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Common variable immunodeficiency (CVID) is one of the most common
symptomatic groups of inborn errors of immunity. In addition to infections
resulting from insufficient levels of immune globulins and antibodies, many
patients develop inflammatory or autoimmune conditions, which are
associated with increased mortality. This aspect of CVID has been the focus of
many studies, and dissecting the clinical phenotypes of CVID, has had the goal of
providing biomarkers to identify these subjects, potentially at the time of diagnosis.
With the application of whole exome (WES) and whole genome analyses, an
increasing number of monogenic causes of CVID have been elucidated. From the
standpoint of the practicing physician, an important question is whether the
clinical phenotype, particularly the occurrence of autoinflammation of
autoimmunity, might suggest the likelihood of identifying a causative mutation,
and if possible the genemost likely to underlie CVID.We addressed this question in
a patient group of 405 subjects diagnosed with CVID from one medical center.
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Introduction

Common variable immunodefciency (CVID) is one of the more frequently encountered
immune defects in clinical practice, with an estimated incidence of about 1 in 20,000. The
diagnosis is made in a male or female patient with reduced serum levels of IgG, along with
IgA, and/or IgM with documented defects of antibody production to both protein and
carbohydrate antigens, and the exclusion of other causes of hypogammaglobulinemia such as
physiologic immaturity, medications, malignancy, or protein losses (Bonilla et al., 2016;
Registry, 2016; Odnoletkova et al., 2018; Seidel et al., 2019).While considered genetic defects,
most newly diagnosed patients are between the ages of 20 and 40 years old. (Resnick et al.,
2012a; Gathmann et al., 2014; Odnoletkova et al., 2018). One of the clinical features of the
CVID syndrome that has emerged is that about half of these patients have infections as the
central manifestation, which can be successfully treated or prevented with antibiotics and
immunoglobulins. However, the others also have various apparently non-infectious,
autoimmune, autoinflammatory, neoplastic and/or lymphoproliferative manifestations,
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often associated with systemic immune activation (Wehr et al., 2008;
Resnick et al., 2012b; Cols et al., 2016; Smith and Cunningham-
Rundles, 2021; Ho and Cunningham-Rundles, 2022). Patients in the
second group often have autoimmune or inflammatory features as
the initial presentation and primary clinical manifestation, with less
obvious susceptibility to significant infectious diseases; these
subjects also have increased morbidity and mortality as
compared to those with the infection-only phenotype (Chapel
et al., 2008; Resnick et al., 2012a). A number of studies have
probed reasons for the striking heterogeneity of this CVID
patient pool (Wehr et al., 2008; Chapel and Cunningham-
Rundles, 2009; Resnick et al., 2012a). These studies have sought
biomarkers to identify these subjects, preferably at the time of
diagnosis (Ho and Cunningham-Rundles, 2022). Some of these
markers include identification of subjects with loss of peripheral
isotype switched memory B cells, increased CD21low B cells (<10%),
and/or reduced numbers of T cells, especially naïve CD4 T cells
(Warnatz et al., 2002; Fevang et al., 2007; Sanchez-Ramon et al.,
2008;Wehr et al., 2008; Malphettes et al., 2009; Mouillot et al., 2010).
Other markers more recently defined include elevated markers of
systemic immune activation: serum lipopolysaccharide binding
protein (LBP), sCD14 (Barbosa et al., 2012; Litzman et al., 2012;
Fraz et al., 2022) and more recently, serum zonulin and circulating
bacterial DNA (Ho et al., 2021). These correlative biomarkers
attempt to distinguish many patients with the infection-only
clinical phenotype from those with more inflammatory
complications, but they do not address the molecular mechanisms.

