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Non-coding ribonucleic acids (ncRNAs) have been recently shown to contribute
to tumorigenesis by mediating changes in metabolism. ncRNAs act as key
molecules in metabolic pathways regulation. The dysregulation of ncRNAs
during cancer progression contributes to altered metabolic phenotypes
leading to reprogrammed metabolism. Since ncRNAs affect different tumor
processes by regulating mitochondrial dynamics and metabolism, in the future
ncRNAs can be exploited in disease detection, diagnosis, treatment, and
resistance. The purpose of this review is to highlight the role of ncRNAs in
mitochondrial metabolic reprogramming and to relate their therapeutic potential
in the management of genitourinary cancer.
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1 Introduction

Energy metabolism is of great importance in the metabolic reprogramming of
cancer, where the metabolic flux is increased in the tumor cells compared to the
precursor tissue of origin. This ‘energy-dependent metabolic flux’ is powered by
mitochondrial metabolic reprogramming which activates various oncogenic
signaling pathways (Scheid et al., 2021). The majority of cellular energy is provided
through the mitochondrial metabolism. The cancer cells rely only on glycolysis to meet
their bioenergetic demands, but they still are dependent on some of the mitochondrial
electron transport (mETC) byproducts for effective cell proliferation. This suggests that
respiratory defects or dysfunction in mitochondrial dynamics could be the primary
cause of cancer, as observed by Otto Warburg in the ‘Warburg effect (Cantor and
Sabatini, 2012; Ward and Thompson, 2012; Chen et al., 2023; Kaur et al., 2023; Wang
and Patti, 2023). These discoveries emphasize the impact of mitochondrial function in
cancer progression and could have significant implications for cancer treatment.
Additionally, mitochondria are linked to redox regulation, cell signaling, apoptosis,
and cell function and fate (DeBerardinis and Chandel, 2016; Chen et al., 2023).
Furthermore, various studies revealed that mitochondrial metabolic reprogramming
is related to the development of genitourinary cancer such as bladder cancer, prostate
cancer, and kidney cancer. Additionally, genitourinary cancer is characterized by the
upregulation of several oncometabolites, such as glucose, glutamine, succinate,
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fumarate, malate, lactate, and itaconate (Sullivan et al., 2013;
Shim et al., 2014; Yong et al., 2020; Delkov et al., 2022). Going
forward, we predict that mitochondrial oncometabolite will
continue to shed new light on disease progression. Therefore,
it is essential to review and understand the crosstalk between
mitochondrial metabolic reprogramming and genitourinary
cancer for effective clinical management.

The understanding of RNA biology has improved significantly
over the last decade. In the human genome, about 80% is transcribed
to RNA, however, there are significant untranslated RNAs called
non-coding RNAs (ncRNAs). They are mainly categorized into two
classes: small ncRNAs microRNAs (miRNAs) and long non-coding
RNAs (lncRNAs). Another known ncRNA is circular RNAs
(circRNAs), which have also been known as a critical regulator
of gene expression (Mattick and Makunin, 2006; Slack and
Chinnaiyan, 2019). Recent research has established a link
between ncRNAs and mitochondrial processes such as energy
metabolism, oxidative phosphorylation, redox regulation, gene
expression, protein transport, and mitochondrial proteome
homeostasis (Table 1). The mitochondrial ncRNAs (mt-ncRNAs)
can be mitochondrial encoded which can be generated inside the
mitochondria or nuclear-encoded which can be imported into
mitochondria (Villegas et al., 2007; Liu and Shan, 2021; Gallo
Cantafio et al., 2023). Understanding the relationship involving
ncRNAs and mitochondrial metabolism not only provides deeper
insights into the mechanisms but also offers the development of new
targeted anticancer therapeutics. Notably, some ncRNAs involved in
cellular signaling pathways of genitourinary cancer, also have
significant associations with mitochondrial functions and
metabolism. Therefore, comprehensive knowledge of the
interplay among ncRNAs and mitochondrial metabolism is
fundamental for effective genitourinary cancer diagnosis
and treatment.

1.1 Genitourinary cancer

Genitourinary cancer (GC) engirds a group of heterogeneous
cancers about three major organs kidney (2.3%), bladder (3.2%), and
prostate (7.8%). The major histological subtypes of this cancer
include renal cell carcinoma, urothelial carcinoma, and prostate
cancer (Zarrabi et al., 2019; Sung et al., 2021). Renal cell carcinoma
(RCC) is classified as clear cell RCC which is among the 80%
diagnosed and the other 20% are nonclear cell RCC (Zarrabi
et al., 2019; Riscal et al., 2021). Unfortunately, the tumor proved
resistant to anticancer therapies. As a result, RCC has been
challenging to treat (De Meerleer et al., 2014; Ross and Jones,
2017; Linehan and Ricketts, 2019).

Urothelial carcinoma is the most prevalent type of urinary
bladder cancer. Its tumorgenicity can be presented by 70%–75%
of non-muscle-invasive bladder cancer (NMIBC) and 30% of the
muscle-invasive bladder (MIBC). MIBC has a high mortality rate
compared to NIMBC as it has a limited metastatic disease potential,
though it depicts a high recurrence rate (Cheng et al., 2009; Lavallee
et al., 2021; Huang et al., 2022).

Prostate cancer (PC) is the most frequent cancer in men. The
risk of developing PC is very frequent. The treatment of PC
contingents on the stages of the disease, histological grade, and
serum prostate-specific antigen level. Radical prostatectomy is
regularly used to treat localized PC. However, the recurrence rate
(27%–53%) is very high (Hu et al., 2009; Vikramdeo et al., 2023).

