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The fact that emotions are dynamic in nature and evolve across time has been explored

relatively less often in automatic emotion recognition systems to date. Although within-

utterance information about emotion changes recently has received some attention, there

remain open questions unresolved, such as how to approach delta emotion ground

truth, how to predict the extent of emotion change from speech, and how well change

can be predicted relative to absolute emotion ratings. In this article, we investigate

speech-based automatic systems for continuous prediction of the extent of emotion

changes in arousal/valence. We propose the use of regression (smoothed) deltas as

ground truth for emotion change, which yielded considerably higher inter-rater reliability

than first-order deltas, a commonly used approach in previous research, and represent a

more appropriate approach to derive annotations for emotion change research, findings

which are applicable beyond speech-based systems. In addition, the first system design

for continuous emotion change prediction from speech is explored. Experimental results

under the Output-Associative Relevance Vector Machine framework interestingly show

that changes in emotion ratings may be better predicted than absolute emotion ratings

on the RECOLA database, achieving 0.74 vs. 0.71 for arousal and 0.41 vs. 0.37 for

valence in concordance correlation coefficients. However, further work is needed to

achieve effective emotion change prediction performances on the SEMAINE database,

due to the large number of non-change frames in the absolute emotion ratings.

Keywords: emotion change, continuous emotion prediction, emotion change prediction, speech based affective

computing, emotion change ground truth, emotion dynamics, relevance vector machine, inter-rater agreement

INTRODUCTION

Capacity to recognize a person’s emotions is considered an important step toward intelligent
machines, motivated by which, speech based emotion recognition has emerged as a key area
of research during the last decade. The majority of studies in this field focus on either
classifying several basic emotion categories (classification) or predicting emotion dimensions
(classification/regression) (Sethu et al., 2015). The divergence in the problem setting is because
emotions can be represented by not only using basic categories (e.g., fear, happiness, anger, etc.)
to cover common emotions, but also numerical affect dimensions (e.g., arousal and valence)
to describe a person’s feeling. Although emotion recognition systems based on the categorical
representation are straightforward from an engineering perspective and have been widely studied,
they are, however, problematic due to the ambiguous nature of emotions (Mower et al., 2009).
In addition, emotion categories are considered less capable of representing complex emotions
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and capturing subtle changes in emotions, especially for
naturalistic data (Gunes and Schuller, 2013). In spite of
some work done toward resolving this problem (Steidl et al.,
2005; Mower and Narayanan, 2011), this drawback has led
to an increasing number of studies using the dimensional
representation (Cowie and Cornelius, 2003; Cowie et al., 2012;
Gunes and Schuller, 2013). Among the most widely used
affect dimensions are arousal (i.e., activated vs. deactivated)
and valence (i.e., positive vs. negative), constituting a so-called
arousal-valence space. Other dimensions such as potency and
unpredictability have also been proposed to complement the two-
dimensional space for a better representation of emotions (Jin
and Wang, 2005; Fontaine et al., 2007).

Regardless of representation methods, emotion recognition
in most studies is conducted on a per-speech segment basis.
That is, speech sequences are pre-segmented into small emotional
utterances with one global category or dimension label for
each. However, this per-utterance labeling is based on an
implicit assumption that emotions are in steady-state across
the whole utterance, while emotions are dynamic in nature
and change over time (Scherer, 2005; Kuppens, 2015). With
growing awareness of this, there has been an increasing number
of groups considering the time course of emotions by employing
continuously annotated corpora (Gunes and Schuller, 2013).
Examples of this kind of corpora are SEMAINE (McKeown et al.,
2012), CreativeIT (Metallinou et al., 2015), RECOLA (Ringeval
et al., 2013) and Belfast Naturalistic Database (Sneddon et al.,
2012), where emotional ratings (e.g., arousal and valence) are
evaluated continuously using real-time annotation tools such as
Feeltrace (Cowie and Douglas-Cowie, 2000), Gtrace (Cowie et al.,
2013), and ANNEMO (Ringeval et al., 2013), based on audio
and video signals. Based on continuous annotation, a number
of systems have been built with the intention of predicting
the ratings at a fine temporal granularity, for example, the
Audio-visual Emotion Challenge (AVEC) (Schuller et al., 2011;
Ringeval et al., 2015b), but overall performances are not always
satisfactory. Moreover, patterns, regularities and trajectories of
how emotions evolve over time, which are known as affect (or
emotion) dynamics, remain relatively less investigated, certainly
from an automatic system perspective.

In affective science, emotion dynamics have attracted
increasing interest. Back in 1998, Davidson introduced the
term “affective chronometry” to describe temporal dynamics of
emotions (Davidson, 1998). Affective chronometry includes rise
time to peak, amplitudes and recovery time of affective responses.
After about 20 years, Davidson has reemphasized their crucial
role in understanding emotions (Davidson, 2015), in a special
issue of the journal Emotion Review on advancing research into
affect dynamics (Kuppens, 2015). Additionally, it has been shown
in the literature that emotion transitions carry a great deal of
valuable information for social interactions (Filipowicz et al.,
2011; Mesquita and Boiger, 2014; Hareli et al., 2015), marital
relationships, emotional intelligence (Gross, 2001; Kuppens and
Verduyn, 2015) and psychological well-being (Kuppens et al.,
2010; Choi et al., 2015; Houben et al., 2015). For instance,
emotional transitions during conversations have a great impact
on conversational outcomes (Filipowicz et al., 2011) and the

final impression/perception of how dominant a person is (Hareli
et al., 2015). A psychological sociodynamic model of emotions in
context was proposed, and many interesting aspects of emotions
were discussed, one of which is that emotions do not occur or
change simply in response to social events, but are also an integral
part of determining how social interactions proceed (Mesquita
and Boiger, 2014). Recently, emotion regulation and emotion
dynamics were associated using several parameters describing
trajectories of emotion changes (Kuppens and Verduyn, 2015).
Regulating emotions is more often than not associated with
knowing the timings of emotional transitions, so that people
react to change in the course of emotions (Gross, 2001). As an
example, if a person is detected to be increasingly sad, people
or machines may apply deliberate intervention such as telling a
joke to please them (Devillers et al., 2015). Moreover, it has been
found that emotion instability (Houben et al., 2015), which refers
to emotion changes between previous and current emotional
states, carries a great deal of information about psychological
well-being. Ameasure of emotion instability is theMean Squared
Successive Difference (MSSD), and this relates to the likelihood
that a patient is suffering from disease, anxiety and depression. It
is also found that people with low self-esteem or depression tend
to exhibit a lower frequency of changes in their emotional states,
which is quantified by a term called emotional inertia (Kuppens
et al., 2010). Accordingly, studies have shown that considering
emotion change is useful for treatment of self-criticism associated
with depression (Choi et al., 2015). Taken together, these findings
suggest that research of emotion dynamics plays a crucial role in
understanding emotions as well as contributing to interactions,
emotion intelligence and psychological healthiness.

