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Background: R3HDM1, an RNA binding protein with one R3H domain, remains
uncharacterized in terms of its association with tumor progression, malignant cell
regulation, and the tumor immune microenvironment. This paper aims to fill this
gap by analyzing the potential of R3HDM1 in diagnosis, prognosis, chemotherapy,
and immune function across various cancers.

Methods: Data was collected from the Firehost database (http://gdac.
broadinstitute.org) to obtain the TCGA pan-cancer queue containing tumor
and normal samples. Additional data on miRNA, TCPA, mutations, and clinical
information were gathered from the UCSC Xena database (https://xenabrowser.
net/datapages/). The mutation frequency and locus of R3HDM1 in the TCGA
database were examined using the cBioPortal. External validation through GEO
data was conducted to assess the differential expression of R3HDM1 in different
cancers. Protein expression levels were evaluated using the Clinical Proteomics
Tumor Analysis Alliance (CPTAC). The differential expression of R3HDM1 was
verified in lung adenocarcinoma cell lines and normal lung glandular epithelial
cells via RT-qPCR. Cell migration and proliferation experiments were conducted
by knocking down the expression of R3HDM1 in two lung adenocarcinoma cell
lines using small interfering RNA. The biological role of R3HDM1 in pan-cancer
was explored using the GSEA method. Multiple immune infiltration algorithms
from the TIMER2.0 database was employed to investigate the correlation
between R3HDM1 expression and the tumor immune microenvironment.
Validation of transcriptome immune infiltration was based on 140 single-cell
datasets from the TISCH database. The study also characterized a pan-cancer
survival profile and analyzed the differential expression of R3HDM1 in different
molecular subtypes. The relationship between R3HDM1 and drug resistance was
investigated using four chemotherapy data sources: CellMiner, GDSC, CTRP and
PRISM. The impact of chemicals on the expression of R3HDM1 was explored
through the CTD database.

Result: The study revealed differential expression of R3HDM1 in various tumors,
indicating its potential as an early diagnostic marker. Changes in somatic copy
number (SCNA) and DNA methylation were identified as factors contributing to
abnormal expression levels. Additionally, the study found that R3HDM1
expression is associated with clinical features, metabolic pathways, and
important pathways related to metastasis and the immune system. High
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expression of R3HDM1 was linked to poor prognosis across different tumors and
altered drug sensitivity. Furthermore, the expression of R3HDM1 showed significant
correlations with immune modulatory molecules and biomarkers of lymphocyte
subpopulation infiltration. Finally, the study highlighted four chemicals that could
influence the expression of R3HDM1.

Conclusion: Overall, this study proposes that R3HDM1 expression is a promising
biomarker for predicting the prognosis of cancer, especially lung adenocarcinoma,
and the efficacy of immunotherapy, demonstrating the rationale for further
exploration in the development of anti-tumor therapies.

KEYWORDS

R3HDM1, diagnosis, pan-cancer, prognosis, TME, LUAD

1 Introduction

Cancer encompasses a complex array of diseases that currently
pose a significant obstacle to global life expectancy. It primarily arises
from the progressive development of uncontrolled cell growth and
evasion of normal cell death, eventually spreading to adjacent organs
and tissues over time. According to the 2020 statistics from theWorld
Health Organization (WHO), cancer causes approximately ten
million deaths worldwide, with the number of cancer patients
remaining high and continuing to rise (Nassar and Blanpain,
2016). Given that cancer cells stem from normal cells,
conventional drug treatments not only target cancer cells but also
exhibit significant toxicity to non-cancerous cells in the body.
Therefore, there is an urgent need for novel cancer targeted
therapies that offer increased efficacy and reduced side effects
(Phillips et al., 2006; Hanahan and Weinberg, 2011).

R3HDM1, also known as an RNA-binding protein with an R3H
domain, has emerged as a pivotal focus in cancer research (Fukushi
et al., 2021). Despite being an uncharacterized protein, the role of
R3HDM1 in tumor progression, malignant cell regulation, and the
tumor immune microenvironment remains largely unexplored.
Understanding the significance of R3HDM1 in the context of
cancer could potentially offer new insights into its diagnostic,
prognostic, and immunotherapeutic value across a spectrum of
cancer types. This study aims to comprehensively investigate the
functional implications of R3HDM1 in cancer development and
progression. By collecting and analyzing data from various databases
and conducting vitro cellular experiments, this research seeks to
elucidate the association between R3HDM1 expression levels in
tumors and their clinical features, metabolic pathways, and immune
modulation. The findings from this study are expected to shed light on
how elevated R3HDM1 expression correlates with poor prognosis and
altered drug sensitivity in different cancer types. Furthermore,
exploring the relationship between R3HDM1 expression and
immune modulatory molecules as well as lymphocyte subpopulation
infiltration biomarkers could provide valuable insights into the role of
R3HDM1 in the tumor immune microenvironment. In vitro cellular
experiments were conducted to validate the differential expression of
R3HDM1 between lung adenocarcinoma cell lines and normal lung
glandular epithelial cells. Overall, this investigation aims to establish
R3HDM1 as a promising molecular marker for predicting cancer
patient outcomes and assessing the efficacy of immunotherapeutic
interventions, thereby contributing to the development of more
effective cancer treatments and potentially novel anti-tumor therapies.

2 Materials and methods

2.1 R3HDM1 multidisciplinary expression
analysis in pan-cancer

First, we detected the differences in R3HDM1 between tumor
and normal tissues in TCGA data. Then, we examined the
differences in R3HDM1 expression between tumor and normal
tissues in paired samples from TCGA cancer subgroups. Finally,
we expanded the sample size of normal tissues by combining the
data from TCGA and GTEx, and conducted differential analysis
using theWilcoxon test (*P < 0.05; ** P < 0.01; *** P < 0.001; **** P <
0.0001). The gene expression distribution in various organs was
visualized using the gganatogram package. We used the pROC
package to assess the potential role and significance of
R3HDM1 in pan-cancer diagnosis and validated protein
expression in external gene transcriptome levels in GEO database
and CPTAC data. Logistic regression was performed to further
validate the accuracy of theWilcoxon test in four cohorts. It is worth
noting that we conducted RT-qPCR experiments to verify the
differential expression of R3HDM1 in normal lung epithelial cell
line BEAS-2B and lung adenocarcinoma cell lines A549 and H1299.