1.2 Non-coding RNAs

The non-coding RNAs (ncRNAs) are less frequently expressed
than the protein-coding genes, where their characteristic functional
structures are well conserved across evolutionary timescales. It is

TABLE 1 ncRNAs and mitochondrial metabolism crosstal

NcRNA Involved Process Type Target Molecular Effect

GAS5 TCA LncRNA MDH2 Promoting the association of FH-MDH2-CS

MecciND1 Mitochondrial DNA replication CircRNA RPA32/70 Enhancing the mitochondrial localization of RPA32/70

SAMMSON Mitochondrial translation LncRNA P32 Enhancing the mitochondrial localization of P32

LncFAO β-oxidation LncRNA HADHB Increasing of HADHB level

SCAR MPTP opening CircRNA ATP5B Inhibiting the interaction between ATP5B and CypD

CircSmad4 CircRNA VCP Enhancing the mitochondrial localization of VCP

miR-1 OXPHOS miRNA ND1 and COX1 mRNA Enhancing translation of ND1 and COX1

miR-21 miRNA CYTB mRNA Enhancing translation of CYTB

miR-181c miRNA COX1 mRNA Decreasing protein level of COX1

miR-378 miRNA ATP6 mRNA Decreasing protein level of ATP6

let-7a miRNA ND4 mRNA Decreasing protein level of ND4

miR-2392 miRNA Mitochondria DNA Enhancing transcription of mitochondrial DNA

CircPUM1 CircRNA UQCRC2 Promoting the association of UQCRC1 and 2

MALAT1 LncRNA Mitochondria DNA Inhibiting methylation of mitochondrial DNA
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well-established that ncRNAs function as both tumor enhancers and
tumor suppressors in nearly all types of cancer (Mattick and
Makunin, 2006; Tantray et al., 2023). Despite these expression
patterns, ncRNAs are precisely tuned to specific tissues or cancer
types, regulating complex mechanisms (Table 2). Thus, they
establish an elaborate network of interactions that contribute to
cancer development and progression (Grillone et al., 2020). ncRNAs
are divided into long non-coding RNAs, microRNAs, and
circularRNAs.

Long non-coding RNAs (lncRNAs) are generally about
200 nucleotides to 100 kilobases. Genomic regions transcribed
into certain low-level lncRNAs have fewer exons, known as long

intergenic RNAs (lincRNAs) (Ransohoff et al., 2018; Gallo Cantafio
et al., 2023). There are over 5,400 to 10,000 lncRNA generated from
various DNA elements in the genome. LncRNAs are implicated in
the regulation of embryonic stem cell differentiation, as well as being
involved in various disease progression (Villegas et al., 2007; Mattick
et al., 2023). The lncRNA expression is more specific to cell and
tissue type compared to protein-coding genes. The sequence
similarity of lncRNA is conserved in secondary structures (Hung
et al., 2014; Xu et al., 2021; Mattick et al., 2023). lncRNAs have the
potential to form complex three-dimensional structures due to their
long length and can contain multiple structural or functional
domains. They also have a high number of protein-binding sites

TABLE 2 Overview of ncRNA roles in cancer metabolism.

ncRNA Function of ncRNA
in cancer

Dysregulated in cancer Mechanisms of action

HOTAIR Tumor promoter Endometrial, lung, ovarian, prostate, thyroid Interacts with PRC2 to methylate and silence tumor
suppressor genes

BRAFP1 Lymphoma Activates BRAF

NANOG Breast, colorectal, hepatocellular, leukemia, lung,
pancreatic, prostate

Sustains cell renewal and confers stem cell-like properties.

Oct-04 Liver, lung, pancreas Sustains cell renewal and confers stem cell-like properties.

circPRKCI Glioma, lung Promotes proliferation and migration by sponging miR-545

circHIPK3 Breast, colorectal, gallbladder, gastric, ovarian Promotes cancer growth and metastasis by sponging miR-7,
miR-193a

MYLK Lung cancer Promotes glycolysis and proliferation

LDLRAD Lung cancer Promotes proliferation and survival

517 Lung cancer Promotes glycolysis and clonogenicity

piR-651 Breast, colorectal, head and neck, leukemia, lung,
lymphoma, pancreatic, renal

Functions with C-MYC and transcriptional regulation,
regulates proliferation, apoptosis, angiogenesis

miR-518b, miR-629 Lung Cancer Promotes proliferation metastasis

miR-141 Prostate cancer Promotes prolifera

miR-1274a, miR-592 Colon cancer Promotes proliferation, meta and clonogen

miR15/16 Leukemia Sustains stemnes

MEG3 Tumor suppressor Breast, colorectal, gastric, liver, lung, ovarian,
prostate

Regulates proliferation, angiogenesis, epithelial-to-
mesenchymal transition, drug sensitivity

