
CODE
published: 16 March 2016

doi: 10.3389/fict.2016.00004

Edited by:
Marcelo Silva Sarandy,

Fluminense Federal University, Brazil

Reviewed by:
Marco Alberto Javarone,
University of Cagliari, Italy

Steve Campbell,
Queen’s University Belfast, UK

*Correspondence:
Jonas Maziero

jonas.maziero@ufsm.br

Specialty section:
This article was submitted to

Quantum Computing, a section of the
journal Frontiers in ICT

Received: 17 December 2015
Accepted: 29 February 2016
Published: 16 March 2016

Citation:
Maziero J (2016) Fortran Code for
Generating Random Probability
Vectors, Unitaries, and Quantum

States.
Front. ICT 3:4.

doi: 10.3389/fict.2016.00004

Fortran Code for Generating Random
Probability Vectors, Unitaries, and
Quantum States
Jonas Maziero1,2*

1 Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria,
Rio Grande do Sul, Brazil, 2 Facultad de Ingeniería, Instituto de Física, Universidad de la República, Montevideo, Uruguay

The usefulness of generating random configurations is recognized in many areas of
knowledge. Fortran was born for scientific computing and has been one of the main
programing languages in this area since then. And several ongoing projects targeting
toward its betterment indicate that it will keep this status in the decades to come. In
this article, we describe Fortran codes produced, or organized, for the generation of the
following random objects: numbers, probability vectors, unitary matrices, and quantum
state vectors and density matrices. Some matrix functions are also included and may be
of independent interest.

Code available at: https://gcc.gnu.org/wiki/GfortranBuild, http://arxiv.org/e-print/1512.
05173v1, https://github.com/jonasmaziero/LibForQ-v1.git

Keywords: random numbers, unit simplex, random unitary, random quantum states, code:Fortran

1. INTRODUCTION

The generation of random variables has become an essential capability in fields, such as physics,
engineering, economics, random search and optimization, artificial intelligence, and game and
network theories [see, e.g., Pham and Karaboga (2000), Galam (2002), Garlaschelli and Loffredo
(2004), Estrada and Hatano (2008), Perc and Szolnoki (2008), Krioukov et al. (2010), Szolnoki and
Perc (2010), Biondo et al. (2013), Javarone and Armano (2013), Rios and Sahinidis (2013), Amaran
et al. (2014), Kroese et al. (2014), Javarone (2015), Silver et al. (2016), and references therein]. In
Quantum Information Science (QIS), a multidisciplinary field aiming an efficient and far reaching
use and manipulation of information, the panorama is not different. The creation of random states
and unitaries can be useful for encryption, remote state preparation, data hiding, classical correlation
locking, quantum devices and decoherence characterization and tailoring, and for quantumness and
correlations quantification (Emerson et al., 2003; Hayden et al., 2004; Galve et al., 2011; Lu et al.,
2011; Agarwal and Hashemi Rafsanjani, 2013; Costa and Angelo, 2016; Ma et al., 2015; Maziero,
2015a; Wallman and Emerson, 2015; Bohnet-Waldraff et al., 2016; Rana et al., 2016), to name but a
few examples.

Perhaps because of its intuitive syntax and variety of well developed and optimized tools, Fortran,
which stands for Formula translation, is the primary choice programing language of many scientists.
There are several nice initiatives indicating that it will be continuously and consistently improved
in the future (Szymanski, 2007; Metcalf, 2011), what places Fortran as a good option for scientific
programing. It is somewhat surprising thus noticing that Fortran does not appear in Quantiki’s
list of “quantum simulators.”1 For more details about codes under active development in other

1http://www.quantiki.org/wiki/list-qc-simulators

Frontiers in ICT | www.frontiersin.org March 2016 | Volume 3 | Article 41

http://www.frontiersin.org/ICT
http://www.frontiersin.org/ICT/editorialboard
http://www.frontiersin.org/ICT/editorialboard
http://dx.doi.org/10.3389/fict.2016.00004
https://creativecommons.org/licenses/by/4.0/
mailto:jonas.maziero@ufsm.br
http://dx.doi.org/10.3389/fict.2016.00004
http://crossmark.crossref.org/dialog/?doi=10.3389/fict.2016.00004&domain=pdf&date_stamp=2016-03-16
http://www.frontiersin.org/Journal/10.3389/fict.2016.00004/abstract
http://www.frontiersin.org/Journal/10.3389/fict.2016.00004/abstract
http://www.frontiersin.org/Journal/10.3389/fict.2016.00004/abstract
http://loop.frontiersin.org/people/72841/overview
https://gcc.gnu.org/wiki/GfortranBuild
http://arxiv.org/e-print/1512.05173v1
http://arxiv.org/e-print/1512.05173v1
https://github.com/jonasmaziero/LibForQ-v1.git
http://www.quantiki.org/wiki/list-qc-simulators
http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Maziero Generating Random Objects with Fortran

programing languages, see, e.g., Juliá-Díaz et al. (2006), Machnes
et al. (2011), Johansson et al. (2012, 2013), Miszczak (2012, 2013),
Fritzsche (2014), Gheorghiu (2014) and Johnston (2016). In this
article, with the goal of starting the development of a Fortran
Library for QIS, we shall explain (free) Fortran codes produced, or
organized, for generators of random numbers, probability vectors,
unitary matrices, and quantum state vectors and density matri-
ces. Some examples of free software (Free Software Foundation,
1985) programing languages with which it would be interest-
ing to develop similar tools are Python, Maxima, Octave, C,
and Java.

