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Objective: Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver
disease in the world, and its pathogenesis is not fully understood. Disulfidptosis is
the most recently reported form of cell death and may be associated with NAFLD
progression. Our study aimed to explore the molecular clusters associated with
disulfidptosis in NAFLD and to construct a predictive model.

Methods: First, we analyzed the expression profile of the disulfidptosis regulators
and immune characteristics in NAFLD. Using 104 NAFLD samples, we investigated
molecular clusters based on differentially expressed disulfidptosis-related genes,
along with the related immune cell infiltration. Cluster-specific differentially
expressed genes were then identified by using the WGCNA method. We also
evaluated the performance of four machine learning models before choosing the
optimal machine model for diagnosis. Nomogram, calibration curves, decision
curve analysis, and external datasets were used to confirm the prediction
effectiveness. Finally, the expression levels of the biomarkers were assessed in
a mouse model of a high-fat diet.

Results: Two differentially expressed DRGs were identified between healthy and
NAFLD patients. We revealed the expression profile of DRGs in NAFLD and the
correlation with 22 immune cells. In NAFLD, two clusters of molecules connected
to disulfidptosis were defined. Significant immunological heterogeneity was
shown by immune infiltration analysis among the various clusters. A significant
amount of immunological infiltration was seen in Cluster 1. Functional analysis
revealed that Cluster 1 differentially expressed genes were strongly linked to
energy metabolism and immune control. The highest discriminatory performance
was demonstrated by the SVM model, which had a higher area under the curve,
relatively small residual and root mean square errors. Nomograms, calibration
curves, and decision curve analyses were used to show how accurate the
prediction of NAFLD was. Further analysis revealed that the expression of three
model-related genes was significantly associated with the level of multiple
immune cells. In animal experiments, the expression trends of DDO, FRK and
TMEM19 were consistent with the results of bioinformatics analysis.

Conclusion: This study systematically elucidated the complex relationship
between disulfidptosis and NAFLD and developed a promising predictive model
to assess the risk of disease in patients with disulfidptosis subtypes and NAFLD.
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Introduction

Non-alcoholic fatty liver disease (NAFLD), the most prevalent type
of liver disease in the world, is a metabolic syndrome that may progress
from simple liver steatosis to non-alcoholic steatohepatitis, which
increases the risk of developing cirrhosis and cancer (Powell et al.,
2021). The prevalence of NAFLD is approximately 29.62% over all of
Asia, according to studies (Li et al., 2019). It is also now recognized as a
multisystem metabolic illness, and it is closely linked to a higher risk of
cardiovascular disease and chronic kidney disease (Cai et al., 2020; Li
et al., 2022). More importantly, the most widely accepted “multiple
strikes” theory does not yet fully explain the disease mechanism; as a
result, the most effective approaches to treating and preventing NAFLD
currently focus more on reducing the patient’s body mass and
improving diet and lifestyle (Lin and Kohli, 2020; Pugliese et al.,
2022). An increasing number of biomarkers have been linked to
NAFLD recently, but the results may not be conclusive because of
limited sample sizes or individual data sets (Jiang et al., 2021; Zeng et al.,
2021). Therefore, it would be crucial for therapeutic purposes to further
precisely identify the molecular subtypes of NAFLD at the molecular
level and to create multivariate prediction models.

A recent investigation by Liu et al. discovered a new form of cell
death: disulfidptosis (Liu et al., 2023). Disulfide bonds play a
significant role in the creation and breakdown of actin
cytoskeleton proteins, and changes in the redox status of cells are
linked to the occurrence of disulfidptosis, which can induce cell death
by changing the configuration of cytoskeletal proteins (Zheng et al.,
2023). Importantly, oxidative stress accelerates the development of
NAFLD by activating several transcription factors (Tu et al., 2019),
promoting the activation of hepatic stellate cells, macrophages, and
Kupffer cells, exacerbating inflammation, fibrosis, and apoptosis in
NAFLD (Pan et al., 2020). Additionally, insulin resistance and
NAFLD disease development are also highly correlated with sulfide
metabolism (Dhamija et al., 2009; Lu et al., 2022). As a result, we
postulated that disulfidptosis is likely linked to the emergence of
NAFLD. Therefore, it may be possible to explain NAFLD by better
understanding the molecular properties of the disulfidptosis-related
genes (DRGs).