PTENP1 Breast, gastri represses expression of k-Ras c,
prostate, Renal

Sponges microRNAs that target PTEN

miR-30, miR-140, miR-143,
miR-600, miR-7

Breast cancer Promotes apopt

let-7, miR- 200a, miR- 190b Lung cancer Represses expression of k-Ras, inhibits stemness and cell gro

miR-145, miR-34 Prostate cancer Inhibits proliferation and inv reduced stemness

MALAT1 Tumor promoter and tumor
suppressor

Breast, endometrial, lung, ovarian, prostate,
thyroid

Alternative splicing, metastasis

H19 Bladder, breast, colorectal, endometrial, ovarian,
prostate

Induces cell survival pathways in response to stress,
epithelial-to- mesenchymal transition

piR-823 Colorectal, esophageal, gastric, Breast, Lung Affects cell growth, metastasis, DNA methylation,
apoptosis, transcriptional activity

piR-932 Breast, endometrial, glioblastoma, hepatocellular,
pancreatic, prostate, thyroid

Targets tumor suppressors. Induces cell proliferation, drug
resistance
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for the multimerization of proteins or scaffolding for the assembly of
large multimeric proteins (Ma et al., 2013). The secondary or tertiary
structures of lncRNAs play an indispensable role in their
interactions with proteins and other nucleic acids to regulate
gene expression (Shi et al., 2001; Zampetaki et al., 2018).
lncRNAs can regulate gene expression, epigenetic modifications,
transcription, post-transcriptional activity, and metabolic function.
Additionally, LncRNAs indirectly modulate gene expression via
RNA-binding protein partners or miRNAs (Olgun et al., 2018; Li
et al., 2020).

MicroRNAs (miRNAs) are short ncRNA molecules
(~22 nucleotides) (O’Brien et al., 2018). miRNAs typically
interact with the promoter region, 3′ UTR & 5′ UTR region,
coding sequence, and gene promoters, to suppress the expression
of the target gene (Gu et al., 2009). The miRNAs are capable of
activating gene expression by two mechanisms, via inhibiting
translation or by degradation of complementary mRNA. miRNAs
are transported or exported within the intracellular compartments
to regulate cell fate by controlling transcription and translational
activity (Peng and Croce, 2016).

Single-stranded, covalently closed circRNAs possess a unique
structure with a longer half-life and have recently been involved in
various diseases including cancer (Zhou et al., 2020; Raza et al.,
2022). Additionally, circRNAs were shown to act as miRNA
sponges (Bosson et al., 2014). However, the role of circRNAs in
physiological or pathological conditions remains poorly
understood.

2 Mitochondria-encoded
non-coding RNAs

The mitochondrial genome contains numerous ncRNAs,
such as mitochondrial transfer RNAs (mt-tRNAs),
mitochondrial long non-coding transfer RNAs (mt-lncRNAs),
mitochondrial miRNAs (mt-miRNAs), mitochondria-encoded
circRNAs (mtcciRNAs), an antisense noncoding mitochondrial
RNAs (ASncmtRNAs), and mitochondrial double-stranded
RNAs (mt-dsRNAs). These mitochondrial non-coding RNAs
(mt-ncRNAs) are essential in regulating different physiological
and pathological processes (Ren et al., 2023). Several hereditary
human diseases are caused by mutations in mt-tRNAs, while
other mt-ncRNAs are associated with metabolic disorders and
cancers such as breast cancer, hepatocellular carcinoma,
leukemia, and other genitourinary cancers (Villegas et al.,
2007; Slack and Chinnaiyan, 2019). The revolutionary tools in
mitochondrial biology, such as mitochondrial genome editing,
are set to provide researchers with a better understanding of the
biogenesis, metabolism, and functions of mt-ncRNAs (Liu and
Shan, 2021).

From the mitochondrial genome, several lncRNAs such as
lncND5/6, and lncCyt b, have been identified. It is believed that
these lncRNAs have an important functional role in stabilizing the
mRNAs of ND5, ND6, and Cyt b (Dong et al., 2017). It is suggested
that these lncRNAs regulate mRNA expression by forming
intermolecular duplexes with their complementary mRNAs
(Mercer et al., 2011; Rackham et al., 2011). A study by Dasgupta
et al. (2008) established that the upregulation of mtCytb in the

MB49 bladder cancer cell line increased oxidative stress,
mitochondrial metabolism, and lactate production, which
promote tumor growth by increasing the NF-κB2 signaling
pathway. These findings suggest that mutations in mitochondrial-
encoded proteins play an oncogenic role in bladder cancer cells.

A study by Dhir et al. (2018) showed that HeLa cells have
unstable mt-dsRNA. The RNA degradosome present in the
mitochondria, comprising small unilamellar vesicles 3 (SUV3)
and polyribonucleotide 1 (PNPT1) components, rapidly breaks
down the light-strand transcript of mtDNA. This degradosome
strictly monitors the unstable mt-dsRNAs. When SUV3 or
PNPase is silenced, it results in a significant build-up of mt-
dsRNAs. Arnaiz et al. (2021) showed that hypoxia leads to a
decrease in mt-dsRNA production during chemotherapy via
inhibition of interferon β production.