2.2 Somatic copy-number alteration (SCNA),
mutation analysis and DNA
methylation analysis

We use the cBioPortal website for mutation-related analysis and
visualization, including the frequency of changes, mutation types,
CNA data, and gene mutation locations for all cancers (Cerami et al.,
2012). Somatic cell copy number alterations (SCNA) and mutation
can enhance the copy number changes of R3HDM1, with over 5%
considered high-frequency SCNA. We calculate the Spearman
correlation between the expression value and the copy number
segment value of R3HDM1 to evaluate the association between
SCNA and R3HDM1 expression. We use the Bioconductor R
package “IlluminaHumanMmethylation-450kanno.ilmn12. hg19”
to annotate methylation probes for R3HDM1 promoter. We test
the differential methylation of R3HDM1 in tumor and normal
samples using the Wilcoxon rank sum test and use a significance
cutoff value of 0.05 to identify genes with significantly low or high
methylation. We calculate the Spearman correlation between gene
transcription expression and promoter DNA methylation Beta
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values, considering it significant if the P-value is < 0.05 (Mei et al.,
2017; Zheng et al., 2019). Additionally, we calculate the Spearman
correlation between R3HDM1 and 10 genomic feature scores.

2.3 Analysis of immune cell infiltration and
assessment of the anti-cancer
immune response

Utilizing TCGA tumor data, we employed seven different
methods in TIMER2.0 to estimate the relationship between
R3HDM1 expression levels and infiltration levels in various cells
within the tumor immune microenvironment (Li T. et al., 2020). To
investigate the cell types expressing R3HDM1 in tumor tissues, we
performed in-depth single-cell analysis on 140 datasets from the
TISCH database and visualized the findings (Han et al., 2023).
Additionally, UMAP plots displaying the expression patterns of
R3HDM1 in NSCLC_GSE143423 and NSCLC_GSE148071 were
obtained from the TISCH database. Subsequently, visualizations
were conducted to explore the relationship between
R3HDM1 expression in different cells in NSCLC_GSE143423 and
NSCLC_GSE148071 and functional pathways. Analysis on the
impact of R3HDM1 expression levels on anti-cancer immune
status in 32 cancer types was then carried out using the Tumor
Immune Phenotype (TIP) database (http://biocc.hrbmu.edu.cn/
TIP), with scoring performed for each step (Xu et al., 2018).
Furthermore, the differences in immune activity scores between
the high and low R3HDM1 expression groups were calculated.
Visualization of the results was achieved using the R package
pHeatmap (v1.0.12).

2.4 Prediction of immunotherapy and
immune checkpoint inhibitor responses

We used the EaSIeR model and MeTIL scores to forecast the
responses to anti-tumor immune checkpoint inhibitors based on
RNA-seq data. EaSIeR is a predictive tool for biomarker-guided
immunotherapy, relying on a model rooted in cancer-specific
immune responses (Lapuente-Santana et al., 2021). MeTIL
scores indicate the infiltration levels of T cells, NK cells, B cells,
Tregs, and cytotoxic T lymphocyte (CTL) function (Jeschke
et al., 2017).

2.5 Analysis of pathways and functional
mechanisms of R3HDM1

We calculated the differential genes between the high-expression
group and the low-expression group of R3HDM1 in pan-cancer. If a
gene shows differential expression in more than five tumors, we
defined it as an R3HDM1-related gene and used the clusterProfiler
package for KEGG pathway enrichment analysis to identify the
conservative function or biological pathways participated by this
gene in pan-cancer (Wu et al., 2021). Research on complex diseases
such as cancer has shown that the activity levels of proteins, such as
expression and modification, have a significant impact on the
occurrence and development of diseases. Changes in protein

levels and structures have been proven to play a key role in
tumor development but are not reflected in genetic changes. We
used Spearman correlation analysis to identify the correlation
between R3HDM1 expression and protein content identified by
the RPPA method from the TCPA database (Li et al., 2017). The
Sankey diagram visualized the results with correlation coefficients
greater than 0.4 in all tumors. CancerSEA redefined 14 functional
states (Yuan et al., 2019). In addition, we collected 14 classic tumor-
related pathways from the KEGG database. We used the z-score
parameter in the GSVA R package to calculate the gene sets of the
14 functional states and conducted Pearson correlation analysis (Lee
et al., 2008). To determine the pathways associated with genes, we
divided the samples of each tumor type into two groups, including
the top 30% and the bottom 30%, and conducted gene set
enrichment analysis (GSEA) to explore the gene set activation or
inhibition in the high-expression group compared to the low-
expression group in different tumors (Subramanian et al., 2005).
Finally, to determine the protein-protein interactions associated
with genes, we used the ComPPI database to filter out
interactions with non-co-localized subcellular localization,
introduced localization scores and interaction scores, and
ultimately obtained the proteins that interact with genes (Veres
et al., 2015).

2.6 Identification of chemical substances
interacting with R3HDM1

We utilized the GSCALite database (http://bioinfo.life.hust.
edu.cn/web/GSCALite/) to analyze gene expression and drug
sensitivity (Liu et al., 2023). GSCALite provides 750 small
molecule drugs from GDSC and CTRP, and explores valuable
small molecule drugs related to gene expression data. In addition,
the National Cancer Institute (NCI) has established the cancer cell
line platform, which has been widely used for drug screening based
on relevant gene expression. NCI-60 is a collection of 60 human
cancer cell lines from nine different cancer types. The NCI-60
expression data comes from CellMiner, and we analyzed the
relationship between R3HDM1 expression and drug sensitivity
z-scores and calculated Spearman correlation coefficients
(Reinhold et al., 2023). Furthermore, we identified the
differential expression of genes in different cancer types, and
collected 150 most upregulated or downregulated genes as gene-
related markers. The CMAP_gene_signatures.RData file contains
1,288 compound-related features, downloaded from the database

TABLE 1 List of siRNAs.