In our study, we extensively analyzed the immune
microenvironment and the differentially expressed disulfidptosis-
related genes (DE-DRGs) in NAFLD patients and controls. We
further separated NAFLD patients into two clusters associated with
disulfidptosis based on DE-DRGs and evaluated the immune cell
disparities between the two clusters. The biological processes and
pathways of enrichment were then elucidated using cluster-specific
differentially expressed genes (DEGs), which were discovered using the
Weighted gene co-expression network analysis (WGCNA) algorithm.
Additionally, by evaluating the discriminative performance of four
machine learning algorithms, a predictive model was created that
revealed patients with different molecular clusters. We used the
model genes to construct the nomogram while calibration curve and
decision curve analysis (DCA) were used to demonstrate the predictive
power of the nomogram. Receiver operating characteristic (ROC) curve
analysis was performed on two external datasets to validate the

diagnostic value of the diagnostic models. More importantly, three
genes were highly correlated with the formation of disulfidptosis-
associated clusters, and the results of GSEA analysis showed that
they may be involved in NAFLD formation by inhibiting the anti-
oxidative stress pathway. Disulfidptosis occurs when cells undergo
disulfide stress due to glucose deficiency or oxidative stress (Hu
et al., 2023). DDO, FRK, and TMEM19 are likely to be involved in
disulfidptosis via this pathway thereby advancing NAFLD progression.
To strengthen the case for our study, we further validated the expression
of three model-related genes in the high-fat diet (HFD) mouse model.

Material and methods

Data collection

The study’s flow chart is shown in Figure 1. We conducted a
systematic search of the Gene Expression Omnibus database (GEO)
(http://www.ncbi.nlm.nih.gov/geo/) using the terms: “Homo sapiens” and
“NAFLD”. This study included datasets that met the following eligibility
criteria: 1) the type of study was expression profiling by array; 2) the
dataset contained liver tissue samples fromNAFLDpatients and controls;
3) the sample size was greater than 15; 4) the raw data or array gene
expression profiles were available in the GEO. Finally, five datasets were
identified from the GEO database. GSE89632 (Microarray, platform
GPL14951) (Arendt et al., 2015), GSE48452 (Microarray, platform
GPL11532) (Ahrens et al., 2013), GSE66676 (Microarray, platform
GPL6244) (Xanthakos et al., 2015), GSE63067 (Microarray, platform
GPL570) (Frades et al., 2015) and GSE164760 (Microarray, platform
GPL13667) (Pinyol et al., 2021)were included in this study.

Datasets analyses

First, we combined the datasets GSE89632, GSE48452, and
GSE66676, which had 72 normal samples and 104 NAFLD
samples. Then, the merged gene expression datasets were
normalized by using the “sva” package (Leek et al., 2012). DEGs
between the NAFLD and control groups were discovered using the
“limma” package (Colaprico et al., 2016). p-values lower than
0.05 were regarded as statistically significant. The datasets
GSE63067, including 14 normal samples and 32 NAFLD samples,
and GSE164760 including 6 normal samples and 74 NAFLD samples,
were used to be the validation set. In the Liu et al. research, ten genes
were connected to disulfidptosis (Liu et al., 2023). GYS1, NDUFS1,
OXSM, LRPPRC, NDUFA11, NUBPL, NCKAP1, RPN1, SLC3A2,
and SLC7A11 are among these genes (Liu et al., 2023).

Immune infiltration analysis

To determine the relative abundances of 22 immune cells in each
sample, the CIBERSORTmethod was used (Supplementary Table S1)
(Zhao et al., 2023). The sum of the 22 immune cells proportions in
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each sample was 1, and p < 0.05 represented a significant correlation.
We assessed the correlations between the proportional percentage of
immune cells and the expression of the DRGs using the spearman
correlation coefficient. Histograms, heat maps, and box plots were
plotted using the “ggplot2” R packages (version 0.92).