Mitochondria-encoded circRNAs (mtcciRNAs) were localized
inside the mitochondria and in the cytosol. Two mtcciRNAs,
mtcciND1, and mtcciND5, demonstrated to have an essential
role in the physiological functions of mitochondria.
mtcciND1 binds to the replication proteins (RPA1 and RPA2)
involved in mtDNA replication. The expression level of
mtcciND1 is positively highly correlated with the levels of
mitochondrial RPA proteins and mtDNA copy numbers (Vartak
et al., 2015). mtcciND5 interacted with three heterogeneous nuclear
ribonucleoproteins (hnRNPs), hnRNPA1/2B1/3, and promoted
their mitochondrial importation (Liu et al., 2019; Liu et al.,
2020). mtcciND1 and mtcciND5 interact with translocase of the
outer membrane of mitochondria 40 (TOM40) and polynucleotide
phosphorylase (PNPASE), to act as molecular chaperones (Gabriel
et al., 2003; Wang et al., 2010; Wang et al., 2012). An antisense
mtcciSCAR from the locus Cytochrome c oxidase 2 (COX2) was
found to bind directly to the adenosine triphosphate synthase 5 beta
(Hyttinen et al., 2023). The interaction of ATP5B and mtcciSCAR
blocks mitochondrial permeability transition pore (mPTP), and
therefore reduces mitochondrial ROS (Zhou et al., 2023).
Another highly expressed mtcciRNA, mtcciCOX2, was found in
chronic lymphocytic leukemia patients (Wu et al., 2020a; Zhao
et al., 2020).

Four mt-miRNAs (has-miR-4461/4463/4484/4485) are
upregulated in HeLa and HEK cells. Gao et al. identified mt-
lncRNAs, hsa-tir-MDL1AS/18 and hsa-MDL1, where
downregulation of hsa-tir-MDL1AS-18 has been observed in
hepatocellular carcinoma tissues, indicating its role in cancer
progression (Gao et al., 2018; Pozzi and Dowling, 2019).
However, mt-miRNA role in genitourinary cancer is not
explored yet.

Silencing of ASncmtRNAs, induced cell death in various
cancer cell lines, including prostate, and kidney cancer,
making it a promising selective therapy against genitourinary
cancer (Liang et al., 2021). An orthotropic murine model showed
that ASncmtRNAs silencing induced cell death in mouse renal
adenocarcinoma (RenCa) cells, resulting in a delay and even
reversal of tumor growth in a RenCa model. This indicates that
ASncmtRNAs can be used as a target for therapy in human renal
adenocarcinoma (Borgna et al., 2017). In addition, the
transfection of Andes-1537S increased cell death and
decreased cell metastasis in the UMUC-3 bladder cancer cell
line (Borgna et al., 2020).
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3 Non-coding RNA and mitochondrial
metabolism

Mitochondria is a central executor of metabolic reprogramming
in a variety of cancers, including genitourinary cancer. The main
pathways of metabolic reprogramming are glucose metabolism,
glutamine metabolism, TCA cycle, and lipid metabolism. These
metabolic pathways are regulated by ncRNAs that are linked to
cancer progressions (Figure 1; Table 3). This regulation occurs by
controlling several cellular signaling pathways, like AMPK, PI3K/
AKT, NFκB, and mTOR (You et al., 2023). The metabolic
preferences of genitourinary cancer are known to vary, which
obstructs the diagnosis and predicts the progression of the
disease (Figure 2). However, by identifying and understanding
the key mitochondrial alterations associated with them, we can
develop diagnostic and prognostic strategies (Konety and Joslyn,
2003; Bismar et al., 2006; Chen et al., 2016).

3.1 Glucose metabolism

Deregulated glucose metabolism is a defining characteristic of
cancer (Ward and Thompson, 2012; Pavlova and Thompson, 2016).
miRNAs can target glucose metabolic enzymes either directly or
indirectly through intermediary loops, for instance, miR-34a/c and
miR-374a directly target LDHmRNA in pancreatic can (Wang et al.,
2015). Interestingly, miR-34a is decreased in bladder cancer.
Transfection of miR-miR-34a mimics upregulated expression of
PTEN, thereby decreasing cancer cell growth and viability (Hoque
et al., 2003; Vinall et al., 2012). Similarly, miR-34a expression is

inhibited in prostate cancer tissue (Duan et al., 2015). This evidence
suggests the tumor-suppressor role of miR-34a in bladder and
prostate cancer. On the contrary, miR-34a is upregulated in
chromophobe renal cell carcinoma, where MET and E2F3 were
significantly upregulated, while TP53INP2 and SOX2 are
downregulated. Another miRNA, miR-155 targets C/enhancer-
binding protein alpha which is a transcription factor for miR-143
that inhibits hexokinase 2 (Jiang et al., 2012). Cell-free miR-155
expression is correlated with the stage, and grade of bladder cancer
and renal cell carcinoma (Aveta et al., 2023). Further, miR-124
regulates genes of both pyruvate kinase M2 (PKM2) and pentose
phosphate pathway (PPP) in prostate cancer and bladder cancer
(Sun et al., 2012; Qiu et al., 2015; Taniguchi et al., 2015). The miR-
124 was found to be significantly lower in renal cell carcinoma tissue
compared to the normal tissue. However, the involvement of miR-
34a, miR374a, and miR-124 has not been extensively studied in the
mitochondrial metabolism of genitourinary cancer.

LncUCA1 activates mTOR, by inducing signal transducer and
activator of transcription 3 protein, and inhibiting miR-143, thereby
upregulating hexokinase 2 and glycolysis in bladder cancer (Li et al.,
2014). Another lncRNA PCGEM1 is shown to be overexpressed in
prostate and renal cell carcinoma, suggesting its role as an oncogenic
ncRNA. Interestingly, this promotes glucose uptake for aerobic
glycolysis and couples it with PPP to facilitate nucleotide and
lipid biosynthesis, thereby generating NADPH for redox
homeostasis (Hung et al., 2014).