Primer Sequence (5′to 3′)

NC UUCUCCGAACGUGUCACGUTT

GAPDH TCTTCCTCTTGTGCTCTTG

R3HDM1-1 CGCCAGAUAUUUAGAGUUAAU

R3HDM1-2 UGGGAAGUCUGUCAUAGUAAA

R3HDM1-3 AGACUUUCAGAAACGUUAUAU

R3HDM1-4 GAGAGCCAGAGACCGAAUAUU
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website (https://www.pmgenomics.ca/bhklab/sites/default/files/
downloads) and used for calculating matching scores (Malta
et al., 2018). The analysis process followed the methods
outlined in previous publications, and the results for 32 cancer
types were summarized and graphically presented using the R
language (Yang et al., 2022).

2.7 Survival and clinical features analysis of
R3HDM1 in pan-cancer

Survival data was retrieved from the TCGA database, and
the “survival” and “survminer” R packages were used to analyze
the correlation between gene expression and prognostic indicators
[including overall survival (OS), disease-specific survival (DSS),
progression-free interval (PFI), and disease-free interval (DFI)].
We combined two methods, Kaplan-Meier and univariate
Cox analysis, to comprehensively determine whether the gene
is a risk factor or protective factor, and ultimately created a
gene survival map. It is worth noting that when using the
Kaplan-Meier method for survival analysis, the best cutoff
values for high and low expression queues of R3HDM1 were
determined using the R package “survminer,” and the survfit
function was used to perform a log rank test to evaluate the
significance of high and low expression groups of the gene. In
addition, the “forestplot” package was used to visualize the
results of Cox analysis of survival data. Furthermore, we used
the Wilcoxon rank-sum test and Kruskal–Wallis Rank Sum
Test to detect gene expression in different stages and
molecular subtypes.

2.8 Construction of cell lines expressing
R3HDM1 siRNA

H1299 and A549 cells were acquired from Wuhan Sevilla
Biotechnology Company, while BEAS-2B cells were obtained
from Hunan Prattze Biotechnology Company. The cells were
cultured in a CO2 incubator maintained at 37°C with a 5%
CO2 atmosphere. Sterile distilled water, sterilized under high-
temperature and high-pressure conditions, was regularly
replaced in the incubator to maintain appropriate humidity
levels. The targeting sequences of R3HDM1 siRNA and the
sequence of the negative control siRNA can be found in
Table 1. H1299 and A549 cells were seeded into separate
culture dishes and transfected when the cell density reached
60%, with mRNA expression levels evaluated after 24 h of
standard cultivation.

2.9 RT-PCR and RT-qPCR

RNA was extracted utilizing the TRIzol reagent (Invitrogen Life
Technologies; Carlsbad, CA, United States), followed by treating
RNA samples with the gDNA remover reagent (GenStar) according
to the manufacturer’s protocol to eliminate genomic DNA.
Subsequently, cDNA synthesis was performed using the RT-
Phusion kit (Thermo Fisher Scientific; Waltham, MA,
United States). Gene-specific mRNA levels were quantified
through standard and quantitative RT-PCR (RT-qPCR)
techniques, employing the ΔΔCt method. The primer sequences
are available in Table 2.

2.10 Detection of cell migration and
proliferation

After transfecting A549 and H1299 cells, they were individually
seeded into six-well plates. Once reaching approximately 90%
confluency, vertical scratch wounds were created using a 200 μL
pipette tip. The scratches were photographed every 12 h, and the
migration rate was analyzed using ImageJ software. Suspensions of
transfected A549 and H1299 cells were prepared for cell counting
purposes. Each well of a 96-well plate was seeded with 1 × 10̂4 cells.
Subsequently, after cell adhesion, the absorbance at 450 nm was
measured every 24 h upon the addition of CCK-8 reagent to
calculate the proliferation rate between the negative control
group and the treatment group.

3 Results

3.1 Expression of R3HDM1 in pan-cancer

By combining and mining the resources of TCGA and GTEx
databases, we obtained the mRNA expression levels of
R3HDM1 from a pan-cancer perspective. Firstly, compared to
normal tissues in the TCGA database, we observed significantly
higher expression of R3HDM1 in most cancer tissues, including
breast cancer (BRCA), Colon adenocarcinoma (COAD), Esophageal
carcinoma (ESCA), Head and Neck squamous cell carcinoma
(HNSC), Liver hepatocellular carcinoma (LIHC), Lung
adenocarcinoma (LUAD), Lung squamous cell carcinoma
(LUSC), Pheochromocytoma and Paraganglioma (PCPG),
Rectum adenocarcinoma (READ), Stomach adenocarcinoma
(STAD), and Uterine Corpus Endometrial Carcinoma (UCEC),
among which the differential expression level in lung
adenocarcinoma is significantly significant (Figure 1A).
Significant differences in expression levels of LUAD were also
observed in paired tissues (Figure 1B). Due to the limited
number of normal samples in the TCGA data, we combined the
GTEx database to further expand the sample size, and obtained
consistent results. The significance of the differential expression
level in lung adenocarcinoma has not changed (Figure 1C).

Next, we visualize the expression distribution pattern of
R3HDM1 using organ graphs (Figure 2A). It is evident that,
except for the testis, thyroid, brain, and kidney, cancer tissues
show significantly higher expression of R3HDM1 compared to

TABLE 2 List of primer.

Primer Sequence (5′to 3′)

GAPDH-F GGCTCTCCAGAACATCATC

GAPDH-R TCTTCCTCTTGTGCTCTTG

R3HDM1-F GCAGCACAGATTCAGACA

R3HDM1-R ACCAGAAGACTCAGAACCT

Frontiers in Genetics frontiersin.org04

Liu et al. 10.3389/fgene.2024.1404348

https://www.pmgenomics.ca/bhklab/sites/default/files/downloads
https://www.pmgenomics.ca/bhklab/sites/default/files/downloads
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1404348