This article is structured as follows. We begin (in Section
2) recapitulating some concepts and definitions that we uti-
lize in the remainder of the article. In Section 3, the general
description of the code is provided. Reading this section, and
the readme file, would be enough for a black box use of the
generators. More detailed explanations of each one of them, and
of the related options, are given in Sections 4–8. In Section 9,
we summarize the article and comment on some tests for the
generators.

2. SOME CONCEPTS AND DEFINITIONS

In Quantum Mechanics (QM) (Nielsen and Chuang, 2000; Wilde,
2013), we associate to a system a Hilbert space H. Every state
of that system corresponds to a unit vector in H. Observables
are described by Hermitian operators O=Σj oj|oj⟩⟨oj|, i.e., oj ∈R
and |oj⟩ form an orthonormal basis. Born’s rule bridges theory
and experiment stating that if the system is prepared in the state
|ψ⟩=Σj cj|oj⟩ and O is measured, then the probability for the
outcome oj is pj = |cj|2 = |⟨oj|ψ⟩|2. We recall that a set of num-
bers pj is regarded as a discrete probability distribution if all the
numbers pj in the set are non-negative (i.e., pj ≥ 0) and if they
sum up to one (i.e., Σj pj = 1). In QM, preparations and tests
involving incompatible observables lead to quantum coherence
and uncertainty and to the consequent necessity for the use of
probabilities.

When we lack information about a system preparation, a com-
plex positive semidefinite matrix (ρ≥ 0) with unit trace Tr(ρ)= 1,
dubbed the density matrix, is the mathematical object used to
describe its state (Nielsen andChuang, 2000;Wilde, 2013). In these
cases, if the pure state |ψj⟩ is prepared with probability pj, all mea-
surement probabilities can be computed in a succinct way using
the density operator ρ=Σj pj|ψj⟩⟨ψj|. The ensemble {pj,|ψj⟩}
leading to a given ρ is not unique. But, as ρ is anHermitianmatrix,
we can write its unique eigen-decomposition ρ =

∑d
j=1 rj|rj⟩⟨rj|

with rj being a probability distribution and |rj⟩ an orthonormal
basis.We observe that the set of vectors with properties equivalent
to those of (r1, · · · , rd), which are dubbed here probability vectors,
define the unit simplex.

The mixedness of the state of a system follows also when it
is part of a bigger-correlated system. Let us assume that a bi-
partite system was prepared in the state |ψab⟩. All the probabilities
of measurements on the system a can be computed using the
(reduced) density matrix obtained taking the partial trace over
system b (Maziero, 2016): ρa =Trb(|ψab⟩⟨ψab|).

Up to now, we have discussed some of the main concepts of the
kinematics of QM. For our purposes here, it will be sufficient to
consider the quantummechanical closed-systemdynamics, which
is described by a unitary transformation (Nielsen and Chuang,
2000; Wilde, 2013). If the system is prepared in state |ψ⟩, its
evolved state shall be given by: |ψt⟩=U|ψ⟩, with UU† = I, where
I is the identity operator in H. The unitary matrix U is obtained
from the Schrödinger equation i~∂U/∂t=HU, with H being the
system Hamiltonian at time t. Between preparation and measure-
ment (reading of the final result), a QuantumComputation (in the
circuit model) is nothing but a unitary evolution, which is tailored
to implement a certain algorithm.

3. GENERAL DESCRIPTION OF THE CODE

The code is divided in five main functionalities that are the
random number generator (RNG), the random probability vector
generator (RPVG), the random unitary generator (RUG), the
random state vector generator (RSVG), and the random density
matrix generator (RDMG). Below, we describe inmore detail each
one of these generators and the related available options.

A module named meths is used in all calling subroutines for
these generators in order to share your choices for the method
to be used for each task. A short description of the methods
and the corresponding options, opt_rxg (with x being n, pv,
u, sv, or dm), is included in that module. To call any one of
these generators, include call rxg(d,rx) in your program,
where d is the dimension of the vector or square matrix rx,
which is returned by the generator. If you want, for example, a
random density matrix generated using a “standard method” just
call rdmg(d,rdm); the same holds for the other objects. If,
on the other hand, you want to choose which method is to be
used in the generation of any one of these random variables, add
use meths after your (sub)program heading, declare opt_rxg as
character(10), and add opt_rxg= "your_choice" to your
program executable statement section.

4. RANDOM NUMBER GENERATOR

Beforehand we “have” to initialize the RNG with call
rng_init(); remember to do that also after changing the
RNG. As rn is an one-dimensional double precision array, if
you want only one random number (RN), then just set d= 1.
As the standard pseudo-random number generator (pRNG), we
use the Fortran implementation by Jose Rui Faustino de Sousa
of the Mersenne Twister algorithm introduced in Matsumoto
and Nishimura (1998). This pRNG has been adopted in several
software systems and is highly recommended for scientific
computations (Katzgraber, 2010). As less hardware demanding
alternatives, we have also included the Gnu’s standard pRNG
KISS (Marsaglia and Zaman, 1993) and the Petersen’s Lagged
Fibonacci pRNG (Petersen, 1994), which is available on Netlib.
The options opt_rng for these three pRNGs are, respectively,
"mt", "gnu", and "netlib". The components of rn provided
by these pRNG are uniformly distributed in [0, 1]. Because of
their use in the other generators, we have also implemented
the subroutines rng_unif(d,a,b,rn), rng_gauss(d,rn),

Frontiers in ICT | www.frontiersin.org March 2016 | Volume 3 | Article 42

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Maziero Generating Random Objects with Fortran

rng_exp(d,rn), which return d-dimensional vectors of random
numbers with independent components possessing, respectively,
uniform in [a,b], Gaussian (standard normal), and exponential
probability distributions (see examples in Figure 1).

