, Bradykinesia Scores.

Bold values indicate that both the proposed indices outperform the diagnostic performance of the single features.

FIGURE 6 | Responses of the estimated indices across time using different time resolution (hours, weekdays, and weeks) of two cases, i.e., a PD (blue graph) and a

control (green graph). Blue/green line represents the median of the estimated indices, whereas blue/green dots are estimations for a single typing session regarding

the PD patient/control contribution for each period of time.

setting refrained from taking their medication at least 8 h
before their participation in the experiment, instead of the
12 h that usually secures the “practically off” condition. The
latter, combined with potential effects of long-duration response
to Levodopa, may have improved the psycho-motor state of
these patients and consequently, their typing cadence, leading
to a reduced discrimination performance across classification
methods tested. Nevertheless, the promising results of the
symptoms’ estimation in the DSet setting show limited “echoing”
effects of dopaminergic therapy on certain study participants’ fine
motor skills. A second possible limitation of this study is the
validity of the users’ self-reported demographics in the GData
data setting. This perhaps will induce noise in the data evaluation.
However, using the time-frame of one week within the range

of 52 weeks creates a longitudinal user profile at the micro and
macro level of analysis, which reveals a data driven behavior that
can be compared across different users. In this way, noticeable
deviations could lead to group reorganization; yet, this was not
the case here.

Considering the future adoption and extension of the current
methods, effectiveness of the approach will not be affected by
subjects’ reorganization because symptoms severity estimators
were trained/evaluated based on data captured from a medically
valid cohort. However, reorganization could happen to the in-
the-wild cohort, which was used for the reporting of diagnostic
properties of the indices. The group reorganization will not
severely affect the findings, since the diagnostic properties of the
indices are reported with a confidence interval, the true value
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FIGURE 7 | Response of the estimated indices across time using δ of (A) daily hours and (B) weekdays, for all subjects grouped according to their health status, i.e.,

PD (green graph) and controls (blue graph). The solid lines represent the group medians, whereas the shadowed areas denote the upper(75th)/lower(25th) quartiles

range, respectively.

of the diagnostic performance will probably lie in the span of
the reported confidence intervals in case of more participants
join the study. Moreover, demographic characteristics did not
show any statistical significance from the logistic regression
tests. Scalability is the main cause the study is designed in
this manner, and re-analyzing the data arising from a larger
pool of subjects will yield to even more robust values for the
diagnostic performance, which will further increase the medical

interpretation of the proposed approach. Toward this, research
plans include sampling of subjects formedical evaluation in order
to fine-tune the time-aggregation function used in this study
toward bettermodeling of time-related variations of the proposed
indicators.

Regarding the transparency of the developed machine
learningmethods, the current approach aims to quantify the fine-
motor skills of the user and transform daily behavior to indices
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that can be linked to scores of the physician’s assessments. The
produced indices can be also reverse-explained by the physician
due to the initial compact feature representation and plausible
correlations with standardized UPDRS items. The use of specific
features in the pipeline, which are naturally linked to fine-
motor impairment, further enhances the interpretability of the
resulting estimations. Specifically, keystroke dynamics-related
features inputted to the regression mechanisms are naturally
affected by rigidity (muscle stiffness) and bradykinesia (slowness
of movement), causing longer (mean of HT), more variant
(standard deviation of HT) pressings of virtual keyboard keys
and slower finger coordination across the screen (skewness of
FT), during PD patients’ typing, when compared to controls.
The latter can be interpreted by the physician as an objective
projection of the scale of symptoms’ severity to the specific
body part used to perform the task. In a nutshell, the developed
approach aims to support physicians, not replace them, and
accelerate the PD diagnosis, by providing objective tools for
remote quantification of the symptoms footprint on the patient.

CONCLUSIONS

In this study, evidence of real-life usage of unobtrusive detection
of fine-motor symptoms from undiagnosed population using
prior information on symptoms severity estimation in-the-
clinic setting was provided. The presented results validate the
initial hypothesis that individual symptom severity can be
approximated using keystroke dynamics information and based
on this, PD can be detected via keystroke pattern analysis
when data are captured in-the-wild. Separation between PD
and healthy controls, purely based on smartphone keystroke
dynamics is possible and these results could be seen constantly
over a longer time frame. Furthermore, the severity expressed
by the smartphone touchscreen typing corresponds well with
the severity evaluated by the neurologists on which the training
algorithms are based. Potential future extension of the method
can include the use of deep learning (LeCun et al., 2015),
accompanied with explainable methods (Gunning, 2017), which
may reveal better representations of the raw keystroke dynamics
and capture more efficiently the latent factors of the symptom’s

digital footprint, considering also other factors in the analysis,
such as the circadian rhythm. Finally, embedding such analyses
in the operational systems of smartphones could assist the mobile
health booming, considering though, all ethical guidelines and
data regulations regarding privacy and security, such as the
General Data Protection Regulation (GDPR).
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