Compared with the increasing popularity of emotion
dynamics in affective science, automatic systems for emotion
dynamics in speech have been explored less. A recent experiment
designed to analyze emotion dynamics computationally based
on facial expression using a statistical model, was reported
in Hakim et al. (2013). In the study, emotion categories
were mapped frame-by-frame into the arousal-valence space to
visualize trajectories of emotion dynamics, and emotion changes
were observed to follow smooth common paths. That is, emotion
transitions between two uncorrelated or negatively correlated
emotions (e.g., excitement and frustration) tend to pass through
the neutral state, whilst those between two positively correlated
emotions (e.g., excitement or happiness) do not. These smooth
paths are reasonable because they are frame-level (25 frames
per second) emotion dynamics without considering external
stimulus. On a larger scale, utterance-level emotion dynamics
for classifying emotions was exploited based on a hypothesis
that there exist emotion-specific dynamical patterns that may
repeat within the same emotion class (Kim and Provost, 2013).
A different way to capture emotion dynamics is the dynamic
influence model proposed in Stolar et al. (2013), where Markov
models were used to capture long-term conditional dependencies
of emotion. Similarly to the above studies, employing dynamic
information, either from emotion-related features or emotions
themselves, to facilitate emotion recognition is not uncommon
(Han and Eyben, 2012; Nicolle et al., 2012; Wei et al., 2014).
For instance, spectra of temporal signals can be used to generate
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dynamic features (Nicolle et al., 2012). An utterance-level
emotion prediction system was built based on the trade-off
between conventional mean square error and a proposed rank-
based trend loss to successfully preserve the overall dynamic
trend of emotion dimensions (Han and Eyben, 2012). In Wei
et al. (2014), an HMM-based language model was used to
capture the temporal patterns of emotional states via a predefined
grammar, achieving an accuracy of 87.5% for classifying the
four quadrants of the arousal-valence space on the SEMAINE
dataset. However, there are few systems aiming to understand
and interpret emotion dynamics. This is in part due to difficulties
in describing emotion dynamics and “a lack of databases for
emotion dynamics” (e.g., duration, ramp-up rate and decay
rate) (Hudlicka, 2008). Continuously annotated corpora such as
RECOLA, SEMAINE and CreativeIT are helpful in investigating
emotion dynamics, but still have the limitation that they are
annotated in an absolute manner, rather than annotators being
explicitly directed to rate emotion changes.

It is also worth noting that studies on emotion dynamics are
often placed in context, where emotion transitions take place
and are influenced by events (Niedenthal et al., 2001) as well
as other speakers (Stolar et al., 2013). During conversations,
an agreeable trajectory of emotion dynamics would be an
onset-apex-offset path (Davidson, 1998; Waugh et al., 2015).
There exists an emotion-arousing process between events (or
situations) and people’s emotional responses (Gross, 1998) and
these responses tend to fade across time (Ritchie et al., 2009).
Based on this, an affective scene framework to investigate
emotion unfolding across time during call-center conversations
was proposed (Danieli and Riccardi, 2015). In their study,
continuous emotional unfolding was converted into several
discrete emotional episodes (e.g., one of the episodes is that
an Agent first expresses emotions, and the customer ends up
experiencing positive emotions). The fading phenomenon was
also observed in Böck and Siegert (2015), in which it is shown that
emotional evolution in speech is detectable based on an emotion
recognition system.

While the above studies related to emotion dynamics involve
a broad spectrum of topics, there is a need for more systematic
insights into emotion dynamics that can be used to facilitate
applications of affective computing and Human Computer
Interaction (HCI). In this paper, we provide insights into emotion
changes, from an engineering perspective, by addressing the
questions: what is required to construct delta emotion ground
truth from continuous absolute ratings, how can the “extent” of
emotion change be predicted from speech and can it be predicted
as reliably as absolute emotion ratings? The latter questions we
refer to herein as Emotion Change Prediction (ECP).

RELATED WORK

For emotion change research, most previous literature has
focused on detecting emotion change points in time, which
we refer to as Emotion Change Detection (ECD). Recently, it
is found in Böck and Siegert (2015) that emotional evolution
both inter- and intra-speaker is detectable using per-file emotion

recognition methods. Also, there have been some studies
explicitly attempting to localize the time when emotion changes
occur, among different emotion categories using audio features
(Xu and Xu, 2009; Pao et al., 2010; Fan et al., 2014) or
psychological measures (Leon et al., 2004). For instance, an
approach was proposed to detect emotion evolution based on
intersections of the two most prominent smoothed emotional
scores within a sliding window framework (Xu and Xu, 2009).
In Fan et al. (2014), the authors tried to detect boundaries
of different emotions (neutral-anger and neutral-happiness)
continuously using multi-timescaled sliding windows where
decisions of emotion recognition from each scale collectively
contribute to a final decision. Using several psychological
measures, emotion change detection in a user’s environment
was investigated (Leon et al., 2004). Specifically, the presence
of emotion changes was detected via a large residual between
measured emotion and estimated emotion. Different from the
aforementioned studies aiming to detect changes among emotion
categories, an adaptive temporal topic model was proposed to
detect huge changes in emotion dimensions, i.e., arousal and
valence using audiovisual features (Lade et al., 2013). In our
previous work (Huang et al., 2015b), a sliding window framework
was proposed to detect emotion changes among four emotion
categories with and without prior knowledge of emotions.
Later, an introduction of martingale framework yielded further
improvements (Huang and Epps, 2016a).

Nevertheless, systems developed in the aforementioned
studies do not provide information regarding how emotions
evolve such as the “extent” of emotion change, which we term
ECP. ECP herein is treated as a regression problem, which aims to
predict the extent of a change in affect dimension(s) between two
consecutive utterances or frames. In this paper, we only consider
ECP at frame level, because this is in line with the increasing
popularity of studies adopting continuous affect ratings.

There are two motivations behind the study. Firstly, an
analysis in a continuously annotated database showed that
evaluators tend to agree more on relative emotions (e.g., an
increase in arousal) than on absolute emotions (e.g., arousal)
(Metallinou and Narayanan, 2013). Indeed, this has been shown
elsewhere in the literature (Yang and Chen, 2011; Han et al.,
2012; Yannakakis and Martínez, 2015a; Parthasarathy et al.,
2016), where rank-based annotations of affect dimensions yield
higher inter-rater reliability than conventional absolute ratings.
In Yannakakis and Martínez (2015a), evaluators only rank (i.e.,
increase or decrease their rating) when they perceive changes
in affect dimensions. This facilitates the annotation process in
terms of inter-rater agreement and reduction of cognitive load,
because the ranking scheme allows simplification of annotation
as well as being robust to different personal scales in affect
dimension of evaluators. That is, each evaluator has his/her own
understanding of the arousal and valence scales, which may
differ from others’. From an emotion perception perspective,
conventional ratings based on these various scales may lead to
misrepresentation of speakers’ original emotions, especially when
we simply average them across different evaluators (Martinez
et al., 2014; Yannakakis and Martínez, 2015b). Performing
evaluator-specific z-normalization to mitigate the difference in
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the scales could be effective, however, it also carries a risk of
possible misinterpretation.