5. RANDOM PROBABILITY VECTOR
GENERATOR

Once selected the RNG, it can be utilized, for instance, for the sake
of sampling uniformly from the unit simplex. That is to say, we
want to generate random probability vectors (RPV)

p⃗ = (p1, · · · , pd) (1)

FIGURE 1 | On top: Gaussian and uniform probability densities for one million
random numbers generated using the Mersenne Twister random number
generator. In the right, inset is shown the 2D scatter plot for 5000 pairs of
RNs generated via the Gnu’s RNG. The left inset shows the shifted mean and
some moments, µj, and correlations, εj,k, as a function of the number of
samples obtained with the Netlib RNG. On bottom: probability density for the
first component of one million random probability vectors with dimension
d= 4 and generated using the method indicated in the figure (refer to the text
for more details). In the inset is shown the 2D scatter plot for the first two
components (p1, p2) of five thousand RPVs with d= 3 and produced using
the ZHSL (red) or the Normalization (green) method [in the last case, the
points are (1−p1, 1−p2)].

with pj ≥ 0 and
∑d

j=1 pj = 1; and the picked points p⃗ should
have uniform density in the unit simplex. In the following, we
describe briefly some methods that may be employed to accom-
plish (approximately) this task.

Let us start with a trigonometric approach to create RPVs
(opt_rpvg= "trig"). First, we get the angles θ0 = 0 and
θj = arccos√rj (for j= 1, · · · , d− 1), with rj being uniform
RNs in [0, 1]. Then, we define the components of the RPV:
pj = sin2 θj−1Π

d−1
k=j cos

2 θk (for j= 1, · · · , d− 1) and pd = sin2 θd−1

(Vedral and Plenio, 1998). To get rid from the bias existing in the
generated RPVs, we use a random permutation of {1, 2, · · · , d} to
shuffle its components (Maziero, 2015b).

The normalization method (opt_rpvg= "norm") starts from
the defining properties of a probability vector and uses the RNG
to draw uniformly p1 ∈ [0, 1], pj ∈ [0, 1−

∑j−1
k=1 pk] (for j= 1, · · · ,

d− 1), and set pd = 1 −
∑d−1

k=1 pk. At last, we use shuffling of the
components of p⃗ to obtain an unbiased RPV (Maziero, 2015b). A
somewhat related method, which is used here as the standard one
for the RPVG, was proposed by Zyczkowski, Horodecki, Sanpera,
and Lewenstein (ZHSL) in the Appendix A of Zyczkowski et al.
(1998), so opt_rpvg= "zhsl." The basic idea is to consider the
volume Πd−1

j=1 d(pd−j
j) and d− 1 uniform random numbers rj and

to define p1 = 1− r1/(d−1)
1 and pj = (1− r1/(d−j)

j)(1−
∑j−1

k=1 pk)
(for j= 2, · · · , d− 1), and finally making pd = 1 −

∑d−1
k=1 pk.

Other possible approach is taking d independent and
identically distributed uniform random numbers rj (thus
opt_rpvg= "iid") and just normalizing the distribution,
i.e., pj := rj/

(∑d
k=1 rk

)
(Maziero, 2015b). A related

sampling method was put forward in Devroye (1986)
(opt_rpvg= "devroye"); see also the Appendix B of Shang
et al. (2015). The procedure is similar to the previous one, but
with the change that the random numbers rj are drawn with
an exponential probability density. Yet, another way to create
a RPV, due to Kraemer (1999) (opt_rpvg= "kraemer") [see
also Smith and Tromble (2004) and Grimme (2015)], is to take
d− 1 random numbers uniformly distributed in [0, 1], sort
them in non-decreasing order, use r0 = 0 and rd = 1, and then
defining pj = rj − rj–1 for j= 1, · · · , d. For sorting, we adapted
an implementation of the Quicksort algorithm from the Rosetta
Code Project.2

With exception of the iid, all these methods lead to fairly
good samples. With regard to the similarity of the proba-
bility distributions for the components of the RPVs gener-
ated, one can separate the methods in two groups: (a) ZHSL,
Kraemer, and Devroye and (b) trigonometric and normaliza-
tion. Concerning the choice of the method, it is worth men-
tioning that for moderately large dimensions of the RPV, the
group (a) excludes the possibility of values of pj close to one.
This effect, which may have unwanted consequences for ran-
dom quantum states generation, is less pronounced for the
methods (b), although here the problem is the appearance
of a high concentration of points around the corners pj = 0
(see Figure 1).

2http://rosettacode.org/wiki/Sorting_algorithms

Frontiers in ICT | www.frontiersin.org March 2016 | Volume 3 | Article 43

http://rosettacode.org/wiki/Sorting_algorithms
http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Maziero Generating Random Objects with Fortran

If R(N) is the computational complexity (CC) to generate N
RNs andO(N) is the CC forN scalar additions, then for d≫ 1, we
have the following estimative: CC(RPVG)≈R(d)+O(d log d).