With the availability of whole exome (WES) and whole genome
analyses (WGS), an increasing number of monogenic causes of the

CVID phenotype have been elucidated, now accounting for about
25%–30% of subjects (Maffucci et al., 2016; Tuijnenburg et al., 2018;
Abolhassani et al., 2020; Ramirez et al., 2021; Rojas-Restrepo et al.,
2021). Several recent reports have described the results of genetic
analyses of large CVID patient populations, with differences noted
due to the location of the populations studied and ethnic
background of the patients (Abolhassani et al., 2020; Rojas-
Restrepo et al., 2021). The many genes identified in cohorts of
subjects diagnosed with CVID, reflect the complex requirements of
class switch recombination, B cell antigen signaling, activation,
migration, long-term survival, and maturation and retention of
antibody-secreting memory B cells into the plasma cell stage
(Figure 1). From the standpoint of the practicing physician, an
important question is whether the clinical phenotype suggests the
possibility of identifying a causative mutation and if so, the gene(s)
most likely to underlie the immune defect. Here we address this
question in a large patient group from one medical center,
encompassing an urban patient population on the East Coast of
the United States.

Methods

Patient selection

Subjects were seen in the Immune Deficiency program at the
Icahn School of Medicine at Mount Sinai. Patients were diagnosed
with CVID using established criteria, including serum IgG and IgA
and/or IgM deficiency with proven loss of antibody production

FIGURE 1
A number of the immune defects found in patients with CVID, are in genes involved in the generation and maturation of human B cells.
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(Bonilla et al., 2016; Picard et al., 2018; Seidel et al., 2019).
Immunologic and clinical histories were collected from the
clinical record and selected manifestations of inflammatory/
autoimmune complications were recorded. For purposes of the
current study, these sometimes partly overlapping medical
conditions are autoimmunity, interstitial lung disease,
granulomatous disease identified in one or more tissues, cancer,
lymphoma, significant gastrointestinal disease, and previous
splenectomy. Ethical permission for these studies was obtained
from the Mount Sinai Institutional Review Board, and Informed
consent was obtained from all individuals and/or their legal
guardians.

Genetic evaluation
Whole exome sequencing: Genetic evaluation was done by whole

exome sequencing (WES) as previously described (Maffucci et al.,
2016; Picard et al., 2018; Maffucci et al., 2019). For this genomic
DNA was extracted from peripheral blood mononuclear cells and
sheared with a Covaris S2 Ultrasonicator. An adaptor-ligated library
was prepared with the Paired-End Sample Prep kit V1 (Illumina).
Exome capture was performed with the SureSelect Human All Exon
kit (Agilent Technologies). Massively parallel sequencing was
performed on a HiSeq 2,500 (Illumina), which generates 100-base
reads. Sequences were aligned for variant calling and annotation
with the human genome reference sequence (hg19 build) using
BWA aligner (Li and Durbin, 2009). Downstream processing was
performed with the Genome analysis toolkit (GATK) (McKenna
et al., 2010), SAMtools (Li et al., 2009), and Picard Tools (http://
picard.sourceforge.net/). A GATK UnifiedGenotyper and a GATK
IndelGenotyperV2 were used to identify substitution and indel
variant calls, respectively. Calls with a read coverage of ≤2x and
a Phred-scaled single-nucleotide polymorphism (SNP) quality
of ≤20 were filtered out. All variants were annotated with the
GATK Genomic Annotator (Broad Institute). Heterozygous and
homozygous variants were excluded if the allele frequencies in the
general population were greater than 0.01% or 1.0%, respectively, in
the Exome Aggregation Consortium database (ExAC, Broad
Institute) and Genome Aggregation Database (gnomAD, Broad
Institute) in respect with genetic model tested. This filtering
strategy excluded polymorphic variants from consideration.
Familial segregation was studied when samples were available.
Other candidate mutations were confirmed by examining read
alignment in the Integrated Genomics Viewer (IGV; Broad
Institute). All confirmed mutations were subsequently analyzed
using computational predictors of mutation severity including
Sift (Ng and Henikoff, 2003), Polyphen 2 (Adzhubei et al., 2010).
and Combined Annotation Dependent Depletion (CADD) (Kircher
et al., 2014) and were compared with the gene-specific mutation
significance cutoff (MSC) (Itan et al., 2016). Variants with CADD
scores below the gene-specific MSC were excluded with the
exception of CXCR4, LIG1, LRBA and NFKB2, 4 genes with a
very high MSC (>32), but known to be causal of CVID.
Confirmed variations were also screened through the Human
Gene Mutation Database (Stenson et al., 2003) to identify
published disease-associated variations. In a number of cases, the
variants selected were tested for pathogenicity, and if not,
categorized (as likely benign, VUS - Variant of Uncertain
Significance, or likely pathogenic.). The pathogenicity of all

disease attributable gene variants was evaluated using the
updated guideline for interpretation of molecular sequencing by
the American College of Medical Genetics and Genomics (ACMG)
considering the allele frequency, computational data,
immunological/functional data, familial segregation and parental
data and clinical phenotyping (Richards et al., 2015).