Rank-based annotations, where emotions are treated in
relative way, can potentially do better in emotion perception.
Given the advantages of relative emotions over absolute
emotions, one wonders whether changes in emotion ratings can
be better predicted than absolute ratings. Secondly, despite the
increasing popularity of predicting emotion dimensions either
at utterance level (Grimm et al., 2007; Bone et al., 2014) or at
frame level (Gunes et al., 2011; Metallinou et al., 2011; Nicolaou
et al., 2011), all of the studies focus on prediction of absolute
emotions across time. From these studies, it seems that predicting
absolute emotion dimension remains challenging, and predicting
absolute emotion alone may not provide insight into dynamic
components, properties and regularities of emotion changes.

Given the motivations, the purpose of ECP study herein
is two-fold: (1) investigate emotion change annotation and
prediction system design, providing a different perspective for
understanding emotions; and (2) compare ECP and conventional
absolute emotion prediction, understanding how well emotion
dynamics can be predicted, in comparison with absolute
emotions.

OVERVIEW AND POSSIBILITIES FOR
EMOTION CHANGE SYSTEMS

This section presents an overview and envisions several
possibilities for developing systems that take advantage of
emotion dynamics, depending on the application context. As
shown in Figure 1, we proposed two main possibilities for
emotion change research, namely, Emotion Change Detection
and Emotion Change Assessment. Emotion Change Detection
aims to localize the time of emotion changes such as changes
in emotional categories (e.g., neutral to anger) and large changes
in affect dimensions (e.g., arousal and valence). Emotion Change
Assessment can be used directly (without ECD) or in conjunction
with ECD to characterize how emotions change across time.

ECD itself may have significant research potential and
application possibilities. An intuitive application is HCI, where
ECD can be an integral part of a real-time emotion recognition
system. ECD can operate in real-time, and trigger emotion
recognition algorithms once a change in emotions is detected,
in place of continuous recognition of emotions, which may be
more applicable and computationally efficient in HCI (Lade et al.,
2013). These advantages are more pronounced in spontaneous
data, where the majority of emotions tend to be neutral.
Furthermore, emotion changes may somehow reflect changes in
the external environment, such as events that trigger emotions,
e.g., changes in task difficulty have been found to be associated
with changes in arousal (Chen and Epps, 2013). In addition,
emotion change points in time can be referred to as boundaries
of different salient emotional segments, obviating the need for
manual segmentation prior to emotional signal processing. The
need for ECD also arises for detecting outbursts of emotion
changes within a larger group of people for security applications,
as well as monitoring emotional changes in patients for medical

purposes (Choi et al., 2015). Methods for automatic ECD from
speech have been investigated previously (Huang et al., 2015b;
Huang and Epps, 2016a) and are not the focus of this paper.

A variation of ECD is emotion segmentation (Schuller and
Rigoll, 2006; Kim and Mower Provost, 2014; Huang and Epps,
2016b), which aims to select speech or facial segments with
salient emotional information for improved emotion recognition
system performances. Different segmentation schemes, normally
fixed-length or variable-length segmentation, were employed to
effectively exploit segment-level features (Schuller and Rigoll,
2006; Huang and Epps, 2016b) or models (Kim and Mower
Provost, 2014). Nevertheless, this type of system typically
produces little explicit information about the timing of emotion
boundaries or the extent of changes in emotion between
segments.

Emotion change assessment involves either predicting the
extent or classifying the direction/type of emotion changes. The
“extent” could be quantitative measures of changes in emotional
intensity or emotional dimensions, whereas the “direction” could
be qualitative categories describing emotion changes such as
increase, decrease or non-change. One can easily envisage an
emotion change system that detects emotion changes, and then
for each emotion change, tries to determine what type of
change it is. Such a system may be well suited to speech that
is predominantly neutral, but occasionally becomes emotional.
Both approaches enable investigation of emotions from a change
perspective. In some cases, emotion changes may be more
informative and meaningful in practice, e.g., knowing that a
person is becoming less or more aroused compared to simple
recognition of arousal.

DATA

In this study, two corpora were considered: SEMAINE
(McKeown et al., 2012) and RECOLA (Ringeval et al., 2013).
These two corpora have annotations of arousal and valence
at frame-level. For frame-level ECP, we considered SEMAINE
and RECOLA. However, for both tasks, these corpora were not
originally designed for studying emotion changes, so there is no
explicit ground truth provided, i.e., extent of emotion dynamics.
To resolve this, we constructed delta emotion ground truth for
ECP on RECOLA and SEMAINE, which are discussed below.

The SEMAINE corpus1 is a widely used and reasonably
large English spontaneous audiovisual database collected in
the Sensitive Artificial Listener (SAL) scenario where a person
engages in emotionally colored interactions with one of four
emotional operators. They are angry Spike, happy Poppy,
gloomy Obadiah and sensible Prudence who try to make people
experience the same emotions. Recordings on the database were
continuously evaluated by 2–8 annotators in terms of five core
affect dimensions (i.e., arousal, valence, power, expectation and
intensity), as well as other optional descriptors (e.g., agreeing,
happiness, and interests) via Feeltrace. Within SEMAINE, we
considered only Solid SAL sessions with transcriptions and
annotations from R1, R2, R3, R4, R5, and R6 for consistency,

1https://semaine-db.eu
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FIGURE 1 | General overview of emotion change based systems. ECP refers to predicting the extent of emotion change, while ECC represents classifying different

type of emotion change, e.g., increase/decrease in arousal.

which leads to 57 sessions from 14 speakers. Within each session,
since lengths of annotations from six annotators may vary during
data collection, all ratings were shortened to the minimum length
of annotations from the six annotators by removing the trailing
redundant annotations. Accordingly, the session with ID number
60 was further discarded because of insufficient valence ratings
from one of the annotators. In total, this study used audio
recordings of 56 sessions from 14 speakers (users).

The RECOLA corpus2 is a spontaneous multimodal database
collected in settings where two French speakers remotely
collaborate to complete a survival task via a video conference.
During the collaborative interactions, multimodal signals,
including audio, video and physiological signals such as ECG
and EDA, were collected from 46 participants (data from 23
participants are publically available). For each participant, each
recording is 5min long and continuously annotated for arousal
and valence by six annotators. The AV+EC 2015 challenge
(Ringeval et al., 2013) employed this database for a continuous
emotion prediction task. A subset of the database from 18
speakers were partitioned into training and development set for
this challenge. In this study, we considered the same partitions
used in AV+EC 2015 for ECP.

For ECP, we considered SEMAINE (56 sessions from 14
speakers) and RECOLA (18 sessions from 18 speakers), which
have frame-level emotional annotation. To allow comparisons
with published studies where commonly the RECOLA dataset
was divided into training (9 speakers) and testing (9 speakers)
partitions, we kept the same partitions on RECOLA. Similarly,
the SEMAINE dataset was divided into training (30 speakers)
and testing (26 speaker) sets for consistency. In this task,
we constructed “delta” emotion ground truth, which captures
emotion dynamics, i.e., the extent of emotion changes across
time, from the original absolute ratings (section Delta Emotion
Ground Truth). We evaluated inter-rater reliability of the delta
emotion ground truth before exploring system design for ECP
(section Delta Emotion Ground Truth). The process used to
construct the “delta” emotion ground truth is elaborated in
section Delta Emotion Ground Truth. Regression deltas were
calculated within a certain window size before being averaged

2https://diuf.unifr.ch/diva/recola/download.html

across all annotators to form “delta” (emotion change) ground
truth.