6. RANDOM UNITARY GENERATOR

A complex matrix U is unitary, i.e.,

U†U = I, (2)

with I being the identity matrix, if and only if its column
vectors form an orthonormal basis. So, starting with a com-
plex matrix possessing independent random elements that have
identical Gaussian (standard normal) probability distributions,
we can obtain a random unitary matrix (RU) via the QR fac-
torization (QRF) (Cybenko, 2001; Mezzadri, 2007). We imple-
mented it using the modified Gram–Schmidt orthogonalization
(opt_rug= "gso") (Diaconis, 2005; Golub andVan Loan, 2013),
which is our standard method for generating random unitaries.
We also utilized LAPACK’s implementation of theQRF viaHouse-
holder reflections (opt_rug= "hhr"), so you will need to have
LAPACK installed (Anderson et al., 1999). Random unitaries
can be obtained also from a parametrization for U(d). We have
implemented a RUG in this way using the Hurwitz parametriza-
tion (opt_rug= "hurwitz"); for details, see Zyczkowski and
Kus (1994, 1996). Here, a rough estimate for the computational
complexity is CC(RUG)≈R(d2)+O(d4).

7. RANDOM STATE VECTOR GENERATOR

Pure states of d-dimensional quantum systems are described by
unit vectors inCd. The computational basis |j⟩= (δ1j, δ2j, · · · , δdj)
can be used to write any one of these vectors as

|ψ⟩ =
d∑

j=1

cj|j⟩, (3)

which are guaranteed to be normalized if
∑d

j=1 |cj|2 = 1. A
simple way to create random state vectors (RSVs) is by using nor-
mally distributed real numbers to generate the real and imaginary
parts of the complex coefficients in equation (3), and afterwards
normalizing |ψ⟩ (opt_rsvg= "gauss").

Using the polar form for the coefficients in equation (3), cj =
|cj|eiϕj , and noticing that |cj|2 is a probability distribution, we
arrive at our standard method (opt_rsvg= "std") for generat-
ing RSVs. We proceed then by defining |cj|2 = : pj and writing

|ψ⟩ =
d∑

j=1

√pje
iφj |j⟩. (4)

Then, we utilize the RPVG to get p⃗ = (p1, · · · , pd) and the RNG
to obtain the phases (ϕ1, · · · , ϕd), with ϕj uniformly distributed in
[0, 2π]. Using these probabilities and phases, we generate a RSV.
See examples inFigure 2. For these two firstmethods, when d≫ 1,
CC(RSVG)≈R(d)+O(d2).

In addition to these procedures, we have included yet another
RSVG using the first column of a RU (opt_rsvg= "ru"):

|ψ⟩ = (U11,U21, · · · ,Ud1). (5)

FIGURE 2 | On top: average fidelity, ⟨F (|ψ⟩, |ϕ⟩)⟩= ⟨|⟨ψ|ϕ⟩|2⟩, as a function
of the dimension d for one thousand pairs of random state vectors generated
using the indicated method. The continuous line is for 1/d. In the inset is
shown the probability density for the eigen-phases and its spacings (divided
by the average) for ten thousand 20×20 random unitary matrices. On
bottom: probability of finding a positive partial transpose bi-partite state of
dimension d=dadb, with da = 2, for ten thousand random density matrices
produced for each value of d. The continuous lines are the exponential fits,
p=αe−βd, with (α, β) being (1.81, 0.26), (18.77, 1.08), and (265.21, 2.08)
for, respectively, the std, ginibre (ptrace), and bures method. In the inset
is shown the average L1-norm quantum coherence Cl1(ρ)=Σj ̸=k |ρj ,k |
(divided by log2d) and the relative entropy of quantum coherence
Cre(ρ)=S(ρdiag)−S(ρ), with S(ρ)=−Tr(ρ log2ρ) being von Neumann’s
entropy and ρdiag is obtained from ρ by erasing its off-diagonal matrix
elements, in basis |j⟩ (104 samples were produced for each value of d).

8. RANDOM DENSITY MATRIX
GENERATOR

Our standard method (opt_rdmg= "std") for random density
matrix (RDM) generation [see, e.g., Zyczkowski et al. (1998) and
Maziero (2015c)], starts from the eigen-decomposition

ρ =

d∑
j=1

rj|rj⟩⟨rj| (6)

and creates the eigenvalues rj and the eigenvectors |rj⟩=U|j⟩
using, respectively, the RPVG and RUG described before.

Frontiers in ICT | www.frontiersin.org March 2016 | Volume 3 | Article 44

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Maziero Generating Random Objects with Fortran

So, in this case, CC(RDMG)≈CC(RPVG)+CC(RUG)+
O(d6)≈R(d2)+O(d6).

We can also produce RDMs by normalizingmatrices with inde-
pendent complex entries normally distributed, named Wishart or
Ginibre matrices (opt_rdmg= "ginibre"),

ρ =
GG†

||G||22
, (7)

where ||G||2 =

√
Tr(G†G) is the Hilbert–Schmidt norm

(Zyczkowski and Sommers, 2001; Zyczkowski et al., 2011). A
related method, which produces RDMs with Bures measure
(opt_rdmg= "bures"), uses

ρ =
(I+ U)GG†(I+ U†)

||(I+ U)G||22
, (8)

withU being a randomunitary (AlOsipov et al., 2010). At last, one
can also generate RDMs via partial tracing a random state vector
|ψab⟩ (Mejía et al., 2015):

ρ = Trb(|ψab⟩⟨ψab|); (9)

so opt_rdmg= "ptrace". See examples in Figure 2.
There are two issues arising from Figure 2 that instantiate

the utility of the numerical tool described in this article. The
first one regards quantum coherence quantification, which has
been rediscovered and formalized in the last few years (Baum-
gratz et al., 2014; Winter and Yang, 2016). We see that, while
the average relative entropy of coherence concentrates around
a certain value, the L1-norm coherence keeps growing with the
dimension d. Such kind of qualitative difference, promptly iden-
tified in a simple numerical experiment, points toward a path
that can be taken in order to identify physically and/or opera-
tionally relevant coherence quantifiers. The other issue refers to
the too fast concentration ofmeasure reported inMaziero (2015c),
and which gains more physical appeal with the too entangled
state space reached by the last three RDMGs described in this
section.