Using a targeting panel of genes: More recently, patient exomes
were also examined for mutations in 429 genes associated with a
primary immune deficiency disease (Invitae Diagnostics), when
faster results were needed and insurance or other payment for
this service was available. For inheritance questions, the targeted
sequence method was used in particular as it has the Clinical
Laboratory Improvement Amendments (CLIA) certification
needed for clinical decision analysis. As the targeted panel
contains only a defined panel of genes, the above WES method
was also used on these same samples so that the data could be
verified, and so that additional queries for new genes could be
undertaken at a later date.

Statistics
For evaluating the significance of genetics as related to clinical

observations, Graphpad Prism was used; a p-value of less than
0.05 was considered significant.

Results

Patients

The Mount Sinai cohort of 405 genetically-tested CVID patients
included 26 cases in which a family history was noted (Table 1). The
age range of patients was 5–77 years, with median age of 44 years;
187 were female and 218 were male. Of these subjects, most were of
European descent, 22 were Hispanic, 12 were Black, and 4 were
Asian.

Mutations identified

In this cohort, 125 of 405 subjects (31%) had mutations
considered deleterious while the remainder (280) had no clear
genetic abnormality identified. As reported previously, around
10% of our patients (42 subjects) have variants in the
TNFRSF13B/TACI gene (Transmembrane Activator and CAML
Interactor) most of these known to be functionally deleterious

TABLE 1 CVID subjects.

Parameters N

Number 405

Males 218

Females 187

Median age, years (range) 44 (5–77)

Relatives with immune defects 26

Gene candidates identified (%) 128 (31%)
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(Salzer and Grimbacher, 2021). These included compound
heterozygous mutations in 5 subjects, and homozygous mutations
in one subject. These variants would be considered associated but
not causative of CVID. (Table 2). Sixteen other subjects had
autosomal dominant (AD) NFKB1 deficiency (Nuclear Factor
Kappa B Subunit 1), and 7 others had NFKB2 (Nuclear Factor
Kappa B Subunit 2) defects, both viewed as causative of this immune

defect (Chen et al., 2013; Tuijnenburg et al., 2018; Li et al., 2021).
More than one subject had mutations in heterozygous genes
previously found in subjects with a CVID phenotype: IRF2BP2,
CTLA4 and IKZF1 (in 6 subjects each), TCF3 (in 5 subjects), BACH2
(in 4 subjects), and in STAT3, and PIK3CD (3 subjects for each).
Three other subjects had autosomal recessive (AR) deficiency of
LRBA. Four adult subjects with infections, autoimmunity and mild

TABLE 2 Gene variants identified - 125 subjects (31% of the group).