DELTA EMOTION GROUND TRUTH

Despite a trend toward evaluators being encouraged to rate
when changes in affect dimensions occur (Yannakakis and
Martínez, 2015a; Celiktutan and Gunes, 2016), to the best of
our knowledge, there are no studies introducing annotation of
emotion changes in dimension ratings apart from Yannakakis
andMartínez (2015a). Ordinal or ranked-based annotations such
as increase and decrease of arousal and valence ratings have
shown improved inter-rater reliability over conventional absolute
ratings (Yannakakis and Martínez, 2015a). An alternative way
to attain the rank-based annotations is to derive relative
labels from original absolute ratings using Qualitative Analysis
(Parthasarathy et al., 2016). The study (Parthasarathy et al.,
2016) highlights the importance of annotator agreement for
reliable rank-based labels and emotion recognition accuracies.
Another possible approach is to fit linear curves to absolute
ratings to calculate the slopes, and then categorize them into
increase, decrease and non-change (Metallinou et al., 2011).
However, from either the ordinal annotations or the slopes, we
know only the directions of changes but do not know their
extent. An alternative investigation applied herein to speech
with continuous dimensional ratings is to calculate “deltas” from
existing “absolute” ratings, where “absolute” refers to the original
ground truth provided by the databases. By computing deltas,
changes in emotion dimensions can be characterized and then
be used as a reference for modeling.

A naïve approach to calculating delta emotion ground truth is
to use the first-order temporal difference of the absolute ground
truth, referred to as first-order delta emotion ground truth.
However, this is problematic: (i) it assumes the possibility of
extremely rapid emotion changes (in the order of 0.04 s and 0.02 s
in RECOLA and SEMAINE, respectively—the sampling interval
between ratings), which are unrealistic; (ii) because raters tend
not to move their cursor continuously, it tends to result in a
very large proportion of zero first-order delta emotion ground
truth, which in consequence leads to unreliable ground truth with
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low inter-rater reliability and less effective regressionmodels; (iii)
there is annotation noise caused by annotator tremble, especially
when they are uncertain about the emotions being evaluated
(Martinez et al., 2014).

Observation (iii) was borne out in previous experimental work
(Metallinou et al., 2011). In addition, preliminary experiments on
the RECOLA database demonstrated that first-order differences
of frame-level absolute ratings have a very low inter-rater
agreement, which is sensible because the ratings are originally
annotated in an absolute manner and conversion from absolute
to first-order delta may not be straightforward (Yannakakis and
Martínez, 2015a). More specifically, several problems manifested
in absolute ratings such as sensitivity to the range, anchor point
and sequential effects (Parthasarathy et al., 2016) among different
annotators would cause noise in the first-order delta. Inter-
rater agreement refers to agreement on categorical or numeric
annotations among annotators, which is normally measured
by Cronbach’s α (McKeown et al., 2012; Ringeval et al., 2013;
Metallinou et al., 2015).

In psychology, emotion response is cohesively formed by a
number of components which unfold at different time scales
from milliseconds to minutes (Waugh et al., 2015). It is difficult
to identify the temporal resolution of emotion change, that is,
how fast emotions can change. However, an empirical analysis
of continuous annotations suggests that affect dimensions
are generally slowly varying and detailed annotations might
capture annotation noise irrelevant to emotions (Metallinou
and Narayanan, 2013). In Metallinou and Narayanan (2013),
window-level ratings, which is an average over a certain length of
window (3 s), were compared with frame-level ratings in terms of
Cronbach’s α, yielding slight improvements. This may be because
the window-level ratings are smooth and reduce the effect of
annotation noise. In light of this, it is reasonable to speculate
that annotation noise also exists in first-order delta emotion
ground truth and smoothed delta emotion ground truth is more
reasonable and has a higher inter-rater agreement. Hence, we
calculated a smoother version of the deltas for the SEMAINE
database and for RECOLA.

Proposed Regression Delta Emotion
Ground Truth
In this study, we propose the calculation of regression delta
emotion ground truth GD = {d1, . . . , dt} from absolute ground
truth GA = {a1, . . . , at} as delta emotion ground truth using the
following equation (Young et al., 1997):

dt =

∑K
k = 1 k(at+k − at−k)

2
∑K

k = 1 k
2

(1)

where K denotes the number of absolute ratings taken into
account on each side of frame t for calculating the regression
deltas. Accordingly, we define a regression delta window as
NS = 2K + 1, containing the current frame plus K frames
on each side. The larger the K is, the smoother the GD, which
however gives rise to information loss in GA. More specifically,
if a set of reconstructed absolute ratings Gr = {r1, . . . , rt} are
determined from the regression delta emotion ground truth GD

by accumulating (integrating) them, the Gr becomes a smoother
version of GA.

rt = a1 +
∑t

1
dt−1, where d0 = 0 (2)

Then we measure the information loss by comparing Gr

and GA using Concordance Correlation Coefficient (CCC) ρc

(Equation 3) (Ringeval et al., 2015a), which takes into account
correlation and square of mean error. If K = 1, GD is
an approximation to the first-order differences of GA, and
accumulating GD provides an identical set of absolute ratings
Gr as GA, which means no information loss and ρc = 1.
As K increases, the information loss increases, i.e., ρc declines.
A similar way to compute information loss can be seen in
Ringeval et al. (2015a), where information loss was evaluated
by comparing original ratings and mean-filtered versions of the
ratings using ρc.

ρc or CCC =
2Cov(Ŷ, Y )

σ 2
Ŷ
+ σ 2

Y
+ (µ

Ŷ
− µY)

2 (3)

where Ŷi is the reconstructed absolute emotion ratings Gr , whilst
Yi is the original absolute emotion ground truth GA. Note that
ρc (i.e., CCC) is also used as a measure of prediction accuracy in
the following experiments in sections Design of Emotion Change
Prediction Systems and Emotion Change Prediction Using SVR,
RVM, and OA RVM, where Ŷi is predictions, whilst Yi is the
ground truth.

Apart from the information loss, another important criterion
to evaluate the reliability of the ground truth is inter-rater
reliability or agreement, which is commonly measured using
Cronbach’s α (Cronbach, 1951) among all annotators. Our
hypothesis is that as NS gets larger, the inter-rater agreement
would increase, since the delta emotion ground truth gets
smoother.

Evaluation of Window Size for Regression
Deltas: A Trade-Off Between Inter-Rater
Agreement and Information Loss
The window size choice NS for calculating regression delta
emotion ground truth seems to have impacts on both inter-rater
agreement and information loss, which is investigated in this
section.