FIGURE 1
mRNA expression levels of R3HDM1 in human normal and tumor tissues. (A)mRNA expression levels of R3HDM1 in normal and cancer tissues using
data from the TCGA database. (B) mRNA expression levels of R3HDM1 in paired tissues using data from the TCGA database. (C) The expression level of
R3HDM1 in different tumor tissues and corresponding normal tissues from TCGA and GTEx datasets. (D) External validation of protein levels was
performed using a CPTAC database. The symbols *, **, and *** indicate P < 0.05, P < 0.01, P < 0.001, respectively.
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FIGURE 2
mRNA expression levels of R3HDM1. (A) Expression and distribution of R3HDM1 in various organs. (B) External validation of mRNA levels was
performed using GEO database. (C) Logistic regression analysis of TCGA, TCGA-GTEx. Red means OR is greater than 1, blue represents an OR value
between 0 and 1. A white circle means that there is no significance, and an empty value means that no relevant data set has been collected in the current
database. Tumor tissues are represented by red, while normal tissues are represented by blue.
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FIGURE 3
Genetic Alterations of R3HDM1 in cancers. (A) Radar map visualization of spearman correlation coefficients of R3HDM1 and 10 genomic features.
Statistical significance was reported at *P< 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. (B) Sites and number of cases with R3HDM1 genetic alterations
in pan-cancer from cBioPortal. (C) Frequency of R3HDM1 mutations in different tumor types. (D) Relationship between R3HDM1 mRNA expression and
genetic alterations. (E) Histogram shows the frequency of somatic copy number alterations for R3HDM1 in each cancer type. (F) The Spearman’s
correlation between somatic copynumber alterations and the expressionof R3HDM1. (G)Heatmap shows the differentialmethylation of R3HDM1 in cancers;
hypermethylated and hypomethylated R3HDM1 are marked in red and blue, respectively (Wilcoxon rank-sum test). (H) Spearman’s correlation of
R3HDM1 between transcriptional expression and promoter methylation. Red and blue represent positive and negative correlations, respectively. (I) Top
20 factors are showed in this plot. Y-axis represents the RP score. X-axis represents different factors. Dots in a x-axis line means same factor.
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normal tissues in other organs, with lung cancer tissues still
exhibiting significantly higher expression than normal lung tissue.
We found differential expression of R3HDM1 in most types of
cancer, and consistent expression patterns across cancer types, with
a universal significant upregulation. External validation of mRNA
levels was conducted using the GEO database (Figure 2B) and
protein levels using the CPTAC database (Figure 1D). Logistic
regression analysis based on TCGA, TCGA-GTEx, GEO, and
CPTAC datasets fully verified the above results, with good
consistency in expression trends across different omics and
databases (Figure 2C). The results related to LUAD further
confirm the presence of R3HDM1 as a risk factor, warranting
further research. In fact, after expanding the sample size of
normal tissues by combining the GTEx database, the estimated
ROC curve indicates that R3HDM1 demonstrates satisfactory
sensitivity and specificity in the diagnosis of 17 cancer types
(area under the curve >0.7, Supplementary Figures 1, 2). The
reproducibility and consistency of these results have been
demonstrated across multiple databases, tumor types, various
methods, and omics analyses, suggesting that the dysregulation of
R3HDM1 expression may be involved in different cancers and is
unlikely to be attributed to technical artifacts, randomness, or biases
in sample identification standards within databases.

3.2 Genetic variants of R3HDM1 in cancer

We obtained genomic data of tumors and normal tissues from the
TCGA Pan-Cancer dataset, including genetic variations, somatic copy
number alterations (SCNA), mRNA expression, and DNA
methylation data. It is worth noting that Figure 3A shows the
correlation between R3HDM1 and ten genomic features scores, so
we further calculated the relationship between R3HDM1 and different
mutation scores, especially the importance of SNV Neoantigens,
TMB, and MSI as important biomarkers for immunotherapy. The
high SNV Neoantigens score of R3HDM1 expression is positively
correlated with Adrenocortical carcinoma (ACC), Bladder Urothelial
Carcinoma (BLCA), BRCA, HNSC, Kidney renal papillary cell
carcinoma (KIRP), LUSC, LUAD, Prostate adenocarcinoma
(PRAD), and Thymoma (THYM). Similarly, the expression of
R3HDM1 is positively correlated with high TMB scores in ACC,
BLCA, BRCA, HNSC, KIRP, LUSC, LUAD, PRAD, THYM, and
STAD. Additionally, the high MSI scores in Lymphoid Neoplasm
Diffuse Large B-cell Lymphoma (DLBC), HNSC, Mesothelioma
(MESO), KIRP, LUSC, Thyroid carcinoma (THCA), Rectum
adenocarcinoma (READ), Skin Cutaneous Melanoma (SKCM),
and STAD are positively correlated with R3HDM1 expression.
Simultaneously, R3HDM1 expression is significantly positively
correlated with the high score of LUAD in eight scoring methods,
indicating that R3HDM1 can be used as a predictive marker for the
effectiveness of immunotherapy in LUAD. Figure 3B depicts the 2D
structure of the R3HDM1mutation site. Analysis using the cBioPortal
database, we found that R3HDM1 exhibits certain genetic alteration
frequencies in most cancers, with amplification and mutation being
the most common types of genetic alterations (Figure 3C). The
mutation frequencies of R3HDM1 are different in different
cancers, with the highest mutation frequencies in melanoma,
endometrial cancer, prostate cancer, bladder cancer, esophageal

gastric cancer, and non-small cell lung cancer. The mutation
patterns of R3HDM1 vary in different tumors, predominantly
mutations in most tumors, but copy number loss is predominant
in prostate cancer and thymic epithelial tumors. At the same time, a
significant increase in R3HDM1 expression with the progression of
SCNA from copy number loss to amplification (Figure 3D). Clearly,
SCNA played a crucial role in regulating gene expression in cancer.
We next found SCNA occurs at a high frequency (exceeding 5% of all
samples) in most cancer types, with very low frequencies only in
THCA and THYM (Figure 3E). Next, we evaluated the impact of
SCNA on R3HDM1 expression, and gained the Spearman correlation
between R3HDM1 expression and copy number across different
cancers in TCGA (Figure 3F). The results indicate a significant
positive correlation between R3HDM1 expression and SCNA in
most tumors. To further study the genetic alterations of
R3HDM1 in pan-cancer, we examined the percentage of SCNA.
Then, we observed diverse methylation patterns of R3HDM1 in
the pan-cancer dataset (Figure 3G), with lower methylation in
tumor tissues compared to normal tissues in HNSC, LUAD, and
READ, while highermethylation levels were observed in tumor tissues
in Sarcoma (SARC), Pancreatic adenocarcinoma (PAAD), Esophageal
carcinoma (ESCA), and COAD. After all, we obtained a negative
correlation between the expression of R3HDM1 and DNA
methylation (Figure 3H). In addition, we showed that the top
three transcription factors with the highest RP scores are ZNF350,
NOTCH1, and H2AZ (Wang et al., 2013) (Figure 3I).