Gene variants Number Name Inheritance

TNFRSF13Ba 42 Transmembrane Activator and CAML Interactor AD

NFKB1 16 Nuclear Factor Kappa B Subunit 1 AD

NFKB2 7 Nuclear Factor Kappa B Subunit 2 AD

IRF2BP2 6 Interferon regulatory factor-2 binding protein AD

CTLA4 6 Cytotoxic T-Lymphocyte Associated Protein 4 AD

IKZF1 6 IKAROS Family Zinc Finger 1 AD

TCF3 5 Transcription Factor 3 AD

BACH2 5 BTB Domain and CNC Homolog 2 AD

KMT2D 4 Lysine Methyltransferase 2 AD

STAT3 3 Signal Transducer And Activator Of Transcription 3 AD

PIK3CD 3 Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Delta AD

LRBA 3, compd het LPS Responsive Beige-Like Anchor Protein AR

CXCR4 3 C-X-C Motif Chemokine Receptor 4 AD

DiGeorge 22q11 or TBX1 3 DiGeorge syndrome AD

WAS 2 Wiskott Aldrich syndrome XL

RAG1/RAG2 2 Recombination Activating Genes 1/2 AR

AICDA 1, homozygous Activation induced cytidine deaminase AR

STXBP2 1, compd het Syntaxin Binding Protein 2 AR

PMM2 1, compd het Phosphomannomutase AR

PIK3R1 1 Phosphoinositide-3-Kinase Regulatory Subunit 1 AD/AR

LIG4 1 homozygous DNA Ligase 4 AR

JAK1 1 Janus Kinase 1 AR

IKBKG 1 Regulatory gamma subunit of the IKB kinase (IKK) XL

TBX1 1 T-box protein 1 AD

PMS2 1, compd het PMS1 Homolog 2, Mismatch Repair System AR

FOXP3 1 Fork-winged helix family XL

LIG1 1, compd het DNA Ligase 1 AR

CIITA 1, compd het Master regulator of MCH class II gene transcription AR

BTK 1 Bruton Tyrosine Kinase XL

ADA2 1 Adenosine deaminase 2 AR

CD40L 1 CD40 Ligand XL

RTEL1 1, compd het regulator of telomere elongation helicase 1 AR

aIncludes compound heterozygous mutations in 4; homozygous mutations in one; 8 of these also had an additional deleterious mutation in TBX1, TCF3, IL10RA, NFKB2, NBAS, or a DiGeorge

chromosome loss; AD , autosomal dominant; AR , autosomal recessive; XL = X linked.
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retardation had mutations in KMT2D (Lysine Methyltransferase 2),
a gene associated with Kabuki syndrome. Two sisters and the son of
one of them, with no warts and moderate neutropenia, but severe
autoimmune thrombocytopenia and autoimmune hemolytic
anemia, had frameshift mutations in CXCR4 (C-X-C Motif
Chemokine Receptor 4), a gene associated with WHIM syndrome
(warts, hypogammaglobulinemia, infections, and myelokathexis)
(Maffucci et al., 2016; Abolhassani et al., 2020). Note that as in
other reports, genes identified with previously un-identified
X-immune linked defects were also noted in this cohort, BTK,
CD40L, IKBKG and WAS (Table 2). Complicating the genetics is
that in 15 subjects studied, more than one heterozygous variant,
predicted to be deleterious, was identified. This included 8 subjects
with at least one TACI variants, but additional variants in other
autosomal dominant or recessive genes were also noted, for example,
in TBX1, TCF3, IL10-RA, NFKB2, NBAS, RAG1, RAG2 or a
DiGeorge chromosome 22q deletion (Table 3). Further
information related to minor allele frequency, and predicted
deleterious effects on the selected variants are included in
Methods and Supplementary Table S1.

Genetics and clinical phenotypes

We then examined if subjects with autoinflammatory,
autoimmune, lymphoproliferative, neoplastic, granulomatous
infiltrates, and/or gastrointestinal complications were more likely
to have mutations in one or more of the genes identified in CVID, in

contrast to others for whom a gene was not identified. Table 4
outlines the results for this cohort, dividing subjects according to
whether or not a gene defect was identified in subjects with
autoimmunity, significant pulmonary, gastrointestinal disease or
liver disease, biopsy-demonstrated granulomatous disease,
previous splenectomy, cancer, or lymphoma. Various forms of
autoimmunity were noted in 151 subjects (37%) of the 405 group
genetically tested, with no sex predominance. Of the 125 subjects
with genes identified, 59 (47%) had autoimmunity, while of the
larger group of 281 subjects with no gene noted, 32% had
autoimmunity, suggesting some enrichment of this clinical
feature in those with any known gene association; however these
differences were not statistically significant. We also examined the
types of autoimmunity in each group, in those with or without
identified gene variants. Tables 5, 6 show these data. However, for
both sets of patients, the most prominent autoimmune conditions
were cytopenias, particularly thrombocytopenia, hemolytic anemia
(or both, i.e., Evan’s syndrome) or, in fewer numbers, neutropenia
(Figure 2). The mutations found in those with autoimmunity are
included in Supplementary Table S2. Note that of these, 14 had
mutations in the TACI gene (2 with compound heterozygous
variants, one with homozygosity) and 4 others were in
association with additional deleterious variants). Five of the
subjects with autoimmunity had mutations in NFKB1, 4 had
variants in CTLA4, IKZF1, or in STAT3, and with other genes
noted in other subjects.