For inter-rater agreement, we compared GA (i.e., absolute
emotion ground truth) and GD (i.e., delta emotion ground truth)
with respect to mean correlation ρ and Cronbach’s α (Cronbach,
1951) among six annotators on RECOLA and SEMAINE.GD was
calculated from GA using Equation (1) for each annotator per
session, denoted as Gl,s

D , where l ≤ L represents the l-th rater

and s ≤ S means the s-th session. Gl,s
D was then concatenated for

all sessions for each annotator Gl
D = {Gl,1

D , . . . , Gl,s
D , . . . ,G

l,S
D }

T
,

prior to calculating the mean correlation ρ and Cronbach’s α

among six annotators using Equation (4) and (5) (Cronbach,
1951).
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ρ =
2

L(L− 1)

∑

corr
l<m

(Gl
D,G

m
D ) (4)

α =
L

L− 1

(

1−

∑L
l = 1 var(G

l
D)

var(
∑L

l = 1 G
l
D)

)

(5)

where corr(•) denotes correlation and var(•) denotes variance.
Following the same scheme, we calculated GD using different
regression delta window lengths NS, each of which has
corresponding mean correlation ρ and Cronbach’s α. Note that
a Cronbach’s α = 0.6 is considered the minimum acceptable
internal agreement among annotators, whereas 0.7 < α < 0.9 is
considered good (McKeown et al., 2012).

For information loss, we calculated ρc between GA (i.e.,
the original absolute emotion ground truth) and Gr (i.e., the
reconstructed absolute emotion ground truth). Within each
session, regression deltas for each annotator were integrated into
reconstructed absolute ratings Gl,s

r to compare with the original

ones Gl,s
A in terms of ρc using Equation (3). Then the final ρc

was obtained by averaging all the ρ l,s
c across six annotators and

all sessions as in Equation (6).

ρc =
1

LS

S
∑

s = 1

L
∑

l = 1

ρ l,s
c (6)

Figure 2 depicts various regression delta window sizes NS =

2K + 1 for regression delta calculation, which lead to different
inter-rater agreement and information loss.

Overall, Figure 2 offers a guide toward making choices of
suitable window sizes for calculating regression delta emotion
ground truth based on the trade-offs between inter-rater
reliability and information loss. More specifically, we selected
a regression delta window length of 4 s for RECOLA, since
its corresponding deltas have acceptable inter-rater agreement
(α = 0.677 for arousal and α = 0.750 for valence) while
preserving enough detailed information (i.e., a reduction of 0.04
ρc for arousal and for valence). For constructing regression
delta emotion ground truth GD, we also tried mean filtering
of first-order derivatives of absolute ratings with different
window lengths. However, this method was found to lose more
information than regression deltas (0.05 ρc for arousal and
valence).

For SEMAINE, absolute ground truth has much higher mean
correlation and inter-rater reliability than the regression delta
emotion ground truth. To account for this large contrast, we
observed that differences between adjacent SEMAINE annotated
frames are mostly zeros, 92.33% (±2.95%) for arousal and
93.19% (±2.09%) for valence. Since mean correlation measures
a linear relationship rather than comparing exact values between
annotations among different evaluators, the high correlation of
absolute ground truth might be attributed to the large proportion
of non-change frames. Accordingly, the Cronbach’s α, calculated
from mean correlation, is correspondingly high for the absolute
ground truth. This is also supported by the argument in Siegert
et al. (2014) that Cronbach’s α might not be suitable in some cases
since it measures the internal consistency among annotators,
which in this case is that annotators tend not to change their

ratings, resulting in the large proportion of non-change frames
(seen clearly in Figure 3). On the contrary, regression delta
emotion ground truth, calculated using NS ∈ {4, 8} s, is smooth
but results in Cronbach’s α around 0.6. This reflects the low inter-
rater agreements on the extent of emotion changes, which may
further partially reveal the challenging nature of SEMAINE from
an emotion change perspective.

In terms of information loss, SEMAINE has lower loss than
RECOLA, and the reason observed behind this is that SEMAINE
has smoother annotations than RECOLA. According to Figure 2
for SEMAINE, a choice between 6 and 8 s seems acceptable,
so we empirically considered a regression delta window length
of 6 seconds (with α = 0.554 for arousal and α = 0.588 for
valence and information loss of 0.03 ρc for arousal and valence).
According to Figure 2, the choices for sizes of sliding windows
were summarized as in Table 2 based on trade-offs between
inter-rater agreement α and information loss 1-ρc.

Comparisons Between Regression Delta
and First-Order Delta Emotion Ground
Truth
There are multiple ways of determining delta emotion ground
truth from continuous absolute ratings, and all of these
are approximations to the derivative. We considered two in
particular, the first-order difference and a regression-based
approach, whose effects on the distributions of delta emotion are
compared in this section, as seen in the histograms shown in
Figure 3.

The trade-offs in Figure 2 favor selection of a regression
delta window of 4 seconds and 6 seconds for RECOLA and
SEMAINE, respectively. These choices could be reasonable for
two reasons. Firstly, the Equation (1), which was used to calculate
regression deltas, incorporates emotion changes (at+k − at−k)
at different time scales controlled by k, with further emotion
changes being weighted more heavily, i.e., a large k. To this
end, the regression deltas can represent sub-utterance emotion
changes with reasonably distributed values (Figure 3). Secondly,
a suitable time scale to investigate emotion changes remains
controversial in both engineering systems and affective science
fields. For instance, it is suggested that it takes several seconds to
spot different emotion categories, whichmay be the same case for
emotion changes (Kim and Provost, 2016).

The finding that attaining regression delta emotion ground
truth using a sliding window can yield drastically improved
inter-rater agreement while preserving detailed emotion change
information as shown in Figure 2 underlies one of the key
contributions for ECP. This is, to the best of our knowledge, the
first time that continuous delta emotion ground truth has been
investigated, showing that a sliding window regression delta is
a better way to represent and evaluate sub-utterance emotion
changes with high inter-rater reliability, small information loss
(Figure 2) and meaningful representations (Figure 3).

For convenience, the delta emotion ground truth can be
equivalently obtained by calculating the regression delta of
absolute ground truth ratings, namely the mean of six raters
in SEMAINE and the gold standard used in RECOLA. Based
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FIGURE 2 | Mean Pearson’s correlation and Cronbach’s α of regression delta emotion ground truth and absolute ground truth for (A) RECOLA and (B) SEMAINE, as

a function of the regression delta window sizes NS = 2K + 1: longer regression delta window for calculating delta ratings from absolute ratings resulted in increased

inter-rater reliability. Information loss in ρc for the regression delta emotion ground truth calculated under various regression delta window sizes is also shown on the

second y-axes in the lower figure: longer window sizes result in more information loss.

on the delta emotion ground truth, we then performed
extensive comparisons between absolute emotion prediction and
delta emotion prediction in terms of delay compensation and
prediction performances.

EMOTION CHANGE PREDICTION (ECP)

The regression delta emotion ground truth proposed in section
Proposed Regression Delta Emotion Ground Truth offers a nice
characterization and representation of sub-utterance emotion
change across time. Given the numerical nature of the regression
delta emotion ground truth, ECP herein can be formulated as
a regression problem as per continuous emotion prediction,
where the target is to learn from informative features using
machine learning algorithms to continuously predict the extent
of emotion change. Since continuous emotion prediction is also
treated as a regression problem, it may be intuitive to compare
it with ECP. The aim of this section is to explore system design
and maximized system performance for a robust ECP, based

on empirical experience in dealing with the emotion prediction
problem. One may be interested in using emotion changes to
facilitate absolute emotion predictions, such as Huang and Epps
(2017) and Oveneke et al. (2017) in which Kalman filtering
was used. However, an important premise could be accurate
predictions of emotion change, which is the only focus of this
study. Note that investigating absolute emotion prediction is not
in the scope of this study.