Unsupervised clustering of NAFLD patients

Based on DE-DRGs, unsupervised clustering analysis of NAFLD
patients was performed by using the R package “ConsensusClusterPlus”
(version 2.60) (Wilkerson and Hayes, 2010). Cumulative distribution
function (CDF) curves, consensus matrix, and consistent cluster score
were used to estimate the optimal cluster number.

Gene set variation analysis

The “c2. cp.Kegg.symbols” and “c5. go.symbols” files from the
MSigDB database were first downloaded for this investigation. The

enrichment differences between GO and KEGG pathways were then
clarified using a non-parametric unsupervised gene set variation
analysis (GSVA) approach by the R package of “GSVA” (version
2.11) (Hänzelmann et al., 2013). p-value lower than 0.05 was the
cutoff value for the statistical significance term.

Gene set enrichment analysis

The “clusterProfiler” package (version 3.16.1) was used to
perform a Gene Set Enrichment Analysis (GSEA), which was
then used to determine whether KEGG pathways had an
abundance of relevant genes (Kumar and Futschik, 2007).

Weighted gene co-expression network
analysis

Utilizing the “WGCNA” R package (version 1,70.3), WGCNA
analysis was carried out on the training set to look into the

FIGURE 1
Research flow chart.
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connection between gene networks and diseases (Langfelder and
Horvath, 2008). To ensure the accuracy of the study, we first
grouped the samples and eliminated outliers. A soft threshold
from 1 to 20 was used for topology calculation to determine the
optimal soft threshold. When the minimum module size was set to
100, a “dynamic tree cutting” algorithm was used to group genes
with similar patterns into modules. Finally, Pearson correlation
analysis was performed to calculate the correlation between
modules and traits. Based on the correlation between modules
and clinical features, the most relevant module to the disease is
selected as the key module.

Construction of a predictive model based on
several machine learning algorithms

Through the use of the “caret” R package (version 6.0.91), we
constructed four machine learning models by using data from two
distinct DRGs clusters. These models were the random forest model
(RF), the support vector machine model (SVM), the generalized
linear model (GLM), and the eXtreme Gradient Boosting (XGB)
(Nelder and Wedderburn, 1972; Gold and Sollich, 2003; Chen and
Guestrin, 2016; Rigatti, 2017). The distinct clusters were considered
as the response variable, and the cluster-specific DEGs were selected
as explanatory variables. 104 NAFLD samples were randomly
classified into training and testing cohort. All these machine
learning models were using default parameters and evaluated by
5-fold cross-validation. The caret package (Long and Yang, 2020)
was used to automatically adjust the parameters of these models. The
aforementioned four machine learning models are analyzed by using
the “DALEX” R package (version 2.4.0) to illustrate the relevance of
features across these machine learning models as well as the
distribution of residuals. The “pROC” R package (version 1.18.0)
was used to visualize the area under the ROC curve. As a result, we
determined the top machine-learning models for NAFLD and
selected significant prognostic genes linked to NAFLD for
additional research. The diagnostic utility of this diagnostic
model was subsequently validated using ROC curve analysis on
the GSE63067 and GSE164760 datasets.

Construction and validation of the
nomogram model

Using the R package “rms” (version 6.2.0) and the screened
model genes, we built a diagnostic nomogram model and then used
calibration curves and DCA to evaluate the nomogram model’s
predictive ability.

Animal models

Twenty-four 6-week-old male C57BL/6J mice were kept in
conventional housing (room temperature: 23°C ± 2°C; 12-h light/
dark cycle) with unrestricted access to food and water. Twelve mice
each were randomly assigned to the normal chow (NC) and high-fat
diet (HFD) groups after 1 week of acclimatization, and each group
received either the high-fat diet (60 kcal% fat; d12492, medicine,

Jiangsu, China) or standard laboratory food. After 12 weeks of HFD
feeding, a mouse model with non-alcoholic fatty liver was created
(Dusabimana et al., 2021; Qian et al., 2021). All mice were
anesthetized using 2% isoflurane after 12 weeks. After mice were
sacrificed by cervical dislocation, blood samples and liver tissues
were collected. All studies were approved by the Professional
Committee for Animal Protection of Harbin Medical University
(2022-DWSYLLCZ-20).