It seems legitimate regarding the most random ensemble of
quantum states as being the one leading to minimal knowl-
edge, which can, by its turn, be identified with maximal symme-
try (Hall, 1998). Thus, for pure states, we require such ensem-
ble to be invariant under unitary transformations (UTs), what
implies in no preferential direction in the Hilbert space. An
ensemble of pure states drawn with probability density invari-
ant under UTs is said to be generated with Haar measure. The
same is the case for random unitaries (Mezzadri, 2007). We
observe that all random unitary generators and random state vec-
tor generators described here produce Haar distributed random
objects.

In the general case of density matrices, invariance under UTs
only warrants ignorance about direction in the state space, but
implies nothing with respect to the eigenvalues distribution. In
this regard, in general, differentmetrics lead to distinct probability
densities, which are then used for constructing methods to create

random density matrices accordingly. Therefore, as advanced in
Hall (1998), this situation calls for the application of physical or
conceptual motivations when choosing a RDMG. In this sense,
we think that the too fast concentration of measure issue, in
conjunction with the well known difficulty of preparing entangled
states in the laboratory, favors the standard randomdensitymatrix
generator described above.

9. CONCLUDING REMARKS

To summarize, in this article, we described Fortran codes for
the generation of random numbers, probability vectors, unitary
matrices, and quantum state vectors and density matrices. Our
emphasis here was more on ease of use than on sophistication
of the code. This is the starting point for the development of a
Fortran Library for Quantum Information Science. In addition
to including new capabilities for the generators described here
and to optimize the code, we expect to develop this work in
several directions in the future. Among the intended extensions
are the inclusion of entropy and distinguishability measures, non-
classicality and correlation quantifiers, simulation of quantum
protocols, and remote access to quantum random number gen-
erators. Besides, in order to mitigate the explosive growth in
complexity that we face in general when dealing with quantum
systems, d= dimH∝ exp (No. of parties), it would be fruitful to
parallelize the code whenever possible.

We performed some simple tests and calculations for veri-
fication of the code’s basic functionalities. Some of the results
are reported in Figures 1 and 2. The code used for these and
other tests is also included and commented, but we shall not
explain it here. Several matrix functions are provided in the files
matfun.f90 and qnesses.f90. For instructions about how to
compile and run the code, see the readme file. In our tests, we used
BLAS 3.6.0, LAPACK3.6.0 (see installation instructions in https://
gcc.gnu.org/wiki/GfortranBuild), and theGNUFortranCompiler
version 5.0.0. A MacBook Air Processor 1.3GHz Intel Core i5,
with a 4-GB 1600MHz DDR3 Memory and Operating System OS
X El Capitan Version 10.11.2 was utilized. The code and related
files can be downloaded in http://arxiv.org/e-print/1512.05173v1
or https://github.com/jonasmaziero/LibForQ-v1.git [GCC Wiki;
Maziero; Maziero (2015)].

AUTHOR CONTRIBUTIONS

The author performed all the work presented in this article.

ACKNOWLEDGMENTS

This work was supported by the Brazilian funding agencies:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq), under processes 441875/2014-9 and 303496/2014-2,
Instituto Nacional de Ciência e Tecnologia de Informação Quân-
tica (INCT-IQ), under process 2008/57856-6, and Coordenação
deDesenvolvimento de Pessoal deNível Superior (CAPES), under
process 6531/2014-08. I gratefully acknowledge the hospitality
of the Physics Institute and Laser Spectroscopy Group at the

Frontiers in ICT | www.frontiersin.org March 2016 | Volume 3 | Article 45

https://gcc.gnu.org/wiki/GfortranBuild
https://gcc.gnu.org/wiki/GfortranBuild
http://arxiv.org/e-print/1512.05173v1
https://github.com/jonasmaziero/LibForQ-v1.git
http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Maziero Generating Random Objects with Fortran

Universidad de la República, Uruguay, where this work was com-
pleted. I also thankCarlos Alberto Vaz deMoraes Júnior for useful
suggestions regarding the creation of Fortran libraries and one of
the Reviewers by his/her constructive comments and suggestions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at http://journal.frontiersin.org/article/10.3389/fict.2016.00004

REFERENCES
Agarwal, S., and Hashemi Rafsanjani, S. M. (2013). Maximizing genuine multi-

partite entanglement of N mixed qubits. Int. J. Quantum Inform. 11, 1350043.
doi:10.1142/S0219749913500433

Al Osipov, V., Sommers, H.-J., and Zyczkowski, K. (2010). Random Bures mixed
states and the distribution of their purity. J. Phys. A Math. Theor. 43, 055302.
doi:10.1088/1751-8113/43/5/055302

Amaran, S., Sahinidis, N. V., Sharda, B., and Bury, S. J. (2014). Simulation opti-
mization: a review of algorithms and applications. Q. J. Oper. Res. 12, 301.
doi:10.1007/s10479-015-2019-x

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., et al.
(1999). LAPACK Users’ Guide, 3rd Edn. Philadelphia: Society for Industrial and
Applied Mathematics.