Experimental System Settings
Experiments were evaluated on the RECOLA and SEMAINE
datasets. For RECOLA, we used recordings from 9 speakers for
training and recordings from other 9 speakers for testing, as
shown inTable 1. On SEMAINE, among 14 speakers, we used the
first 7 speakers for training and another 7 speakers for testing.

Initial investigations were carried out to evaluate two
potentially important parameters, i.e., feature window size
and annotation delay (section Design of Emotion Change
Prediction Systems). This was then followed by evaluations
of three commonly used regression models, i.e., Support
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FIGURE 3 | Histograms of delta emotion ratings for arousal and valence on RECOLA and SEMAINE datasets. The x-axes represents the value of delta emotion

ratings, while y-axes represents the frequency (counts) for each certain delta emotion value. The upper figures represents first-order differences of absolute emotion

ratings, which have a significantly larger proportion of zero for both arousal and valence. The lower figures represents regression delta emotion ground truth (using NS
is Table 2), which offer reasonable distributions for emotion change.

TABLE 1 | Summary of session numbers considered in emotion change

prediction.

Database No. session No. frame No. hour No. speaker

RECOLA Train 9 67,509 0.75 9

Test 9 67,509 0.75 9

SEMAINE Train 30 436,484 2.42 7

Test 26 362,276 2.01 7

Vector Regression (SVR), Relevance Vector Machine (RVM)3

and Output-Associative RVM (OA-RVM), which are effective
affective regression models (section Emotion Change Prediction
Using SVR, RVM, and OA RVM).

SVR’s solid theoretical framework ensures global solutions,
sparsity in weights and good generalization ability. During
training, SVR searches for an optimal hyperplane by minimizing
its geometric margins whose width equals to ε, where ε is
called the slack coefficient. The tube-like hyperplane itself is
supported by only a small number of training samples (support
vectors) with non-zero weights. In contrast, the remaining
training instances within the hyperplane are assigned as zero
weights and contribute nothing to the SVR model. In prediction,
testing instances are then transformed linearly (inner product)
or nonlinearly (so-called “kernel trick”) to perform prediction.
RVM is a probabilistic framework that is advantageous in terms
of sparsity in features. RVM enforces a zero-mean Gaussian

3http://www.miketipping.com/downloads.htm

prior distribution to the feature weights whose variances become
mostly zeros as training, which introduces sparsity. Within the
OA-RVM framework, input features are used to perform initial
predictions using a first-stage RVM for arousal and valence. The
initial arousal and valence predictions within a temporal window
are stacked and then combined with the input features to perform
final predictions using a second stage RVM. This enables the
framework to take advantage of the following dependencies: (1)
between arousal and valence predictions; (2) between previous
and future predictions; and (3) between output predictions and
input features. In addition, it is robust for different system
configurations while providing state-of-the-art performances
(Huang et al., 2015a). Detailed descriptions of SVR, RVMandOA
RVM can be referred to in Grimm and Kroschel (2007), Tipping
(2001) and Nicolaou et al. (2012).

We considered linear kernel for SVR and RVM. The libsvm
toolkit (Chang and Lin, 2011) was used to implement SVR,
where the complexity C was optimized from among {10−6,
10−5,. . . , 10−0, 101} on the testing partition; during training,
only 1 out of 20 frames was used, similarly to Ringeval
et al. (2015b); For RVM4, only the number of iterations
needs to be tuned, this was optimized from among {30,
50, 70, 90, 110, 150, 200, 250} on the testing partition.
For OA-RVM, the size of the temporal window used to
construct output-associative matrices (OA matrices) was set to
6 seconds, namely 151 frames for RECOLA and 301 frames for
SEMAINE.

4SparseBayes MATLAB Toolbox.
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FIGURE 4 | Performances were evaluated and compared under different

window length that are used to extract the eGeMAPS functionals between the

(A) RECOLA and (B) SEMAINE corpora. CCC represents system

performances for prediction using RVM. Consistent trends of declining

performances for delta arousal and delta valence were observed for both

databases as feature window increased. By contrast, this was not the case for

absolute emotions, where with larger feature window, performances degraded

for (A) RECOLA and improved for (B) SEMAINE.

We evaluated the performances of the two systems using
three measures, namely: Relative Root Mean Square Error
(RRMSE) (Equation 7), Pearson’s Correlation Coefficients (ρ),
and Concordance Correlation Coefficients (ρc) (Equation 3). The
RRMSE calculates Root Mean Square Error (RMSE) between
predictions and ground truths, which is further divided by the
Root Mean Square (RMS) of the ground truth to eliminate the
effect of various ranges for absolute and delta emotions.

RRMSE =

√

√

√

√

1

n

n
∑

i = 1

(
Ŷi − Yi

Yi
)
2

(7)

where Ŷi is predictions, whilst Yi is the ground truth.

Design of Emotion Change Prediction
Systems
Feature Window
Functionals, global statistics of short-term acoustic features
extracted on a larger time span, have been successfully applied
to emotion recognition, because they capture distribution
characteristics of short-term features while being insensitive to
fluctuations in short-term features.

From RECOLA and SEMAINE, 88-dimensional eGeMAPS
functionals (Eyben et al., 2016), which are an expert-based,

interpretable and effective feature set for affective computing,
were extracted using the Open-SMILE toolkit at window level
with frame steps equivalent to the time interval of ground
truth, namely 0.04 s for RECOLA and 0.02 s for SEMAINE.
The 88-dim eGeMAPS features were used for absolute emotion
prediction, whilst 176-dim features (two adjacent functionals,
i.e., from the previous window n−1 and the current window
n, are concatenated) were used for delta emotion prediction.
This was because the 176-dim features performed more poorly
than the 88-dim features for absolute emotion prediction, while
they performed slightly more accurately for delta emotion
prediction. Precisely, with a 2-s feature window and no delay
compensation, the 176-dim and 88-dim features achieved 0.365
and 0.340 for delta arousal, 0.195 and 0.184 for delta valence in
CCC on RECOLA while there was no significant difference on
SEMAINE. This is sensible since the concatenation potentially
allows the “difference” of the two functionals to be calculated
when regression model weights that are negative relative to
each other for the same features within two functionals. All
the features were scaled to {0, 1} for training and the scaled
coefficients were used to normalize testing features.

It is important to know the best feature extraction window
size NF for absolute and delta emotions. From Figure 4,
a 2 s feature window was selected for delta emotions on
RECOLA and SEMAINE because it yielded the best or second-
best performance. For absolute emotion prediction, 2 s feature
windows yielded reasonably good performances on RECOLA,
while larger feature windows contributed to better performances
on SEMAINE. However, 8 s feature windows might be too large,
and lose detailed changes in emotions (Ringeval et al., 2015a).
Accordingly, 2 s and 4 s feature windows were used for absolute
emotion prediction respectively on RECOLA and SEMAINE.
These feature windows were fixed for different tasks throughout
the following experiments.