Histology, and liver triglyceride levels

For histological analysis, formalin-fixed mouse liver tissues were
processed and 5-μm-thick paraffin sections were cut and stained
with hematoxylin-eosin (H&E). Triglyceride (TG) content in the
liver was measured by a commercial kit (A110-1-1; Jiancheng,
Nanjing, China) according to the manufacturer’s instructions.

Quantitative RT-PCR analysis

TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was used to
extract total RNA from homogenized tissues. Then, 2*SYBR Green
qPCR (Vazyme, Nanjing, China) was used to analyze gene
expression after 1 ug of total RNA was reverse transcribed using
PrimeScript reverse transcriptase (Takara, Kusatsu, Japan). The
expression of β-actin was taken as the control. In Supplementary
Table S2, the primer sequences are presented.

Data analysis

R software (version 4.2.0) was used to conduct bioinformatics
analyses. The software GraphPad Prism version 9.0 was used to
statistically analyze and visualize the data from animal experiments.
Using an unpaired Student’s t-test, the means of two groups of
normally distributed variables were compared. Data are presented as
the mean ± standard deviation. p < 0.05 were considered
significantly different.

Results

Dysregulation of disulfidptosis regulators
and activation of the immune responses in
NAFLD patients

First, we merged and normalized three GEO datasets:
GSE89632, GSE48452, and GSE66676 (Supplementary Figures S1,
S2). Subsequently, we investigated the expression patterns of the
10 DRGs in control and NAFLD samples (Figure 2A), and the
results showed that NCKAP1 was significantly highly expressed in
NAFLD samples, while SLC3A2 was lowly expressed in NAFLD
samples (Figure 2B). Also, the chromosomal positions of the
10 DRGs were visualized (Figure 2C).

Previous research indicates a direct connection between NAFLD
and the immunological microenvironment (Huby and Gautier,
2022). To investigate the variations in the immune
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microenvironment between NAFLD patients and normal samples,
we applied the CIBERSORT algorithm. As seen in Figure 2D,
compared to normal samples, NAFLD samples had reduced
proportions of monocytes, activated dendritic cells, activated
mast cells, eosinophils, and neutrophils, as well as higher
proportions of M1 macrophages, M2 macrophages, resting
dendritic cells, and resting mast cells. This raises the possibility
that immune system changes may be the primary cause of NAFLD.
Additionally, Figure 2E’s correlation analysis revealed that
NCKAP1 was considerably negatively connected with memory
B cells, M2 macrophages, and regulatory T cells, and significantly
positively correlated with activated dendritic cells. While
SLC3A2 was strongly inversely connected with resting mast cells
and δγT cells, it was considered positively correlated with
neutrophils and monocytes. This data suggests that the altered
immune milieu of NAFLD may be significantly influenced by
NCKAP1 and SLC3A2, which act as disulfidptosis molecules in
NAFLD patients.

Identification of disulfidptosis clusters in
NAFLD

To elucidate the expression patterns associated with DRGs in
NAFLD, we grouped the NAFLD samples based on DE-DRGs using
a consensus clustering algorithm. When k = 2, examination of the
Delta area and the CDF value showed that the results of clustering
was relatively stable (Figure 3A, B). The highest consensus values (all
over 0.9) were observed for each subtype when k = 2 (Figure 3C).

The consensus matrix showed that each sample in the cluster
exhibits strong correlation when k = 2, when the samples in the
two subtypes are most stable (Figure 3D). Therefore, k = 2 was the
best choice. To verify the differences between Cluster 1 and Cluster
2 samples, PCA analysis showed significant differences between
these subtypes (Figure 3E). Finally, based on the expression of DE-
DRGs, we categorized the 104 NAFLD samples into two different
subtypes, including Cluster 1 (n = 69) and Cluster 2 (n = 35).