3.3 The correlation between R3HDM1 and
immune microenvirnoment in cancer

The interaction between tumor cells and the tumor
microenvironment is crucial for tumor development,
progression, metastasis, and treatment response. Analysis of
the correlation between R3HDM1 expression and immune
infiltration levels in TCGA tumor profiles using seven different
algorithms revealed a significant positive association of
R3HDM1 expression with B cells, CD4+T cells, CD8+T cells,
and Treg cells in nearly all cancer types. This suggests that
R3HDM1 plays a role in immune rejection or immune silence,
highlighting its critical involvement in the interactions between
the immune system and tumors, especially in immune evasion
(Figure 4A). To further study the cell types expressing
R3HDM1 in tumor tissues, we analyzed single-cell expression
levels of R3HDM1 (Supplementary Figure 7), finding widespread
expression in various immune and malignant cells. For instance,
UMAP plots and heat maps demonstrate a significant positive
correlation of R3HDM1 expression with CD8+T cells and
proliferative T cells (T-prolif) in non-small cell lung cancer
(NSCLC_GSE143423 and NSCLC_GSE148071), indicating its
significant role in cellular proliferation, cell death, and
mitochondrial energy metabolism pathways (Figures 4B, C).
Additionally, R3HDM1 demonstrates a reverse expression
pattern between T-prolif and exhausted CD8+T cells in
multiple cancer tissues, suggesting its potential regulatory role
in T cell function (Supplementary Figure 7).

Given the regulatory role of R3HDM1 expression levels in the
immune response and immune cell infiltration across various
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FIGURE 4
High R3HDM1 expression correlates with immune infiltration genes and immunotherapy in cancer. (A) Seven software were used to evaluate the
correlation between R3HDM1 expression and cancer immune. (B)Correlation between R3HDM1 expression and expression of different cell subsets in the
GSE143423 dataset. (C)Correlation between R3HDM1 expression and expression of different cell subsets in the GSE148071 dataset. (D) The difference of
TIP scores between high and low expression groups of R3HDM1 was calculated. (E) Prediction of immune therapy response and ROC-AUC value in
unresponsive patients with pan cancer R3HDM1 expression. (F) Differences in five scoring methods in the high and low expression groups of R3HDM1.
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FIGURE 5
Association between gene and pathways in cancer. (A) Enrichment differences of R3HDM1 in 50HALLMARK and 85metabolism gene sets. NES is the
normalized enrichment score in theGSEA algorithm. (B)R3HDM1 expressionwas highly correlatedwith 28malignant features of the LUAD. (C)Obtain the
interaction information of R3HDM1, in which the color of the line corresponds to the data source, and the length of the line corresponds to the interaction
score. (D) The enrichment analysis results for R3HDM1 in LUAD are presented in the figure. The bar on the right illustrates the enrichment of highly
expressed genes, whereas the bar on the left depicts the opposite scenario. (E) Sankey’s picture clearly shows the proteins associated with R3HDM1 in the
TCPA database.
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human cancers from our previous analyses, we proceeded to
investigate the predictive role of R3HDM1 in cancer
immunotherapy. To assess this, we downloaded data from the
TIP database and evaluated the activity scores of the cancer
immunity cycle using the GSVA algorithm, discovering a positive
correlation between high R3HDM1 expression and the release of
cancer cell antigens (step 1), recruitment of Th1 cells (step 4), and
T cell recognition of cancer cells (step 6). However, in most cancer
types, a negative correlation was observed between high
R3HDM1 levels and the recruitment of CD4+T cells (step 4),
recruitment of CD8+T cells (step 4), and immune cell infiltration
into tumors (step 5), further indicating the immunosuppressive role
of R3HDM1 in the TME (Figure 4D).

Subsequently, from a pan-cancer perspective on the response to
immunotherapy, we visualized the predictive capability of
R3HDM1 for predicting responders and non-responders to pan-
cancer immunotherapy (Figure 4E). We found varied predictive
performance of R3HDM1 across different datasets, with the best
performance observed for Melanoma and good performance for
RCC, NSCLC, LGG, and GBM. Finally, we used MeTIL scores, CYT
scores, IFN-γ scores, Tcell_inflamed scores, and Chemokines scores
to predict the response of LUAD patients receiving immune
checkpoint inhibitor (ICB) therapy in the LUAD patient dataset.
We observed that LUAD patients with high R3HDM1 expression
exhibited a significantly favorable response to ICB therapy,
indicating the effective predictive ability of R3HDM1 for the
response rate of LUAD patients to immune therapy (Figure 4F).

3.4 The relationship between
R3HDM1 and pathways

To further understand the impact of R3HDM1 on the prognosis of
cancer patients, especially LUAD, we conducted Gene Set Enrichment
Analysis (GSEA). Firstly, we examined the differentially expressed
genes between high and low R3HDM1 patients in each cancer type.
The result shows that in the high R3HDM1 expression group of almost
all cancer types, cell proliferation-related signaling pathways (including
MYC, mTORC1, spindle, G2M, and E2F pathways) are significantly
enriched (Figure 5A). This finding corroborates previous findings of
sustained high expression of R3HDM1 inmalignant cells, indicating its
crucial role in tumor cell proliferation. Furthermore, in BLCA, KICH,
KIRC, KIRP, LUAD, SKCM, and MESO patients, high expression of
R3HDM1 is positively correlated with epithelial-to-mesenchymal
transition (EMT). This correlation may explain why patients with
high levels of R3HDM1 in SKCM cancer type are prone to distant
metastasis. Interestingly, the enrichment of the EMT pathway is not
significant in patients with high levels of R3HDM1 in THCA and
TGCT, which is consistent with the analysis of staging status in these
two types of cancer, where the expression levels of R3HDM1 in stages I
and II are significantly higher than in stages III and IV (Supplementary
Figure 5). In addition, the heatmap also highlights differential
enrichment of immune-related pathways, such as interferon (IFN)-
γ, IFN-α, inflammation, IL-6, IL-12, complement, and allograft
rejection pathways (Figure 5A). These pathways are negatively
enriched in most cancer patients with high R3HDM1 expression
levels, including CESC, DLBC, ESCA, GBM, HNSC, LAML, LGG,
LUSC,MESO,OV, PCPG, SARC, andUCS. These findings suggest that