Delay Compensation
An important issue in continuously annotated emotional corpora
such as RECOLA and SEMAINE is the synchronization issue
with the continuous annotations. This is largely caused by
the inherent annotation delay between evaluators’ perceptual
observations and their decision-making. We hypothesize that
people tend to notice changes in emotion easily, which
may result in lower annotation delays for emotion change
than those for emotion. This hypothesis may be somewhat
undermined herein because the delta emotion ground truth
is calculated from absolute emotion ground truth. However,
the assumption behind investigation of delay compensation is
that absolute emotion ground truth represents how annotators
perceive absolute emotion, whilst the proposed delta emotion
ground truth represents how annotators perceive changes in
emotion.

Attempts to resolve this issue can be seen in some literature
(Cowie et al., 2012; Nicolle et al., 2012; Mariooryad and
Busso, 2014), where this synchronization issue is compensated
via temporal shifts of the features and ground truth ratings,
and the best delay value in time can be optimized using a
number of measures such as information gain and average
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FIGURE 5 | Annotation delays were evaluated and compensated for both

absolute and delta emotions for the (A) RECOLA and (B) SEMAINA database

via temporal shift and smoothing. CCC represents system performances for

prediction using RVM. The optimal delays for delta arousal and delta valence

were smaller than absolute emotions, around 1.2 s across both databases,

whilst best delays for absolute emotions vary for arousal and valence as well

as for different corpora.

correlation (Nicolle et al., 2012; Mariooryad and Busso, 2014).
Dynamic Time Warping (DTW) was also been found effective
to eliminate inter-rater delays and outliers (Katsimerou et al.,
2015). Another method proposed in Huang et al. (2015a) for
compensating delays is to apply temporal shifts of features
and ratings to build reliable models in the training phase.
Delays introduced in predictions were further compensated
via a binomial filter, which, in addition, smooths predicted
affect dimensions. Applying the same technique herein, we
estimated the best delay values for absolute and delta emotion
ground truth on both RECOLA and SEMAINE, as seen in
Figure 5.

It is seen from Figure 5 that without delay compensation,
delta arousal and valence prediction achieve considerably higher
CCCs than their absolute counterparts on RECOLA. This
shows encouraging results for predicting emotion changes.
On SEMAINE, however, delta arousal has similar CCCs to
that of absolute, while delta valence has much lower CCCs
than absolute valence. This may be due to the relatively
low inter-rater agreement of delta emotion ground truth,
which misled the regression model. With delay compensation,
on one hand, consistent delays for delta arousal and delta
valence can be observed on the two databases, around 1.2 s.
This was expected, because raters tend to notice changes.
On the other hand, delays for absolute emotions vary for
arousal and valence as well as for different databases. The
delays for absolute affect dimensions yielded similar results
as previous studies on RECOLA (Huang et al., 2015a)
and SEMAINE (Nicolle et al., 2012; Mariooryad and Busso,
2014).

Even though studies (Yannakakis and Martínez, 2015a) have
shown that instructing annotators to rank provides higher inter-
rater reliability as well as effort-saving, to the best of our
knowledge, there is no study that has aimed to quantify delays
for emotion changes.

Overall, the feature window and annotation delay have been
reported to have a huge impact on predicting emotion change.
An interesting finding shown inTable 2 is that, unlike continuous
emotion prediction systems where the optimal values for the two
factors tend to vary across datasets, cross-corpus consistency was
found for both, i.e., a 2 s feature window and 1.2 s delay were
used for both delta arousal and delta valence across RECOLA
and SEMAINE. This is potentially interesting to the affective
computing context, since datasets tend to vary significantly.

With the best feature window sizes in Figure 4 and delay
values estimated in Figure 5, we further conducted experiments
comparing absolute and delta emotion prediction using SVR and
RVM.

Emotion Change Prediction Using SVR,
RVM, and OA RVM
The aim of this section is to investigate whether predicting
emotion change may be possible using three regression
approaches, namely SVR, RVM, and OA RVM. The performance
of absolute emotion prediction was also presented herein
as a reference (i.e., the goal here was not to outperform
absolute emotion prediction but to learn how well delta
emotion prediction can be achieved), since there is no existing
benchmark for emotion change prediction. Comparison of this
kind has not been conducted before, in part because the ground
truths are different for absolute and delta emotion prediction.
However, to ensure reasonable comparability between delta
emotion prediction and conventional emotion prediction, we
have empirically selected the feature window sizes and delay
values that provide approximately the best performances for
arousal and valence for both two tasks (absolute vs. delta) on both
two databases (RECOLA and SEMAINE) in Table 2.

Baseline performances for absolute and delta emotion
prediction using SVR and RVM are shown in Table 35. It is
suggested that the relative RMSEs for delta emotion prediction is
slightly larger than that for absolute emotion on RECOLA, which
also holds true for arousal on SEMAINE when SVR was used. On
the other hand, when RVM was used, predicting delta emotions
attained marginally lower relative RMSEs. The comparisons of
relative RMSEs imply roughly similar error ranges for predicting
both absolute and delta emotions. In addition to this, RVM
achieved better performances for delta emotion prediction than
SVR, whilst there is not an evident impact on absolute emotion
prediction.

On RECOLA, when predicting absolute emotions, SVR
provided better arousal prediction, whilst RVM performed better
in terms of valence prediction. Using both approaches, delta
emotion prediction is in general slightly more challenging than
absolute emotion prediction, except that employing SVR worked

5Note that the ground truths for absolute emotion prediction and delta emotion
prediction are different.
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better for predicting delta valence than predicting absolute
valence. This was the same on SEMAINE. However, CCCs
for predicting absolute and delta dimensions were similar on
RECOLA but differed notably on SEMAINE.

We suspected that the performance degradation for delta
emotion on SEMAINE might be due to the low inter-rater
agreement of delta emotion ground truth in SEMAINE, because
it may undermine regression models, as shown in Figure 2.
However, experimental results using only annotations from one
individual rater did not narrow the gap. In section Delta Emotion
Ground Truth, we attributed the low inter-rater reliability of delta
emotion ground truth to the large proportion of non-change
between adjacent frames observed on SEMAINE. This may
also be associated with the gaps in performances for predicting
absolute and delta emotions. Accordingly, further experiments
for analyzing percentages of non-changes in the first-order
differences of absolute ratings for RECOLA and SEMAINE were
conducted but not shown due to the space limit. Briefly, the
experiments confirmed our hypothesis that a large proportion
of non-change frames complicates delta emotion prediction and
causes the performance gaps on the SEMAINE dataset, because

TABLE 2 | Summary of feature window size and annotation delay compensation

for absolute and delta emotions.

Database Dimension Feature window NF Delay

RECOLA 1Arousal 2 s 1.2 s

1Valence 2 s 1.2 s

Arousal 2 s 3.6 s

Valence 2 s 3.6 s

SEMAINE 1Arousal 2 s 1.2 s

1Valence 2 s 1.2 s

Arousal 4 s 5.6 s

Valence 4 s 3.2 s

The Smaller Delay Values for Delta Emotions Indicate that Annotators tend to Respond

more Quickly to Changes in Emotion Than to Absolute Emotions.

as non-change frames were gradually dropped, the gaps narrowed
(Huang, 2018).