Significant pulmonary disease (interstitial lung disease,
numerous nodules, and/or known granulomatous disease or

TABLE 3 Subjects with more than one gene variant.

Subject Variant Other variants

1 BACH2 p.Gly483Ser POLE c.2706 + 1G>T

2 BACH2 p.Glu797* IKZF1 p.Asn350His

3 CTLA4 c.109 + 1G>A IRFBP2 p.Gln97His

4 JAK1 p.Asn76Ser STAT3 p.Val461Leu

5 NFKB2 p.Gly719Glu TACI p.Leu69Thr fs*12

6 NFKB2 splicing TACI p.Cys104Arg

7 PIK3R1 start_gained/start_gained DCLRE1C del exon 1–3

8 TACI p. Ala181Glu TBX1 p.Leu1007Profs*2

9 TACI p.Ala181Glu Di George 22q11.2 deletion

10 TACI p.Glu236* PMM2 p.Arg141His

11 TCF3 p.Asn554Ser DOCK8 c.54-1G>T

12 TCF3 p.Ile562Val TACI p.Leu69fs/p. Cys104Arg

13 TCF3 p.Pro96Leu TACI p.Lys188del

14 TACI p.Ala181Glu IL10RA p.Arg147Profs*4

NBAS Deletion (Exons 45–52) p.Ser712*)

TMPRSS15

15 RAG1 p.Asp212Asn RAG2 p.Asp400His

16 RAG1 p.Asn968Lys RAG2 p.Met110Leu
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respiratory failure) was observed in 39 subjects. Of these (31%) had
an identified gene defect, as compared to 17.5% of those with no
gene noted, suggesting a slight but not significant enrichment of
significant respiratory disease in those with an identified gene, p =
0.053. Of those with significant lung disease, 12 subjects had a TACI
variant, 4 had NFKB2, 4 had NFKB1 and 3 others had PI3KCD
variants. Mutations in the genes, BACH2, KMT2D, LRBA, LIG4,
STAT3 FOXP3 and CASP8 were identified in other patients as
outlined (Supplementary Table S3). Thirteen of these subjects
had been diagnosed as having granulomatous lymphocytic
infiltrates in the lungs (GLILD) (Bates et al., 2004). Overall, the
tissue diagnosis of granulomatous disease (in lymph nodes, lung
skin, or liver) was noted in 22 (17.7%) of the subjects with defects in
known genes (BACH2, CTLA4, KMT2D, LRBA, PIK3R1, STAT3,
TACI, TCF3 or WAS.) This was significantly different from the
20 other subjects (7.5%) with granulomatous infiltrations) with no
known gene defect, (p = 0.046).

The diagnosis of cancer or lymphoma was made in 18 patients
(14.5%) with an identified gene defect, including 9 lymphoid
malignancies and 6 other cancers, with the genetic changes noted
for each (Table 7). Cancer or lymphoma was also diagnosed in

32 other subjects (11%) with no known genetic variants (not
significantly different.) Gastrointestinal and/or liver disease were
noted in similar proportions in each group, with the genes noted in
Supplementary Table S4. Splenectomy, usually done for treatment of
cytopenias, had been performed in 34 patients overall, with 17
(13.7%) of these in subjects with known genetic variants, as opposed
to 17 others (6%) with no known genetic association (not
significantly different.) Of the splenectomized subjects, 7 had
TACI gene variants; others included NFKB1 in 4, LRBA, TCF3,
STAT3, NFKB2, CTLA4 and RAG1/RAG2.