Hu et al. (2017) discovered that the lncCASC8 gene is reduced in
high-grade bladder cancer. CASC8 protein binds to the fibroblast
growth factor receptor 1 (FGFR1) and abrogates lactate
dehydrogenase-A phosphorylation, thereby reducing glycolysis,

FIGURE 1
Cancer metabolism and ncRNAs. The significance of ncRNAs in cancer cell metabolic reprogramming is underscored, primarily throughmodulation
of cellular signaling pathways, including AMPK, PI3K/AKT, NFκB, and mTOR. The varied metabolic preferences in cancer present diagnostic and
prognostic challenges, influencing predictions of disease progression by impacting redox regulation, apoptosis, as well as cellular function and fate.
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TABLE 3 The regulatory roles of ncRNA in metabolic pathways in genitourinary cancers.

ncRNA Description

Glucose Metabolism

miR-34a/c Directly target LDH mRNA in pancreatic cancer. Decreased in bladder and prostate cancer tissue.
Upregulation inhibits cancer cell growth and viability.

miR-155 Targets C/enhancer binding protein alpha, inhibiting miR143, which inhibits hexokinase 2. Cell-free
expression correlates with the stage and grade of bladder cancer and renal cell carcinoma.

mi R-1 24 Regulates genes of both pyruvate kinase M2 (PKM2) and pentose phosphate pathway (PPP) in
prostate and bladder cancer. Significantly lower in renal cell carcinoma tissue compared to normal
tissue.

LncUCA1 Activates mTOR, inducing signal transducer and activator of transcription 3 protein, and inhibiting
miR-143, thereby upregulating hexokinase 2 and glycolysis in bladder cancer.

PCGEM1 Overexpressed in prostate and renal cell carcinoma, promoting glucose uptake for aerobic glycolysis
and coupling it with PPP to facilitate nucleotide and lipid biosynthesis.

ln CASC8 c Reduced in high-grade bladder cancer. Binds to fibroblast growth ftor receptor 1 (FGFR1) and
abrogates lactate dehydrogenase phosphorylation, reducing glycolysis and inhibiting bladder cancer
cell growth.

lncFILNC1 Knockdown increases c-Myc protein level by FILNC1-AUF1-c- Myc signaling axis under glucose
starvation conditions in RCC.

SLC16A1-AS1 Improves glycolysis and mitochondrial respiration by increasing ATP synthesis in bladder cancer,
leading to increased proliferation by fatty acid oxidation.

miR-210 Upregulated in RCC predominantly mediated by hypoxia-inducible factor1. Upregulated in blood
serum of bladder cancer patients, increases with disease progression. Regulates bladder cancer
growth, invasion, and metastasis by targeting FGFRL1. Overexpression is significantly higher in
tumor tissues of prostate cancer, correlated with bone metastasis.

Glutamine Metabolism

miR-23a/b, lncRNA CCAT2, miR-23b* Concurrent regulation of glutaminase (GLS) by miR23a/b and lncRNA CCAT2. Allele-specific
metabolic reprogramming of renal cell carcinoma.

lincRNA-p21 Inhibits bladder cancer proliferation by negatively regulating glutaminase, glutamate, and
αketoglutarate expression. Overexpression of glutaminase rescues inhibition of lincRNAp21 on
bladder cancer survival.

LncUCA1 Significantly expressed in bladder cancer tissues compared to normal tissue. Reduces ROS
production, rescues mitochondrial function, upregulates glutaminase levels, and increases GLS1 and
GLS2 mRNA expression. Interferes with miR16’s tumor suppressor role in bladder cancer cells.
Regulates redox state and glutamine metabolism contributing to tumorigenesis.

Tricarboxylic Acid (TCA) Cycle

miR-181a, miR-183, let-7 Target isocitrate dehydrogenase (IDH) and PDK1 in the TCA cycle.

LncGAS5 Acts as a tumor suppressor by blocking TCA cycle regulation. Overexpression decreases cell viability
through inhibition of enhancer of zest homolog 2 (EZH2) transcription by interacting with E2F4,
resulting in increased expression of miR101.

Oxidative Phosphorylation

miR-195 Targets glutamate dehydrogenase 1 (GLUD1) and ADPribosylation protein (ARL2) in bladder
tumor cells. Suppresses proliferation, migration, invasion, and apoptosis in clear cell renal cell
carcinoma cell line. In prostate cancer, inhibits cancer growth and epithelial-mesenchymal
transition (EMT).

miR-17-3p Inhibits antioxidant enzymes, manganese superoxide dismutase, glutathione peroxidase 2, and
thioredoxin reductase 2 in prostate cancer cell lines, sensitizing them to ionizing radiation. Improves
radiotherapy for aggressive tumors, including advanced prostate cancer.

circ_0004463, miR- 380-3p circ_0004463 downregulated in bladder cancer tissue acts as a tumor suppressor. miR3803p
upregulated in bladder cancer, promotes cell proliferation by mitochondrial metabolism.

(Continued on following page)
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and inhibiting bladder cancer cell growth. In RCC, the knockdown
of the lncFILNC1 gene increases the c-Myc protein level by the
FILNC1-AUF1-c-Myc signaling axis under glucose starvation
conditions (Xiao et al., 2017). Another, lncRNA, SLC16A1-AS1
was shown to improve glycolysis and mitochondrial respiration by
increasing ATP synthesis in bladder cancer. This leads to an increase
in the proliferation of bladder cancer by fatty acid -oxidation
(Logotheti et al., 2020).