Furthermore, the OA-RVM framework improves system
performances for all the tasks on both datasets, suggesting
that predicting delta emotions even provides slightly higher
performances than predicting absolute emotions on RECOLA.

The result that the newly developed delta emotion prediction
system can produce higher CCC than absolute emotion
prediction taken alone is significant, since the field of absolute
emotion prediction has been researched for many years.
Moreover, the proposed delta emotion prediction is able to
explicitly predict the extent of emotion change.

However, delta systems had poorer CCC than the absolute
systems for both arousal and valence on SEMAINE. Moreover,
there are large gaps between absolute and delta systems in
SEMAINE, and we speculate that the most likely reason behind
this is once again the large proportion of non-changes frame
in the first-order differences of the absolute ground truth on
SEMAINE. Despite these results, Table 3 partly answers our
question of how well we can predict the extent of emotion
changes, in comparison to absolute emotion prediction.

In terms of the reference performances of absolute emotion
prediction, OA-RVM outperformed SVR and RVM on both
datasets. The OA-RVM performances in ρc were higher than
the audio-only results but somewhat lower than the multimodal
results in Huang et al. (2015a) on the RECOLA dataset. For
SEMAINE, the OA-RVM performances were much lower in
Pearson’s correlation ρ when compared with the winners of the
AVEC 2012 challenge (Nicolle et al., 2012), who achieve 0.65
(arousal) and 0.33 (valence) on development set, 0.61(arousal),
and 0.34 (valence) on test set. However, it is worth noting that
we are comparing our audio-only system with the multimodal
systems of Nicolle et al. (2012). The audio-only results in Nicolle
et al. (2012) were 0.45 for arousal and −0.06 for valence on the
development set and not reported on the test set, compared with
which we achieved similar performance for arousal and much
improved performance for valence.

TABLE 3 | Comparison of absolute and delta emotion prediction using SVR, RVM, and OA-RVM on RECOLA and SEMAINE databases.

Performances

SVR RVM OA-RVM

RRMSE ρ ρc RRMSE ρ ρc RRMSE ρ ρc

RECOLA

Arousal Absolute 0.733 0.68 0.62 0.826 0.62 0.57 0.701 0.75 0.71

Delta 0.834 0.58 0.56 0.825 0.60 0.52 0.706 0.78 0.74

Valence Absolute 0.833 0.31 0.26 0.760 0.38 0.33 0.832 0.40 0.37

Delta 1.107 0.35 0.33 0.950 0.38 0.31 0.909 0.46 0.41

SEMAINE

Arousal Absolute 0.950 0.47 0.35 0.950 0.51 0.34 0.815 0.44 0.42

Delta 1.240 0.22 0.22 0.826 0.23 0.20 0.826 0.27 0.22

Valence Absolute 1.259 0.13 0.09 1.259 0.18 0.14 1.079 0.26 0.23

Delta 1.140 0.12 0.12 0.884 0.13 0.09 0.884 0.20 0.15

The bold values are highlighted in bold for showing the best performance for each pairs of comparisons between “absolute” and “delta.”
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However, it is worth noting that the focus of this work is
not to improve absolute emotion prediction but to evaluate
how well emotion change can be automatically predicted. It is
acknowledged that the absolute and delta predicting results are
not strictly directly comparable, because each is evaluated on a
different ground truth, i.e., absolute (original) ground truth and
regression delta ground truth. However, the comparison signals
the promise of delta emotion prediction.

Limitations
Some limitations to the experiments in this section should
be noted. Firstly, since the aim of the section, instead of
demonstrating state-of-the-art performance, was to investigate
delta emotion prediction systems and to invoke comparisons
with absolute emotion prediction systems, the SVR and RVM
parameter sweeps were performed over the test set, as indicated
in Table 1. Although this might result in slightly optimistic
results for both absolute and delta emotion prediction, the
comparisons between these two tasks are still fair because
we optimized the two systems in the same ways. Secondly,
another concern was deriving delta emotion ground truth
from the absolute ratings, as raised in Nicolaou et al. (2011).
Although the delta emotion ground truth achieved acceptable
inter-rater agreement, it should instead be ideally annotated
in a relative manner for preserving more characteristics of
emotion dynamics, as discussed in Nicolaou et al. (2011)
and Oveneke et al. (2017). However, where annotations of
emotion changes are not available, and re-annotating data in
a relative way could be labor-demanding and time-consuming,
deriving relative labels from the absolutes as we proposed herein
could be a reasonable compromise. The matter of annotating
specifically for emotion change is an interesting research
challenge which definitely deserves some deeper investigation,
but this is beyond the scope of this paper. Also, more work
on additional widely used datasets may be needed to further
validate and extend the investigations of emotion change
prediction.

CONCLUSIONS

This article has investigated emotion changes, from an
automatic system design perspective, by looking at continuous
Emotion Change Prediction (ECP). We firstly investigated how
to construct delta emotion ground truth from continuous
absolute emotion ratings by calculating the regression deltas
from the absolute ratings, while trading off their inter-rater
reliability and information loss for two databases. This approach
yielded considerably higher inter-rater reliability than first-
order difference deltas used in previous research, and is
more appropriate for deriving annotations for emotion change
research. These findings are applicable to non-speech based
affective computing research.

Moreover, to the best of our knowledge, we investigated the
first system design for continuously predicting the extent of
emotion change from speech, including appropriate features,

delay compensation and feature window sizes. An analysis of
annotation delays suggested that evaluators respond quickly to
changes in emotions, which was consistent across databases.

Comparison of the best system configurations for arousal and
valence using the OA-RVM framework showed a very interesting
result that we can achieve higher CCCs for emotion change
prediction than conventional (absolute) emotion prediction on
the RECOLA database (0.74 vs. 0.71 for arousal and 0.41 vs.
0.37 for valence). This presents the research community with an
exciting new perspective on the problem and strongly suggests
the promise of investigating emotion changes further.

Overall, we showed in this study how to build an
automatic system that predicts changes in emotion, what are
the important factors to be considered during development,
and how well the newly proposed task can be achieved in
comparison with conventional absolute emotion prediction.
These aspects potentially offer practical guidelines for emotion
change prediction. More broadly, the question of whether it is
interesting to build systems that predict emotion change has been
answered in the affirmative, at least from a qualitative point of
view.

One limitation of this work was employing delta emotion
ground truth constructed from absolute ratings. Since the
absolute ratings are originally annotated in an absolute manner,
directly converting them to delta emotion ground truth suffers
from low inter-rater reliability, especially on the SEMAINE
database. Despite this, ECP is worth more investigation and
perhaps may be further improved with annotation directly
produced in delta manner. After all, literature has shown higher
inter-rater reliability for relative emotions.

Indeed, emotion change research can be studied further and
possibilities for investigating emotion changes are definitely not
confined to ECP studied herein or ECD (Emotion Change
Detection) and ECA (Emotion Change Assessment) mentioned
in section Overview and Possibilities for Emotion Change
Systems. Yet, there are still some inevitable issues. One of
them is the unavailability of emotion change databases, but this
can be alleviated by constructing suitable databases from the
existing ones. The other issue is that definition and description
for emotion changes are not as well-founded in psychology
literature, which leads to rather empirical-oriented studies in
practice.
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