Baumgratz, T., Cramer, M., and Plenio, M. B. (2014). Quantifying coherence. Phys.
Rev. Lett. 113, 140401. doi:10.1103/PhysRevLett.113.140401

Biondo, A. E., Pluchino, A., and Rapisarda, A. (2013). The beneficial role of random
strategies in social and financial systems. J. Stat. Phys. 151, 607. doi:10.1007/
s10955-013-0691-2

Bohnet-Waldraff, F., Braun, D., and Giraud, O. (2016). Quantumness of spin-1
states. Phys. Rev. A 93, 012104. doi:10.1103/PhysRevA.93.012104

Costa, A. C. S., and Angelo, R. M. (2016). Quantification of Einstein-Podolski-
Rosen steering for two-qubit states. Phys. Rev. A 93, 020103(R). doi:10.1103/
PhysRevA.93.020103

Cybenko, G. (2001). Reducing quantum computations to elementary unitary oper-
ations. Comput. Sci. Eng. 3, 27. doi:10.1109/5992.908999

Devroye, L. (1986). Non-Uniform Random Variate Generation. New York: Springer.
Diaconis, P. (2005). What is a random matrix? Not. AMS 52, 1348.
Emerson, J., Weinstein, Y. S., Saraceno, M., Lloyd, S., and Cory, D. G. (2003).

Pseudo-random unitary operators for quantum information processing. Science
302, 2098. doi:10.1126/science.1090790

Estrada, E., and Hatano, N. (2008). Communicability in complex networks. Phys.
Rev. E Stat. Nonlin. Soft Matter Phys. 77, 036111. doi:10.1103/PhysRevE.77.
036111

Free Software Foundation. (1985). Available at: https://fsf.org
Fritzsche, S. (2014). The Feynman tools for quantum information processing: design

and implementation. Comput. Phys. Commun. 185, 1697. doi:10.1016/j.cpc.
2014.02.003

Galam, S. (2002). Minority opinion spreading in random geometry. Eur. Phys. J. B
25, 403. doi:10.1140/epjb/e20020045

Galve, F., Giorgi, G., and Zambrini, R. (2011). Orthogonal measurements are almost
sufficient for quantum discord of two qubits. EPL 96, 40005. doi:10.1209/0295-
5075/96/40005

Garlaschelli, D., and Loffredo, M. I. (2004). Fitness-dependent topological prop-
erties of the World Trade Web. Phys. Rev. Lett. 93, 188701. doi:10.1103/Phys-
RevLett.93.188701

GCC Wiki. Building Common Software Packages with Gfortran. Available at:
https://gcc.gnu.org/wiki/GfortranBuild

Gheorghiu, V. (2014). Quantum++–A C++11 quantum computing library.
arXiv:1412.4704.

Golub, G. H., and Van Loan, C. F. (2013).Matrix Computations, 4th Edn. Baltimore:
The Johns Hopkins University Press.

Grimme, C. (2015). Picking a Uniformly Random Point from an Arbitrary Simplex.
Technical Report. University of Münster.

Hall, M. J. W. (1998). Random quantum correlations and density operator distri-
butions. Phys. Lett. A 242, 123. doi:10.1016/S0375-9601(98)00190-X

Hayden, P., Leung, D., Shor, P. W., and Winter, A. (2004). Randomizing quantum
states: constructions and applications. Commun. Math. Phys. 250, 371. doi:10.
1007/s00220-004-1087-6

Javarone, M. A. (2015). Is poker a skill game? New insights from statistical physics.
EPL 110, 58003. doi:10.1209/0295-5075/110/58003

Javarone, M. A., and Armano, G. (2013). Quantum-classical transitions in complex
networks. J. Stat. Mech. Theor. Exp. 2013, 04019. doi:10.1088/1742-5468/2013/
04/P04019

Johansson, J. R., Nation, P. D., and Nori, F. (2012). QuTiP: an open-source python
framework for the dynamics of open quantum systems.Comput. Phys. Commun.
183, 1760. doi:10.1016/j.cpc.2012.02.021

Johansson, J. R., Nation, P. D., and Nori, F. (2013). QuTiP 2: a python framework
for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234.
doi:10.1016/j.cpc.2012.11.019

Johnston, N. (2016). QETLAB: A MATLAB Toolbox for Quantum Entanglement,
Version 0.9. Available at: http://www.qetlab.com

Juliá-Díaz, B., Burdis, J. M., and Tabakin, F. (2006). QDENSIT–a mathematica
quantum computer simulation. Comput. Phys. Commun. 174, 914. doi:10.1016/
j.cpc.2005.12.021

Katzgraber, H. G. (2010). Random numbers in scientific computing: an introduc-
tion. arXiv:1005.4117.

Kraemer, H. (1999). Post onMathForum onDecember 20. Topic: Sampling Uniformly
from the N-Simplex.

Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., and Boguna, M. (2010).
Hyperbolic geometry of complex networks. Phys. Rev. E Stat. Nonlin. Soft Matter
Phys. 82, 036106. doi:10.1103/Phys-RevE.82.036106

Kroese, D. P., Brereton, T., Taimre, T., and Botev, Z. I. (2014). Why the Monte Carlo
method is so important today. Comput. Stat. 6, 386. doi:10.1002/wics.1314

Lu, X.-M., Ma, J., Xi, Z., and Wang, X. (2011). Optimal measurements to access
classical correlations of two-qubit states. Phys. Rev. A 83, 012327. doi:10.1103/
Phys-RevA.83.012327

Ma, Z., Chen, Z., Fanchini, F. F., and Fei, S.-M. (2015). Quantum discord for d ⊗ 2
systems. Sci. Rep. 5, 10262. doi:10.1038/srep10262

Machnes, S., Sander, U., Glaser, S. J., de Fouquieres, P., Gruslys, A., Schirmer,
S., et al. (2011). Comparing, optimising and benchmarking quantum control
algorithms in a unifying programming framework. Phys. Rev. A 84, 022305.
doi:10.1103/Phys-RevA.84.022305

Marsaglia, G., and Zaman, A. (1993). The KISS Generator. Technical Report.
Department of Statistics, Florida State University.

Matsumoto, M., and Nishimura, T. (1998). Mersenne Twister: a 623-dimensionally
equidistributed uniform pseudorandom number generator. ACM Trans. Model.
Comput. Sim. 8, 3. doi:10.1145/272991.272995

Maziero, J. Fortran Code for Generating Random Probability Vectors, Unitaries, and
Quantum States. Available at: https://github.com/jonasmaziero/LibForQ-v1.git

Maziero, J. (2015). Fortran Code for Generating Random Probability Vectors,
Unitaries, and Quantum States. arXiv:1512.05173v1 [quant-ph]. Available at:
http://arxiv.org/e-print/1512.05173v1

Maziero, J. (2015a). Non-monotonicity of trace distance under tensor products.
Braz. J. Phys. 45, 560. doi:10.1007/s13538-015-0350-y

Maziero, J. (2015b). Generating pseudo-random discrete probability distributions.
Braz. J. Phys. 45, 377. doi:10.1007/s13538-015-0337-8

Maziero, J. (2015c). Random sampling of quantum states: a survey ofmethods.Braz.
J. Phys. 45, 575. doi:10.1007/s13538-015-0367-2

Maziero, J. (2016). Computing partial traces and reduced density matrices.
arXiv:1601.07458.

Mejía, J., Zapata, C., and Botero, A. (2015). The difference between two ran-
dom mixed quantum states: exact and asymptotic spectral analysis. arXiv:1511.
07278.

Metcalf, M. (2011). The seven ages of Fortran. J. Comput. Sci. Technol. 11, 1.
Mezzadri, F. (2007). How to generate random matrices from the classical compact

groups. Not. AMS 54, 592.
Miszczak, J. A. (2012). Generating and using truly random quantum states in

Mathematica. Comput. Phys. Commun. 183, 118. doi:10.1016/j.cpc.2011.08.002
Miszczak, J. A. (2013). Employing online quantum random number generators

for generating truly random quantum states in Mathematica. Comput. Phys.
Commun. 184, 257. doi:10.1016/j.cpc.2012.08.012

Frontiers in ICT | www.frontiersin.org March 2016 | Volume 3 | Article 46

http://journal.frontiersin.org/article/10.3389/fict.2016.00004
http://dx.doi.org/10.1142/S0219749913500433
http://dx.doi.org/10.1088/1751-8113/43/5/055302
http://dx.doi.org/10.1007/s10479-015-2019-x
http://dx.doi.org/10.1103/PhysRevLett.113.140401
http://dx.doi.org/10.1007/s10955-013-0691-2
http://dx.doi.org/10.1007/s10955-013-0691-2
http://dx.doi.org/10.1103/PhysRevA.93.012104
http://dx.doi.org/10.1103/PhysRevA.93.020103
http://dx.doi.org/10.1103/PhysRevA.93.020103
http://dx.doi.org/10.1109/5992.908999
http://dx.doi.org/10.1126/science.1090790
http://dx.doi.org/10.1103/PhysRevE.77.036111
http://dx.doi.org/10.1103/PhysRevE.77.036111
https://fsf.org
http://dx.doi.org/10.1016/j.cpc.2014.02.003
http://dx.doi.org/10.1016/j.cpc.2014.02.003
http://dx.doi.org/10.1140/epjb/e20020045
http://dx.doi.org/10.1209/0295-5075/96/40005
http://dx.doi.org/10.1209/0295-5075/96/40005
http://dx.doi.org/10.1103/Phys-RevLett.93.188701
http://dx.doi.org/10.1103/Phys-RevLett.93.188701
https://gcc.gnu.org/wiki/GfortranBuild
http://dx.doi.org/10.1016/S0375-9601(98)00190-X
http://dx.doi.org/10.1007/s00220-004-1087-6
http://dx.doi.org/10.1007/s00220-004-1087-6
http://dx.doi.org/10.1209/0295-5075/110/58003
http://dx.doi.org/10.1088/1742-5468/2013/04/P04019
http://dx.doi.org/10.1088/1742-5468/2013/04/P04019
http://dx.doi.org/10.1016/j.cpc.2012.02.021
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://www.qetlab.com
http://dx.doi.org/10.1016/j.cpc.2005.12.021
http://dx.doi.org/10.1016/j.cpc.2005.12.021
http://dx.doi.org/10.1103/Phys-RevE.82.036106
http://dx.doi.org/10.1002/wics.1314
http://dx.doi.org/10.1103/Phys-RevA.83.012327
http://dx.doi.org/10.1103/Phys-RevA.83.012327
http://dx.doi.org/10.1038/srep10262
http://dx.doi.org/10.1103/Phys-RevA.84.022305
http://dx.doi.org/10.1145/272991.272995
https://github.com/jonasmaziero/LibForQ-v1.git
http://arxiv.org/e-print/1512.05173v1
http://dx.doi.org/10.1007/s13538-015-0350-y
http://dx.doi.org/10.1007/s13538-015-0337-8
http://dx.doi.org/10.1007/s13538-015-0367-2
http://dx.doi.org/10.1016/j.cpc.2011.08.002
http://dx.doi.org/10.1016/j.cpc.2012.08.012
http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Maziero Generating Random Objects with Fortran

Nielsen, M. A., and Chuang, I. L. (2000). Quantum Computation and Quantum
Information. Cambridge: Cambridge University Press.