During hypoxia, RCC cells show upregulated expression of miR-
210. This study supports that miR-210 upregulation in RCC is
predominantly mediated by hypoxia-inducible factor- 1 (Juan et al.,
2010; McCormick et al., 2013; Wach et al., 2013). Another study has
found that miR-429 decreased RCC cell growth and viability by
inhibiting PDCD4, VEGF, c-myc, and AKT pathways (Su et al.,
2020). miR-210 was found to be upregulated in the blood serum of
bladder cancer patients, and its levels increase with the progression
of the disease (Yang et al., 2017). Furthermore, miR-210-3p was
shown to regulate bladder cancer growth, invasion, and metastasis
by targeting FGFRL1. Similarly, in prostate cancer, overexpression

of miR-210-3p was found significantly higher in tumor tissues. In
addition, the expression levels of miR-210-3p are correlated with
bone metastasis in prostate tissue (Ren et al., 2017).

3.2 Glutamine metabolism

Glutamine is a key nutrient that fuels cellular metabolism,
especially in cancer cells (Figure 3). Glutamine is transformed
into glutamate through the action of an enzyme called
glutaminase (GLS). There are two types of glutaminase, kidney
type (GLS) and liver type (GLS2) (Katt et al., 2017). Two paradigms
of GLS modulation have emerged: the first is the concurrent
regulation by miR-23a/b and the lncRNA CCAT2, and the
second is the allele-specific metabolic reprogramming of
glutamine by CCAT2 (Redis et al., 2016). Additionally, miR-23b
and miR-23b share the same transcript, with the latter inhibiting
GLS translation. Importantly, miR-23b downregulates POX/
PRODH in renal cell carcinoma. Findings from the MYC-

Table 3 (Continued) The regulatory roles of ncRNA in metabolic pathways in genitourinary cancers.

ncRNA Description

Lipid Metabolism

AnxA3 Regulates differentiation of adipose tissue into fat cells. Decreased expression of 36kDa AnxA3 and
increased expression of 33kDa AnxA3 in renal cell carcinoma. Decreased expression is associated
with low lipid storage in ccRCC cells.

miR-185, miR-342 Regulates lipid and cholesterol production by inhibiting sterol regulatory element binding proteins
(SREBP)1 and 2. Downregulates fatty acid synthase (FASN) and 3hydroxy3methylglutaryl CoA
reductase (HMGCR) in prostate cancer cell lines, inhibiting cell growth, migration, and invasion.

miR-101 Suppresses COX-2 expression, inhibiting cell and tumor growth in prostate cancer.

FIGURE 2
Genitourinary cancer and ncRNAs. A roster of noncoding RNAs and their associated sponges participate inmitochondrial metabolism, with a specific
role in regulating glucose, lipids, and amino acid metabolism. This emphasizes their potential for therapeutic targeting in the treatment of
genitourinary cancer.
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inducible human Burkitt lymphoma model P493 and PC3 human
prostate cancer cells affirm that MYC primarily suppresses POX/
PRODH expression by up-regulating miR-23b (Liu et al., 2010; Liu
et al., 2012).

Recent studies found that lincRNA-p21 can inhibit bladder
cancer proliferation by negatively regulating glutaminase,
glutamate, and α-ketoglutarate expression (Benitez et al., 2021;
Scholda et al., 2023). Overexpression of glutaminase rescued
inhibitory nature of lincRNA-p21 on bladder cancer survival.
Additionally, the abundance of lincRNA-p21 and glutaminase
dictates the response of bladder cancer cells to BPTES
(glutaminase inhibitor) treatment. In bladder cancer tissues the
lincRNA-p21 expression is significantly decreased, while
glutaminase mRNA level is increased compared to normal tissues
(Zhou et al., 2019). It has been observed that in prostate cancer,
lincRNA-p21 downregulates and stimulates apoptosis. On the other
hand, the malignant prostate tissues showed a reduction in the
expression of the downstream genes of p53 (Wang et al., 2017).
Moreover, lncRNA-p21 augments the methylation of STAT3 by
enhancer of zeste homolog 2 (EZH2), leading to prostate cancer
neuroendocrine transdifferentiation (Luo et al., 2019).

LncRNA UCA1 is a critical player in bladder cancer cells.
LncUCA1 is significantly expressed in bladder cancer tissues
compared to normal tissue. LncUCA1 was shown to reduce ROS
production to rescue mitochondrial function by altering glutamine
metabolism. LncUCA1 can also upregulate glutaminase levels and
increase mRNA expression of both GLS1 and GLS2. miR-16 directly
binds to the 3′UTR of GLS2 mRNA to inhibit bladder cancer
growth, whereas lncUCA1 was found to interfere with miR-16’s

tumor suppressor role in bladder cancer cells. This study indicates
that the UCA1-miR-16-GLS2 axis regulates redox state, and
glutamine metabolism, contributing to tumorigenesis (Li
et al., 2015).