We also considered if those with genetic variants might have
specific types of unusual infections. However, a history of infections
with Herpes Zoster, Candida sp, Giardia, Clostridia difficile,
Helicobacter pylori, Norovirus, Campylobacter, Herpes simplex, or
more unusual infections with atypical mycobacteria, mycoplasma,
histoplasmosis, or cryptococcus, were seen in subjects with and
without genetic variants.

Discussion

A number of previous studies have outlined the clinical
phenotypes of large patient groups with antibody deficiency
who have mutations in selected genes, including the TACI
gene (Salzer et al., 2005; Zhang et al., 2007; Salzer et al.,
2009), CTLA4 (Schwab et al., 2018), NFKB1 (Lorenzini et al.,
2020), NFKB2 (Klemann et al., 2019), STAT3 (Fabre et al., 2019),
PI3KCD (Jamee et al., 2020), or LRBA (Habibi et al., 2019). These
studies describe the infectious, autoimmune and inflammatory
characteristics of patients with these specific inborn errors of
immunity. Here, the genetic analyses of CVID patients from one
large cohort were examined to determine if the clinical
complications might lead the physician to suspect a genetic
defect in one or more of the previously established causal
genes. In the current cohort of 405 subjects, 125 (31%) had an
identifiable causative or associated genetic variant, similar to
other investigated cohorts (Abolhassani et al., 2020; Rojas-
Restrepo et al., 2021), however leaving the majority of patients
without a known genetic cause. Autoimmunity was one of the
commonest conditions for this group of patients with 37% of the
patients having one or more of these conditions. Of these, 47% of
them carried a predicted deleterious variant, while for those with
no gene noted, 32% had autoimmunity. The autoimmune
conditions noted were similar for each group, with cytopenias
being the most prevalent manifestation, resulting in splenectomy
in a number of subjects. While patients with mutations in CTLA4,
IKZF1, STAT3 and LRBA were in the autoimmune group, the
largest number had variants in the TACI gene. While variants in

TABLE 4 Percentage of complications in each group.

Auto-
immunity %

Pulmonary
%

Gastro-
intestinal %

Liver
%

Granuloma
%

Splenec-
tomy %

Cancer
%

Lymphoma
%

With gene
N= 125

47 31 16 17 17.6 13.6 8 6.5

no gene
N= 280

32 17.5 18 9 7 6 4.3 7.5

TABLE 5 Autoimmunity: Gene identified.

N = 125

Condition Number %

ITP 25 37

AIHA ITP 16 24

AIHA 4 6

Neutropenia 4 6

Diabetes Mellitus 4 6

Autoimmune hepatitis 3 4

Alopecia 2 3

Pancytopenia 2 3

Uveitis 2 3

Opsoclonus myoclonus 1 1

Psoriatic arthritis 1 1

Myasthenia Gravis 1 1

TTP 1 1

PSC 1 1
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TABLE 6 Autoimmunity: No gene identified.

N = 280

Condition Number %

ITP 42 45

AIHA ITP 11 12

Diabetes 7 8

AIHA 5 5

Thyroiditis 4 5

Neutropenia 3 3

Uveitis 3 3

RA 3 3

Psoriasis 2 2

Vitiligo 2 2

Multiple Sclerosis 2 2

ANA+ 1 1

B12 Deficient 1 1

Anti-phospho-lipid antibody 1 1

Scleroderma 1 1

Red cell aplasia 1 1

AIHA , autoimmune hemolytic anemia; ITP , immune thrombocytopenia; TTP, thrombotic thrombocytopenic purpura; PSC , primary sclerosing cholangitis; ANA, antinuclear antibody; RA ,

rheumatoid arthritis; PSC , primary sclerosing cholangitis.