Identification of the immunological
microenvironment and biological function
in different DRGs clusters

To investigate the molecular differences between clusters, we
completely analyzed the DRGs expression differences between
Cluster 1 and Cluster 2. We found that the two clusters had
distinct DRGs expression landscapes (Figure 4A). Meanwhile, we
analyzed the differences in DRGs between different DRGs clusters
and found that SLC3A2 and NDUFA11 were upregulated in Cluster
2 and NCKAP1 was downregulated in Cluster 2 (Figure 4B). We
then examined the variations in immune cells and their immune
activities across various clusters to further study the differences in
immune microenvironment features between various DRGs
clusters. The findings demonstrated that the immunological
microenvironment between Cluster 1 and Cluster 2 was different.
(Figure 4C). Cluster 1 had relatively high levels of resting mast cells
and γδ T cells; whereas monocytes had higher levels of abundance in
Cluster 2 (Figure 4D).

FIGURE 2
Expression profile of disulfidptosis-related genes (DRGs) in NAFLD. (A) Heatmap showing the expression patterns of 10 DRGs in NAFLD and normal
samples. (B) Boxplots showing the expression of DRGs betweenNAFLD and control groups. (C) The location of 10 DRGs on chromosomes. (D)Histogram
showing the distribution of 22 immune cells infiltration between the NAFLD group and control groups. (E)Correlation analysis of 2 differentially expressed
DRGs with 22 immune cells. *p < 0.05, **p < 0.01, ***p < 0.001.

Frontiers in Genetics frontiersin.org05

Yu et al. 10.3389/fgene.2023.1251999

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1251999


We also performed a GSVA analysis to explore the functional
differences between the two clusters. Functional enrichment results
showed that non-homologous end-joining, oocyte meiosis,
propanoate metabolism, and regulation of autophagy pathways
were enhanced in Cluster 2, while the Adipocytokine signaling
pathway, JAK-STAT signaling pathway, and amino acid metabolic
pathway were upregulated in Cluster 1 (Figure 4E). The results
showed that Cluster 2 was closely associated with type III
interferon production, asymmetric cell division, and regulation of
protein localization to the cilium. However, the neutrophil apoptotic
process, positive regulation of dephosphorylation, defense response to
the bacterium, and response to lipids were enriched in Cluster 1

(Figure 4F). Therefore, we hypothesize that Cluster 1 may be involved
in various immunoregulatory and energy metabolic responses.

Building co-expression networks and
screening gene modules

In addition, we analyzed key gene modules closely associated
with disulfidptosis clusters using the WGCNA algorithm. All
samples were clustered in the dataset and no samples were
excluded (Supplementary Figures S3, S4). The value of the
optimal soft power for the training set according to the WGCNA

FIGURE 3
Identification of disulfidptosis-related molecular clusters in NAFLD. (A) Cumulative Distribution Function (CDF) plot of consensus clustering,
showing the curve of the CDF as the number of clusters changes. (B) Delta Area plot, calculating the relative change in the area under the curve (AUC) of
the CDF as the number of clusters increases. (C) Cluster-consensus plot showing the cluster-consensus value with different k values. The higher the
value, the more stable the subtype. (D) Consensus matrix plots depicting consensus values on a white to blue color scale ordered by consensus
clustering when k = 2. (E) PCA plot showing that DE-DRGs effectively classify NAFLD patients into two subgroups. Blue represents Cluster 1; red
represents Custer 2.
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method was 14 (Figure 5A), while for the samples related to the
disulfidptosis clusters was 6 (Figure 5B). And based on the co-
expression network with the optimal soft power, 4 modules were
identified in the training set, including MEblue, MEbrown, MEgrey,
and MEturquise (Figure 5E) and visualized by hierarchical
clustering (Figure 5C). In the disulfidptosis clusters, 9 modules
including MEblack, MEblue, MEbrown, MEgreen, MEgrey,
MEpink, MEred, MEturquise and MEyellow were identified
(Figure 5F) and visualized by hierarchical clustering (Figure 5D).
The blue module showed the strongest association with NAFLD.
The blue module had the strongest correlation with the
disulfidptosis clusters. By analyzing the interaction between
module-associated genes of disulfidptosis clusters and module-
associated genes of NAFLD and non-NAFLD people, a total of

67 cluster-specific DEGs were discovered (Figure 5G;
Supplementary Table S3).