3.3 Tricarboxylic acid (TCA) Cycle

In addition to GLS, other key enzymes involved in TCA cycle are
targeted by ncRNAs, such as isocitrate dehydrogenase (IDH) by
miR-181a and miR-183, or PDK1 by let-7 (Fedele et al., 2022).
LncGAS5 acts as a tumor suppressor by blocking TCA cycle
regulation (Sang et al., 2021). Another study found that
GAS5 overexpression decreased cell viability through inhibition
of enhancer of zest homolog 2 (EZH2) transcription by
interacting with E2F4, which resulted in increased expression of
miR-101. Treatment with Gambogic acid elevated the level of
GAS5 and its knockdown abolished gambogic acid-induced
apoptosis in bladder cancer cells (Wang et al., 2018). However,
overexpression of GAS5 can inhibit cell proliferation by inhibiting
androgen receptor transactivation in castration-resistant prostate
cancer cells (CRPC). Interestingly, a feedback loop has been
discovered where suppressed androgen receptor downregulates
the expression of GAS5, leading to increased transcription
activity in CRPC. This study suggests that GAS5 plays a key role
in androgen receptor axis activity and CRPC progression (Lv et al.,
2021). GAS5 and miR-34a were positively correlated in renal cell
carcinoma, however further studies are required to explore the effect
of GAS5 on mitochondrial metabolism of renal cell cancer.

FIGURE 3
Glutaminemetabolism and ncRNAs in genitourinary cancer. Four distinct paradigms of glutaminase (GLS)modulation have surfaced in genitourinary
cancer. The first involves the inhibition of bladder cancer proliferation by the lncRNA-p21, which negatively regulates the expression of glutaminase,
glutamate, and α-ketoglutarate; the second paradigm entails the simultaneous inhibition of GLS2; the third paradigm revolves around the allele-specific
metabolic reprogramming of glutamine through the lncRNA CCAT2; the fourth paradigm involves the UCA1-miR-16-GLS2 axis, which regulates
redox state and glutamine metabolism, contributing to tumorigenesis.
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3.4 Oxidative phosphorylation

Oxidative phosphorylation uses the reduction of oxygen to
produce high-energy ATP by the chemiosmotic electron transfer
chain (ETC). In tumor cells, the functional electron transport chain
is essential for promoting tumor growth by enabling the
proliferation of cells through the mitochondrial complex I and III
(Nolfi-Donegan et al., 2020; Ojha et al., 2022). A recent study used
bioinformatics analysis to screen candidate target genes of miR-195
in bladder cancer, to identify which genes may play a role in
regulating mitochondrial function. The analysis found that
glutamate dehydrogenase 1 (GLUD1) and ADP- ADP-
ribosylation protein (ARL2) were the ideal targets for miR-195
(Li et al., 2017). In bladder tumor cells, miR-195 directly
inhibited ARL2 mRNA and protein levels, indicating that miR-
195 may function as a tumor suppressor gene (Yu et al., 2018).
LncUCA1 acts as a competing endogenous RNA to decrease the
expression level of miR-195, resulting in increased ARL2 expression.
This study highlights that the UCA1-miR-195-ARL2 signaling axis
sustains mitochondrial metabolism in bladder cancer (Li et al., 2017;
Newman et al., 2017).

Overexpression of miR-195 has been found to suppress the
proliferation, migration, invasion, and apoptosis of a human clear
cell renal cell carcinoma cell line, by inhibiting both the MAPK
signaling pathways (Sun et al., 2016). Similarly, in prostate cancer,
overexpression of miR-195 significantly inhibits cancer growth and
epithelial-mesenchymal transition (EMT). This study further
indicated that miR-195 inhibitor rescued the effect of 5-
azacytidine on cell viability and metastatic potential of prostate
cancer cells (Liu et al., 2015).

Conventional radiotherapy can adaptively induce antioxidant
enzyme expression, manganese superoxide dismutase, glutathione
peroxidase 2, and thioredoxin reductase 2, promoting therapeutic
resistance (Liu et al., 2022). The overexpression of miR-17-3p,
inhibits these three major antioxidant enzymes, thereby
sensitizing prostate cancer cell lines to ionizing radiation.
Therein, inhibition of NFκB-mediated protein activation has been
shown to improve radiotherapy for aggressive tumors, including
advanced prostate cancer (Xu et al., 2010; Xu et al., 2018). A new
study has revealed that bladder cancer tissue samples and cells have
significantly downregulated circ_0004463, indicating circ_
0004463 role as a tumor suppressor. On the contrary, miR-380-
3p was found to be upregulated in bladder cancer. It provides
bladder cancer cell proliferation by mitochondrial metabolism,
suggesting miR-308-3p role as a tumor promoter (Wu et al., 2020b).

3.5 Lipid metabolism

LncRNAs play a significant role in reprogramming of cancer
lipid metabolism by regulating the expression of multiple signaling
pathways during tumor development (Sellitto et al., 2021). LncRNA
phospholipid-binding protein annexin A3 (AnxA3) negatively
regulates the differentiation of adipose tissue into fat cells. There
are two subtypes of AnxA3: 33 kDa and 36 kDa. The expression of
36 kDa AnxA3 is significantly decreased in renal cell carcinoma
(ccRCC), while the expression of 33 kDa AnxA3 is increased,
resulting overall decrease in AnxA3 expression. When ccRCC

cells were exposed to an adipose culture medium, the expression
of 36 kDa AnxA3 was found to be low, indicating that AnxA3 plays a
negative role in the storage of lipids in ccRCC cells (Gu et al., 2009).
Therefore, the impact of AnxA3 on RCC and its underlying
mechanisms requires further investigation.