R3HDM1 may be involved in inhibiting the anti-tumor immune
response in these cancers. It is worth noting that, for LUAD
patients, high levels of R3HDM1 are also associated with immune
response, IL-6, IL-12, and complement pathways, albeit to a moderate
degree. In summary, these results strongly indicate that the elevated
levels of R3HDM1 are closely associated with increased proliferation,
EMT, and immune suppression in human cancers. Additionally, we
analyzed the relationship between the scores of 14 cancer-related
pathways in LUAD and R3HDM1 (Figure 5B). Obviously, the
scores related to the cell cycle are higher and positively correlated
than other scores, which further confirms the sustained expression of
R3HDM1 in malignant cells, indicating its involvement in tumor cell
proliferation. Moreover, using comPPI, helped us identify the related
genes that may interact with R3HDM1 and represented the interaction
sites with different colored lines, suggesting that R3HDM1 plays a wide
range of roles through the networks (Figure 5C). At the same time, we
found in the high R3HDM1 expression group of LUAD, pathways
related to the cell cycle, cell proliferation (including MYC, mTORC1,
spindle, G2M, and E2F pathways), and epithelial-mesenchymal
transition (EMT) were significantly enriched (Figure 5D). This
finding provides additional evidence that R3HDM1 is consistently
highly expressed in malignant LUAD cells, and is strongly associated
with tumor progression, proliferation, and metastasis. Meanwhile, we
investigated proteins in the TCPA database with a correlation of over
0.35 with R3HDM1 and visualized them. We found a positive
correlation between the expression levels of R3HDM1 and various
functional proteins in LUAD (Figure 5E). Specifically, the expression of
R3HDM1 in LUAD is positively correlated with the functional proteins
TFRC, MTOR_pS2448, and X4EBP1, which are known to be involved
in key cellular processes such as metabolism, apoptosis, signaling, cell
cycle regulation, and proliferation.

3.5 The association between R3HDM1 and
chemotherapy

In the chemotherapeutic analysis, we investigated the potential
correlation between drug sensitivity and R3HDM1 expression
using four different databases (Figures 6A–E) It illustrate a
substantial negative correlation between the sensitivity AUC and
IC50 of numerous drugs across the CTRP, PRISM, and GDSC
databases. This suggests that elevated R3HDM1 expression renders
cells highly responsive to a wide array of drugs. Conversely, in the
Cellminer database, R3HDM1 showed a significant positive
correlation with the z scores of all drugs. Clearly,
R3HDM1 emerges as a potential chemosensitive gene. To
explore potential therapeutic strategies that can inhibit the
tumor-promoting effects mediated by R3HDM1, we conducted
CMap analysis. We constructed a set of R3HDM1-related gene
signature, comprising the top 150 upregulated and
150 downregulated genes, determined by comparing patients
with high and low gene expression within each cancer type.
Utilizing the optimal feature matching method XSum (eXtreme
Sum), we compared the gene-related features with CMap gene
features, resulting in similarity scores for 1,288 compounds.
From the result, fasudil, imatinib, NU1025, and 4,5-
Dianilinophthalimide exhibited significantly lower scores across
most cancer types, suggesting their potential to inhibit R3HDM1-
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mediated oncogenic effects (Figure 6F). Surprisingly, previous
studies have demonstrated the anti-tumor effects of fasudil,
imatinib, and 4,5-Dianilinophthalimide. These findings substantiate
the validity of our predictive outcomes, although further research is
warranted to elucidate the underlying mechanisms.

3.6 Clinical relevance of R3HDM1

The study explored the clinical relevance of R3HDM1 in cancer by
analyzing its role in cancer survival. Survival analysis across various

cancer types revealed a consistent association of R3HDM1with multiple
survival periods, primarily as a risk factor for various cancers, notably in
LUAD.While R3HDM1 typically acts as a risk factor at different survival
stages in most tumors, exceptions exist where it serves as a protective
factor; for instance, higher R3HDM1 expression is linked to better
survival rates in LGG, THYM, and similar conditions. These results
underscore the diverse role of R3HDM1 in different cancers, highlighting
the need for further investigation into its functional significance in cancer
survival. Clustering results (Figure 7A) underscored R3HDM1’s
prognostic value for 11 tumor types, including ACC, BRCA, KICH,
KIRC, KIRP, LUAD, MESO, THCA, UCEC, LIHC, and UVM.

FIGURE 6
Analysis of Treatment and Drug Resistance. (A–E) Drug sensitivity analysis based on R3HDM1 expression using the four different databases
Cellminer, CTRP, GDSC, and PRISM. P < 0.05 was considered statistically significant. GSCA provides a bubble plot to summarize the correlations between
inputted genes and drugs. Only when a gene associated with at least one drug will be obtained. Also, only when a drug associated with at least one gene
will be obtained. Blue bubbles represent negative correlations, red bubbles represent positive correlations, the deeper of color, the higher of the
correlation. Bubble size is positively correlated with the FDR significance. The black outline border indicates FDR ≤ 0.05. Note that GSCA only draws plot
for the top 30 ranked drugs. The drugs are ranked by the integrated level of correlation coefficient and FDR of searched genes. In detail, firstly, drug-gene
pairs with an absolute correlation coefficient > 0.1 and FDR< 0.05 were remained. The −log10FDR and the absolute value of the correlation coefficient
were then multiplied to calculate a score for each gene-drug pair. Finally, the sum of the scores was calculated for each drug. The top 30 drugs with the
highest scores are presented in the figure. The genes in the plot are ranked in the same way. (F) Prediction of potential compounds targeting R3HDM1.
Visualized the top5 candidate compounds, based on connectivity map analysis of 32 cancer.
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Moreover, forest plots and Kaplan-Meier curves (Supplementary Figures
3, 4) presented the Cox survival rate analysis and log-rank test outcomes
across various cancers. We conducted further investigation into the
correlation between R3HDM1 expression and tumor staging, revealing

its association with multiple tumor stages (Supplementary Figure 5),
implying a link between R3HDM1 and the progression of these tumors.
Notably, R3HDM1 displayed variations across various molecular
subtypes in different cancers (Supplementary Figure 6). For instance,