Perc, M., and Szolnoki, A. (2008). Social diversity and promotion of cooperation in
the spatial prisoner’s dilemma game. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
77, 011904. doi:10.1103/PhysRevE.77.011904

Petersen, W. P. (1994). Lagged Fibonacci series random number generators for the
NEC SX-3. Int. J. High Speed Comput. 6, 387. doi:10.1142/S0129053394000202

Pham, D. T., and Karaboga, D. (2000). Intelligent Optimisation Techniques: Genetic
Algorithms, Tabu Search, Simulated Annealing and Neural Networks. London:
Springer.

Rana, S., Parashar, P., and Lewenstein, M. (2016). Trace-distance measure of coher-
ence. Phys. Rev. A 93, 012110. doi:10.1103/PhysRevA.93.012110

Rios, L. M., and Sahinidis, N. V. (2013). Derivative-free optimization: a review of
algorithms and comparison of software implementations. J. Glob. Optim. 56,
1247. doi:10.1007/s10898-012-9951-y

Shang, J., Seah, Y.-L., Ng, H. K., Nott, D. J., and Englert, B.-G. (2015). Monte Carlo
sampling from the quantum state space. I. New J. Phys. 17, 043017. doi:10.1088/
1367-2630/17/4/043017

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van denDriessche, G., et al.
(2016). Mastering the game of go with deep neural networks and tree search.
Nature 529, 484. doi:10.1038/nature16961

Smith, N. A., and Tromble, R. W. (2004). Sampling Uniformly from the Unit Simplex.
Technical Report. Johns Hopkins University.

Szolnoki, A., and Perc, M. (2010). Reward and cooperation in the spatial public
goods game. EPL 92, 38003. doi:10.1209/0295-5075/92/38003

Szymanski, B. K. (2007). Fortran programming language and scientific program-
ming: 50 years of mutual growth. Sci. Program. 15, 1. doi:10.1155/2007/979872

Vedral, V., and Plenio, M. B. (1998). Entanglement measures and purification
procedures. Phys. Rev. A 57, 1619. doi:10.1103/PhysRevA.57.1619

Wallman, J. J., and Emerson, J. (2015). Noise tailoring for scalable quantum com-
putation via randomized compiling. arXiv:1512.01098.

Wilde, M. M. (2013). Quantum Information Theory. Cambridge: Cambridge
University Press.

Winter, A., and Yang, D. (2016). Operational resource theory of coherence.
arXiv:1506.07975.

Zyczkowski, K., Horodecki, P., Sanpera, A., and Lewenstein, M. (1998). Volume of
the set of separable states. Phys. Rev. A 58, 883. doi:10.1103/PhysRevA.58.883

Zyczkowski, K., andKus,M. (1994). Randomunitarymatrices. J. Phys. AMath. Gen.
27, 4235. doi:10.1088/0305-4470/27/12/028

Zyczkowski, K., and Kus, M. (1996). Interpolating ensembles of random unitary
matrices. Phys. Rev. E 53, 319. doi:10.1103/PhysRevE.53.319

Zyczkowski, K., Penson, K. A., Nechita, I., and Collins, B. (2011). Generating
random density matrices. J. Math. Phys. 52, 062201. doi:10.1063/1.3595693

Zyczkowski, K., and Sommers, H.-J. (2001). Induced measures in the space of
mixed quantum states. J. Phys. A Math. Gen. 34, 7111. doi:10.1088/0305-4470/
34/35/335

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2016 Maziero. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordancewith
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in ICT | www.frontiersin.org March 2016 | Volume 3 | Article 47

http://dx.doi.org/10.1103/PhysRevE.77.011904
http://dx.doi.org/10.1142/S0129053394000202
http://dx.doi.org/10.1103/PhysRevA.93.012110
http://dx.doi.org/10.1007/s10898-012-9951-y
http://dx.doi.org/10.1088/1367-2630/17/4/043017
http://dx.doi.org/10.1088/1367-2630/17/4/043017
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1209/0295-5075/92/38003
http://dx.doi.org/10.1155/2007/979872
http://dx.doi.org/10.1103/PhysRevA.57.1619
http://dx.doi.org/10.1103/PhysRevA.58.883
http://dx.doi.org/10.1088/0305-4470/27/12/028
http://dx.doi.org/10.1103/PhysRevE.53.319
http://dx.doi.org/10.1063/1.3595693
http://dx.doi.org/10.1088/0305-4470/34/35/335
http://dx.doi.org/10.1088/0305-4470/34/35/335
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

	Fortran Code for Generating Random Probability Vectors, Unitaries, and Quantum States
	1. Introduction
	2. Some Concepts and Definitions
	3. General Description of the Code
	4. Random Number Generator
	5. Random Probability Vector Generator
	6. Random Unitary Generator
	7. Random State Vector Generator
	8. Random Density Matrix Generator
	9. Concluding Remarks
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