Construction and evaluation of machine
learning models

Based on the expression profiles of 67 cluster-specific DEGs,
we constructed four machine-learning models to further uncover
subtype-specific genes with high diagnostic values. The outcomes
demonstrated that the residuals for the SVM and RF machine
learning models were reasonably low (Figures 6A, B). By
computing the receiver operating characteristic (ROC) curves,
we also assessed the diagnostic performance of the four

FIGURE 4
Identification of immune infiltration and biological functional features in DRGs clusters. (A)Heat map showing the expression profiles of 10 DRGs in
two clusters. (B) Box plot showing the expression differences of 10 DRGs between two DRGs clusters. (C) Relative abundance of 22 immune cells
between two DRGs clusters. (D) Box plot showing immune infiltration differences between DRGs clusters. (E) Differences in hallmark pathway activities
between Cluster1 and Cluster2 samples ranked by t-value of GSVA method. (F) Differences in biological functions between Cluster1 and
Cluster2 samples ranked by t-value of GSVA method. *p < 0.05; **p < 0.01, ***p < 0.001.
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machine learning algorithms in the testing cohort. The root means
square error (RMSE) was then used to order the top 10 significant
feature variables in each model (Figure 6C). The SVM machine
learning model, which had an AUC of 0.836 compared to RF’s
0.773, XGB’s 0.760, and GLM’s 0.552, had the highest AUC
(Figure 6D). Combining these findings, the SVM model was
found to be the most effective at distinguishing patients with
various clusters among the four machine-learning models. We
chose the top five predicted genes (MMP9, DDO, SLC45A3, FRK,
and TMEM19) from the SVM model for additional investigation.

DDO, FRK, and TMEM19 were three of the five genes with AUC
values larger than 0.7 (Figure 6E), and these three genes were
considerably elevated in NAFLD in comparison to controls
(Figure 6F). We also compared their expression differences
between disulfidptosis-associated clusters and the result showed
that the expression of all three genes was greater in Cluster 1 than
in Cluster 2, but the expression of FRK and TMEM19 was
significantly different between Clusters 1 and 2, while the
expression of DDO was not significantly different between
disulfidptosis-associated clusters (Supplementary Figure S5).

FIGURE 5
Identification of NAFLD disulfidptosis cluster-specific DEGs. (A)Determination of Soft Threshold power for the training set. (B)Determination of Soft
Threshold power for the disulfidptosis cluster. When scale-free distribution is reached, the optimal soft-power value for training set is 14 while for the
disulfidptosis clusters it was 6. (C) The origin and merge modules shown under the clustering tree for the training set. (D) Origin and merge modules
shown under the clustering tree for the disulfidptosis clusters. The clustering dendrogram shows the clustering process of the gene modules. (E)
Heatmap of the correlation betweenmodule eigengenes and the occurrence of NAFLD. (F)Heatmap of the correlation betweenmodule eigengenes and
the disulfidptosis clusters. The values in the small cells of the graph represent the two-calculated correlation values cor coefficients between the
eigenvalues of each trait and each module as well as the corresponding statistically significant p-values. (G) Crossover between module-associated
genes in the disulfidptosis cluster and module-associated genes in the training set.
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Establishment of a nomogram for predicting
NAFLD

To better predict the risk of patient morbidity, we constructed a
nomogram model based on the three genes in the SVM model
(Figure 7A). The results of calibration curves showed that the
predictive ability of the nomogram model was accurate
(Figure 7B). In addition, patients with NAFLD could benefit from

column line graphs as shown in the DCA (Figure 7C). After that, we
tested our 3-gene prediction model on two independent liver tissue
datasets to validate its accuracy. The ROC curves demonstrated that
the performance of the 3-gene prediction model was satisfactory, with
an AUC value of 1.000 in the GSE63067 dataset (Figure 7D), and
0.909 in the GSE164760 dataset (Figure 7E). This indicates that our
diagnostic model is equally effective in differentiating NAFLD
patients from normal individuals.