FIGURE 7
Clinical Relevance of R3HDM1. (A) Heatmap showing the correlation between R3HDM1 expression levels and four curated survival outcomes. Red
boxes represent a risk factor, green boxes represent a protective factor, white boxes represent the analyses are not significant, and gray boxes represent
the data are not available. (B) Relative mRNA expression in cell lines. (C)Determination of knockdown efficiency of R3HDM1 in H1299. *P < 0.05; n = 3 (D)
Determination of knockdown efficiency of R3HDM1 in A549. *P < 0.05; n = 3 (E) The effect of knocking down R3HDM1 on the migration of lung
adenocarcinoma cells. *P < 0.05; n = 3 (F) The effect of knocking down R3HDM1 on the proliferation of lung adenocarcinoma cells. *P < 0.05; n = 3.
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it exhibited the lowest expression in the LumA subtype of BRCA, higher
expression in the Basal subtype, and significantly higher expression in
Triple-Negative Breast Cancer (TNBC). In LUSC, its expression was
lowest in the Basal subtype and highest in the Primitive subtype. The
expression across different subtypes in LUAD varied significantly. These
findings underscore the precision molecular stratification, therapeutic
implications, and prognostic value of R3HDM1 in diverse cancers. At
last, the normalized RT-qPCR results show substantial variations in
R3HDM1 expression levels between normal lung glandular epithelial
cells and lung adenocarcinoma cells (Figure 7B). We assessed the
efficiency of R3HDM1 knockdown in A549 and H1299 cells post
transfection with small interfering RNA (siRNA) using RT-qPCR.
The results indicated significant transfection efficiencies for all four
siRNA sequences, with siRNA1 and siRNA3 showing the most effective
knockdown efficiency (P < 0.05) (Figures 7C, D). Subsequently,
siRNA1 and siRNA3 were selected for further cellular experiments.
Following this, we conducted cell scratch and CCK8 cell viability assays
to examine the impact of R3HDM1 knockdown on the migration and
proliferation abilities of A549 and H1299 cells. The results demonstrated
a significant decrease in migration ability in cell lines with
R3HDM1 knockdown compared to the negative control group (P <
0.05) (Figure 7E). Furthermore, after 24 h of R3HDM1 knockdown
expression, the proliferation capabilities in the treatment group exhibited
a significant decrease compared to the negative control group (P <
0.0001). The experimental findings are in line with the aforementioned
prognosis analysis (Figure 7A) and GSEA results (Figure 5A). In
conclusion, our study highlights the significant role of R3HDM1 in
the development and progression of lung adenocarcinoma.

4 Discussion

R3HDM1 is an uncharacterized RNA-binding protein containing
an R3H domain. Previous studies have suggested R3HDM1 as a
potential candidate oncogene (Tuupanen et al., 2014). Additionally,
ARPP21 (also known as R3HDM3), belonging to the same protein
family as R3HDM1, has been implicated as a potential key oncogene
in tumors (Fukushi et al., 2021; He et al., 2021). Research has shown
that ARPP21 can interact withmutant p53, leading to the inhibition of
miR-128-2 targeting E2F5 protein, thereby enhancing the impact of
mutant p53 on tumorigenesis, progression, and chemoresistance (He
et al., 2021; Donzelli et al., 2012). However, the relationship between
R3HDM1 of the same protein family and cancer remains unexplored.

This study, for the first time, comprehensively elucidated the
dysregulated expression of R3HDM1 in pan-cancer using diverse
tools, suggesting its potential as a diagnostic biomarker across
multiple cancers. Additionally, it systematically analyzed the
relationship between R3HDM1 expression and clinical outcomes
in pan-cancer, identified potential drugs and small molecules
targeting R3HDM1 from various dimensions, delineated cell
populations expressing R3HDM1 at high resolution through
extensive single-cell datasets, characterized R3HDM1-mediated
pathways and metabolic disruptions, identified transcription
factors regulating its expression through chip-seq analysis,
associated R3HDM1 expression with various molecular subtypes,
highlighting the potential for stratified precision therapy and
exploring its underlying mechanisms. Our findings indicated
upregulated R3HDM1 expression in most tumors, including

LUAD (Figure 2C). Moreover, significantly increased protein
expression of R3HDM1 was noted in LUAD (Figure 2C). The
study also revealed correlations between R3HDM1 expression
and pathological staging in LUAD, ESCA, LIHC, PAAD, SKCM,
and THCA (Supplementary Figure 5). Overall, these results strongly
suggest that R3HDM1 may exhibit specific or contrasting functions
across different tumor types, particularly in LUAD.

To further elucidate the functionality of R3HDM1 in various
types of tumors, this study investigated the correlation between
R3HDM1 expression and patient prognosis. It was observed that the
expression levels of R3HDM1 were significantly correlated with the
prognosis of 19 types of cancer when analyzing the prognostic
predictive abilities using Overall Survival (OS), Disease-Specific
Survival (DSS), Disease-Free Interval (DFI), and Progression-Free
Interval (PFI) (Supplementary Figures 3A–D). High expression of
R3HDM1 was identified as a risk factor for the occurrence and
progression of tumors, particularly in six types of cancers (ACC,
LUAD, MESO, UCEC, THCA, and KIRP). Additionally, the
association between R3HDM1 expression levels and clinical
characteristics in different types of cancers was evaluated.
Consistent with the survival analysis results, R3HDM1 expression
was correlated with staging in eight tumors, including LUAD,
implying its involvement in the progression of these tumors
(Supplementary Figure 5). The higher expression of R3HDM1 in
the metastatic group in melanoma further indicates its role in tumor
metastasis. Interestingly, differences in R3HDM1 expression were
found across various molecular subtypes of 17 cancers, including
LUAD, suggesting its involvement in tumor progression and its
potential for precise molecular stratification therapy and predictive
value (Supplementary Figure 6). These findings were further
supported by the results of Gene Set Enrichment Analysis
(GSEA) (Figure 5A). In summary, these results confirm that the
expression levels of R3HDM1 can serve as a reliable biomarker for
predicting the prognosis of patients with tumors, including LUAD.