In prostate cancer cell lines, LNCaP and C4-2B, miR-185 and
miR-342 regulate lipid and cholesterol production by inhibiting
sterol regulatory element-binding proteins (SREBP)-1 and −2. This
downregulates fatty acid synthase (FASN) and 3-hydroxy-3-
methylglutaryl CoA reductase (HMGCR), inhibiting cell growth,
migration, and invasion (Li et al., 2013). The miR-17/92 cluster
targets peroxisome proliferator-activated receptor α (PPARA), a key
lipid metabolism regulator. Testosterone and 1,25-dihydroxy
vitamin D3 downregulate miR-17/92, relieving its inhibitory
effect on PPARA, promoting lipid synthesis, and slowing tumor
progression (Wang et al., 2013). Furthermore, miR-101 suppresses
COX-2 expression, inhibiting cell and tumor growth in prostate
cancer (Hao et al., 2011). These findings suggest that targeting
abnormal lipid metabolism is a promising therapeutic approach
for prostate cancer.

It has been shown by a recent study that certain metabolism-
related lncRNA, such as LINC02004, DUXAP8, PWAR6, and
AC073335, are abnormally regulated in bladder cancer (Zhang
et al., 2019; Cui et al., 2021; Li et al., 2021; Wan et al., 2021; Wu
et al., 2021). However, it is important to note that these lncRNA are
not known to be involved in the regulation of lipid metabolism.

4 Therapeutic implications

Blocking dysfunctional metabolic pathways such as glucose,
fatty acid, and amino acid oxidation represent promising
therapeutic windows in cancer (Winkle et al., 2021; Clemente-
Suárez et al., 2023). ncRNAs are potential candidates as they
inhibit metabolic pathways by targeting multiple key genes.
(Winkle et al., 2021). lncRNAs are very specific to their location
and highly expressed in cancer. These characteristic features make
them crucial candidates for cancer diagnosis and treatment. The
most well-recognized ncRNA is PCA3, which is used as a diagnostic
biomarker for the detection of prostate cancer at early stages (Opoku
Mensah et al., 2022). Additionally, lncMALAT1 detection has been
patented in prostate cancer diagnosis (CN104498495). ncRNAs are
currently in clinical cancer trials specifically designed to target
metabolic enzymes (Toden et al., 2021). LncUCA1 was found
sensitive for bladder cancer, various clinical trials are underway
to use it as a diagnostic marker in bladder cancer (Li et al., 2014; Li
et al., 2015; Li et al., 2017; Ghafouri-Fard and Taheri, 2019). Largely,
non-coding RNAs are key regulators in metabolism and major
signaling pathways, which can be subjugated as therapeutic
targets in the management of genitourinary cancer.

5 Future prospective

In recent years, the discovery of numerous mt-ncRNAs has
advanced our knowledge of mitochondrial transcriptome and
metabolism. Despite the relatively small size and limited protein-
coding capacity of the mitochondrial genome, it possesses a unique
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profile of ncRNAs. While only a small subset has undergone
thorough investigation, it has been established that mt-ncRNAs
play pivotal roles in regulating mitochondrial gene expression and
metabolism, among other functions. Although their applications are
in early stages, with some undergoing clinical trials, due to their
diverse roles in pathogenesis, mt-ncRNAs show promise as potential
biomarkers, therapeutic targets, and even therapeutic RNA
medications, particularly when it comes to genitourinary cancers.
Recently, Next-Generation Sequencing Technology (NGS) revealed
numerous ncRNAs as novel markers for diagnosing genitourinary
cancers, including Renal Cell Carcinoma, Bladder Cancer, Prostate
Cancer, Testicular, and Penile Cancers. Besides miRNAs and
mRNAs being used for genitourinary cancer diagnosis, a
significant presence of lncRNAs in human serum can be detected
using unbiased high-throughput technologies such as genome tiling
expression microarrays or deep-sequencing of serum samples via
RNA-sequencing. Various therapeutic approaches targeting
lncRNAs are currently under exploration. One direct strategy
involves silencing the elevated levels of oncogenic lncRNAs
through small interfering RNA. siRNAs designed to target
specific lncRNAs have proven effective in reducing their
expression in various genitourinary cancers. Additional potential
agents for targeting lncRNAs include DNAzymes, single-stranded
DNA molecules capable of cleaving complementary sequences,
engineered based on naturally occurring RNA-based ribozymes.
Advancements in fluorescent probe design, imaging technology, and
image processing now allow precise identification of (sub)cellular
localization and measurement of absolute expression levels of native
ncRNA transcripts in individual cells with single-molecule precision
in situ. This would provide a better understanding of the interaction
between ncRNA and mitochondrial metabolism in genitourinary
cancers. Understanding the molecular characteristics of lncRNAs
and their roles in both healthy and cancerous cells could offer
valuable insights into tumor biology, providing, previously
unknown, potential therapeutic avenues for genitourinary cancers.

6 Conclusion

Metabolic reprogramming is a hallmark of cancer, which poses a
major challenge for cancer management. Therefore, the molecular
pathways responsible for the development of metabolic
reprogramming need to be studied carefully to develop effective
therapeutic strategies. In the last decades, ncRNAs have been shown
as a novel cell function regulatory mechanism. Dysregulation of

ncRNAs is shown to be involved in the cancer progression. At
present, few miRNA therapies in cardiovascular disease are already
undergoing clinical evaluation. For a few years, various new tumor-
targeted ncRNAs-based cancer therapeutics have been an active area
of investigation. Recent studies have shown that ncRNAs are vital
factors in metabolic pathway regulation, and their potential as
therapeutic targets is considerable for the management of cancer.
However, more pre-clinical studies are needed to explore ncRNA
potential in regulating metabolic reprogramming in genitourinary
cancers. ncRNAs-based strategies can establish a prerequisite role in
the diagnosis and therapy of genitourinary cancers.
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