FIGURE 6
Construction and evaluation of four machinemodels. (A)Cumulative residual distribution of eachmachine learningmodel. (B) Boxplots showed the
residuals of four machine learning models. Red dot represented the root mean square of residuals (RMSE). (C) The important features in four machine
models. (D) ROC analysis of each machine learning model based on 5-fold cross-validation in the testing cohort. (E) ROC analysis of DDO, FRK, MMP9,
SLC45A3, and TMEM19 in the training set. (F) Boxplots showed the expression of DDO, FRK and TMEM19 between NAFLD and control groups in the
training set.
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Functional enrichment and correlation
analysis between biomarkers and immune
cells

To further investigate the potential role of the three biomarkers
in NAFLD, we performed GSEA on each biomarker in the training
set. The results of GSEA showed that the “cytokine receptor
interaction” pathway and the “JAK-STAT signaling pathway”
were enriched in the groups with low expression of DDO, FRK,
and TMEM19 (Figures 8A–C).

Next, we analyzed whether or not there was a connection between
the expression of three diagnostic genes and infiltrated immune cells
in the training set. The results showed that the DDO gene was
positively correlated with resting mast cells, δγT cells,
M2 macrophages, and CD8T cells; and negatively correlated with
activated mast cells, monocytes, activated NK cells, neutrophils, naive
B cells, naive CD4 T cells and activated dendritic cells (Figure 8D).
And FRK gene was positively correlated with resting mast cells,
M1 macrophages, resting dendritic cells, and δγT cells; and
negatively correlated with activated mast cells, neutrophils,

monocytes, and naive B cells (Figure 8E). TMEM19 gene was
positively correlated with naive CD4 T cells, resting dendritic cells,
M1 macrophages, andδγT cells; and it was negatively correlated with
activated mast cells, neutrophils, monocytes, naive B cells, activated
dendritic cells, and Plasma cells (Figure 8F). In general, the expression
of these genes may be related to the amount of infiltration of various
immune cells, which suggests that these critical diagnostic genes may
be engaged in immune control in the pathogenesis of NAFLD.

Validation of model genes in mouse models

We assessed the expression levels of these biomarkers in a 12-
week HFD-fed mice model to further confirm the validity of the
biomarkers discovered in NAFLD. The HFD group had severe
hepatic steatosis with sporadic inflammation, as seen by H&E
staining of liver tissue sections (Figures 9A, B). In comparison to
the NC group, the levels of hepatic TG were considerably higher in
the HFD group (Figure 9C). Finally, we looked at three model genes’
expression in the livers of HFD and NC groups. We discovered that

FIGURE 7
Construction of the nomogram and validation of the 3-gene-based SVMmodel. (A)Construction of a nomogram to predict the risk of NAFLD based
on the 3-gene-based SVMmodel. (B) Calibration curves for estimating the prediction accuracy of the nomogram. (C) DCA showed the clinical benefit of
nomogram. (D,E) ROC analysis of 3-gene-based SVM model in GSE63067 (D) and GSE164760 (E) datasets.
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the HFD group had significantly higher levels of DDO, FRK, and
TMEM19 expression than the NC group (Figures 9D–F).

Discussion

NAFLD is the most prevalent liver and metabolic disease
worldwide, which has a serious impact on public health

(Chalasani et al., 2018). Lifestyle measures to lose weight are still
the most effective therapy for NAFLD since the condition’s existing
therapies are insufficiently effective (2016). After changing one’s
lifestyle, medication may still be needed to address NAFLD.
Fortunately, progress has been made in the study of insulin
sensitizers for the treatment of fatty liver disease [30]. More
critically, for the diagnosis and treatment of NAFLD, novel
therapeutic targets are consistently uncovered (Pan et al., 2021;