FIGURE 2
The kinds of autoimmune conditions found in patients with, and without identified genetic defects are similar.
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the TACI gene are not thought to be disease causing, they are
commonly associated with autoimmunity in CVID (Salzer et al.,
2005; Zhang et al., 2007), possibly explaining this enrichment. If
subjects with a TACI variant are excluded, 35% of subjects with a
known gene were noted to have autoimmunity, more similar to
those for whom no gene was identified (at 32%) as illustrated
(Figure 3) The autoimmune cytopenia (ITP or AIHA) resulted in
splenectomy in 34 patients, and 7 of the 17 with a known gene,
had a TACI variant. Significant respiratory disease was also more
common in those subjects with a known gene defect (at 31%).
Excluding the 8 subjects with a TACI variant, 25% of these
subjects had this complication, more similar to those with no
known genetic background (17.5%). Granulomatous disease was
overall, significantly enriched in those with genes identified.
In this group, 17.6% had this complication if they had TACI
variants; if these are excluded, the percentage was 14%, as opposed to
7% of those with no noted genes. Other complications, such as
gastrointestinal, substantial liver disease or cancer appeared in
subjects with and without identified genetic defects in similar
numbers (Figure 3).

As the data presented here was gathered over a decade, a
question that might arise if the DNA samples tested over time,
using WES or the targeted panel, would lead to different results.
We did not find this difficulty, but using the two methods led to
confirmation. In addition, the accumulation of genetic data
obtained by WES on all samples, also allowed for continued
surveying for newly reported mutational differences. This
allowed for updating as new genes contributing to the CVID
phenotype were identified, and allowed all samples to be
examined by the same parameters. The targeting panel was
particularly useful for rapid analysis or inheritance questions,
but even in these cases, WES was still performed. Limitations of
this study include the fairly narrow demographic background of
the subjects referred, a known reason for genetic differences in
any CVID patient population (Abolhassani et al., 2020; Rojas-
Restrepo et al., 2021), and the possibility of incomplete clinical
information as these data were collected over varying periods of
time. A further limitation is that confirmation of the
pathogenicity of the identified variants depends on previous
publications, in vitro assays where available, and the genetic

TABLE 7 Gene defects in cancers and lymphoma.

Gene Consequence Cancer Lymphoma/Leukemia

BTK p.Tyr418His Esophagus -

CD40L indel-frameshift Bladder -

IKZF1 p.Ser385* T cell leukemia

LRBA p.Ile2232Thr/p.Ala892Thr Mouth -

NFKB2 p.His98Asn - Gastric Maltoma

TACI p.Cys104Arg

NFKB2 p.Gly719Glu - Gastric Maltoma

TACI p.Leu69fs

PI3KCD p.Glu1021Lys - Lymphoma

PI3KCD p.Glu1021Lys Ovary -

PIK3R1 start gained/start gained MALT Lymphoma

DCLRE1C del exon 1–3

RAB27A. del exon 2 Gall Bladder

PMS2 p.Ile18Val/p.Arg563Leu

TACI p.Cys104Arg Plasmablastic Lymphoma

TACI p.Cys104Arg Rectal -

TACI p.Ala181Glu - MALT Lymphoma

TCF3 p.Ile562Val - Lymphoma

TACI p.Leu69fs/Cys104Arg

TACI/ p.Ala181Glu Lymphoma

TMPRSS15 p.Ser712*

NBAS deletion exons 45–52

IL10RA p.Arg147Pro fs*4
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methods used to assign the likelihood of a variant of dexterous
variant exerting a deleterious change.

Overall, we conclude that CVID subjects with currently
identifiable gene variants, either associated with or causative
of this immune defect, appear to have an increased numbers
of autoimmune manifestations, more significant respiratory
disease and granulomatous changes in pathology; some of
these differences can be attributed to co-existence of TACI
variants as a genetic modifier. However, numerous other
patients with no genetic basis yet discovered, have similar
medical histories. It is possible that aside from genetics, these
different clinical manifestations result from metabolic,
environmental factors or epigenetic causes (Del Pino-Molina
et al., 2019; Jorgensen et al., 2019; Macpherson et al., 2019;
Ho et al., 2021; Rodriguez-Ubreva et al., 2022; Macpherson
et al., 2023). While the majority of patients who carry the
“CVID” diagnosis do not yet have a clarified molecular cause,
the genetic discoveries in antibody defects continue to reveal the
complex immunologic pathways needed to initiate and sustain
normal B cell development and the long-term maintenance of
B cell memory. With further exploration, more digenic or even
polygenic causes of CVID are likely to be dissected, considering
the intersecting immunologic pathways.
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