Ten scoring methods correspond to reliable biomarkers for the
prognosis of various cancers, serving as predictive factors for the
effectiveness of many tumor immunotherapies, particularly TMB,
MSI, and SNV neoantigens (Darragh et al., 2018; Chen et al., 1992;
Capietto et al., 2022). Tumors with high TMB scores, high MSI
scores, and high SNV neoantigens scores demonstrate better
responses to immunotherapy (Reck et al., 2019; Repáraz et al.,
2022; Chang et al., 2018; Li K. et al., 2020). Interestingly, the
expression of R3HDM1 in KIRP, HNSC, and LUSC positively
correlates with SNV neoantigens, TMB, and MSI (Figure 3A).
Therefore, we speculate that high R3HDM1 expression in KIRP,
HNSC, and LUSC may lead to greater survival benefits post-
immunotherapy, suggesting R3HDM1 as a potential novel drug
target for anticancer immunotherapy.

The tumor microenvironment (TME) comprises diverse cells
and serves as the locale for tumor cell, invasive immune cell, and
stromal cell accumulation (Wu and Dai, 2017). In recent years,
advancements in immunotherapy have unveiled the significant
association between immune cell infiltration and tumor initiation,
progression, and treatment (Wu and Dai, 2017; Sadeghi Rad et al.,
2021). Consequently, exploring the link between R3HDM1 and
immunity is imperative. Our findings unveil the multifaceted
involvement of R3HDM1 in immune microenvironment
remodeling across distinct tumors. Remarkably, we observed a
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significant positive correlation between R3HDM1 expression and
B cells, CD4+T cells, CD8+T cells, and Treg cells in nearly all cancer
types, hinting at R3HDM1’s partial participation in immune evasion
or immune tolerance, pivotal in immune-tumor interplay, notably
immune escape. Analyses of immune regulatory function revealed
associations between R3HDM1 expression and diverse tumor
immune scores, indicating a potential role for R3HDM1 in
modulating the tumor microenvironment. Subsequent scrutiny
unveiled a positive correlation between R3HDM1 expression and
Th2 and TFH cell infiltration, while displaying inverse relationships
with central and effector memory CD4+T and NKT cells
(Figure 4A). Th2 cells, recognized for their tumor-promoting and
immunosuppressive functions, were notably highlighted (Liu et al.,
2019; Frafjord et al., 2021). Conversely, CD4+T cells and NKT cells,
pivotal in tumor eradication, showcased reduced infiltration in high
R3HDM1 tumors, fostering an immunosuppressive tumor
backdrop (Liu et al., 2021; Borst et al., 2018). Furthermore, we
assessed the anti-cancer immune status across the seven stages of the
cancer immune cycle (Figure 4D). Notably, in most cancer types,
heightened R3HDM1 levels exhibited a negative correlation with
immune cell infiltration within tumors and antigen-presenting
molecule expression, contrasting with a positive correlation
observed with various immune negative regulatory molecules.
These observations align with the results from Gene Set
Enrichment Analysis (GSEA), endorsing R3HDM1’s role in
mediating immune suppression and impacting the efficacy of
immunotherapy within the tumor microenvironment. Analyzing
an extensive corpus of single-cell data revealed that
R3HDM1 exhibits high expression levels in malignant cells and
T-related cells (Supplementary Figure 7). These findings underscore
the close association between R3HDM1 expression and immune cell
infiltration in tumors, influencing tumor onset, progression, and
patient prognosis, thus offering novel targets for
immunosuppressant development.

5 Conclusion

Multi omics studies have elucidated the dysregulation of
R3HDM1 expression in pan cancer, which is a potential
diagnostic marker for pan cancer and has been confirmed in
lung adenocarcinoma cell lines. Elaborated on the pathways and
metabolic disorders mediated by R3HDM1, and identified the
transcription factors regulating its expression using chip-seq.
By combining a large number of single-cell datasets, the cells
expressing R3HDM1 were identified at high resolution. Clarified
the possibility of targeting R3HDM1 from multiple dimensions,
drugs and small molecules. The system describes the
relationship between R3HDM1 and clinical outcomes in pan
cancer. Linking R3HDM1 expression with multiple
molecular subtypes demonstrates the potential for stratified
precision therapy.
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Nomenclature

ACC Adrenocortical carcinoma

AUC Area under the curve

BLCA Bladder urothelial carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical
adenocarcinoma

CHOL Cholangiocarcinoma

CCLE Cancer cell line encyclopedia

COAD Colon adenocarcinoma

COAD/
READ

Colon adenocarcinoma/Rectum adenocarcinoma esophageal
carcinoma

DSS Disease-specific survival

DFI Disease-free interval

DLBC Lymphoid neoplasm diffuse large B-cell lymphoma

ESCA Esophageal carcinoma

FAP Fibroblast activation protein-α

GTEx Genotype Tissue-Expression

GSEA Gene set enrichment analysis

GSVA Gene set variation analysis

GBM Glioblastoma multiforme

GBMLGG Glioma

HNSC Head and Neck squamous cell carcinoma

ICIs Immune checkpoint inhibitors

KICH Kidney chromophobe

KM Kaplan-Meier

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LAML Acute myeloid leukemia

LGG Brain lower grade glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MESO Mesothelioma

NCI National Cancer Institute

OS Overall survival

OV Ovarian serous cystadenocarcinoma

PFI Progress-free interval

PPI Protein-protein interaction

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and paraganglioma

PRAD Prostate adenocarcinoma

ROC Receiver operating characteristic curve

SARC Sarcoma

SKCM Skin cutaneous melanoma

STAD Stomach adenocarcinoma

STES Stomach and esophageal carcinoma

TCGA The Cancer Genome Atlas

TIICs Tumor-infiltrating immune cells

TME Tumor microenvironment

TGCT Testicular Germ Cell Tumors

THCA Thyroid carcinoma

THYM Thymoma

UCEC Uterine corpus endometrial carcinoma

UCS Uterine carcinosarcoma

UVM Uveal melanoma
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