FIGURE 8
GSEA of 3 model genes and correlation analysis with immune cells. GSEA of DDO (A), FRK (B) and TMEM19 (C) genes using KEGG gene sets.
Correlation analysis of DDO (D), FRK (E), TMEM19 (F) gene expression and 22 infiltrating immune cells. The strength of the link between genes and
immune cells is shown by the size of the dots. The bigger the dot, the stronger the link. The p-value is shown by the color of the dots. Themore green the
color, the lower the p-value. p-value <0.05 is considered to be statistically significant.
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Qu et al., 2021). Therefore, finding better molecular clusters is
crucial to determining how to treat NAFLD on an individual
basis. Liu’s concept of “disulfidptosis” sheds fresh light on how
dysregulated glucose metabolism and disulfide play a part in cell
death (Liu et al., 2023). However, further research has not been done
on the precise processes of disulfidptosis and its regulation function
in many diseases. We aimed to clarify the precise functions of genes
related to disulfidptosis in the NAFLD phenotype and
immunological microenvironment. Furthermore, NAFLD
subtypes were predicted using genetic markers linked to
disulfidptosis.

In this study, we comprehensively analyzed the expression of
DRGs in the liver of NAFLD patients versus normal controls. The
expression of DRGs in NAFLD patients was significantly different
compared to normal subjects, suggesting an important role of DRGs
in the development of NAFLD. Subsequently, our immune
infiltration revealed an altered abundance of immune cells
between controls and patients with NAFLD. Higher levels of
M1 macrophage, M2 macrophage, resting dendritic cell, and
resting mast cell infiltration were seen in patients with NAFLD,
while lower levels of monocyte, activated dendritic cell, activated
mast cell, eosinophil, and neutrophil infiltration were seen in these
patients. These findings were consistent with previous studies that
examined liver tissues (Wen et al., 2021; Zhang et al., 2022). In
addition, we used unsupervised clustering analysis to illustrate the
expression landscape of different disulfidptosis regulatory patterns
underlying NAFLD patients based on DE-DRGs. Examination of
the consensus matrix and the CDF value showed that the number of
subtypes was relatively stable when k = 2. Also based on the
consensus values, two distinct disulfidptosis-related clusters were
identified, which will provide new insights for individualized
treatment of NAFLD. We also found that two DRGs

(SLC3A2 and NDUFA11) were upregulated in Cluster 2 and
NCKAP1 was downregulated in Cluster 2. Cluster 1 exhibited
relatively high levels of immune infiltration. Cluster-specific
DEGs indicated that the Adipocytokine signaling pathway, JAK-
STAT signaling pathway, and amino acid metabolic pathway were
upregulated in Cluster 1. Adipokines are peptides widely found in
adipose tissue and usually play an important role in the pathogenesis
of NAFLD by regulating hepatic fat accumulation, insulin resistance,
and inflammatory responses in an autocrine, paracrine, and
endocrine manner (Polyzos et al., 2016). The adipocytokine
signaling pathway has also been reported to be important for
immune cell activation and differentiation (Wilk et al., 2011).
The JAK-STAT signaling pathway is a classical inflammatory
regulatory pathway that plays a key role in the inflammatory
response and macrophage activation in particular (Hu et al.,
2007). Therefore, we have reason to believe that Cluster 1 may
have a higher level of immune infiltration through the
Adipocytokine signaling pathway, the JAK-STAT signaling
pathway.

Due to machine learning’s improved prediction performance,
lower error rates, and increased dependability, it has become more
and more common to diagnose NAFLD and screen important
genes and immune cells in recent years (Bao et al., 2023; Zhang
et al., 2023). As a result, we evaluated the four machine learning
models’ effectiveness in making predictions. In the training set, the
SVM machine learning technique had the best prediction efficacy
(AUC = 0.836), confirming its successful prediction of NAFLD.
Among the top five significant genes of the SVM machine learning
method, DDO, FRK, and TMEM19 showed significant prediction
performance and they were significantly upregulated in NAFLD
samples. Therefore, we selected DDO, FRK, and TMEM19 to
construct the SVM model. DDO encodes a d-aspartate oxidase

FIGURE 9
Expression levels of model gene mRNA were verified in the HFD mouse model. β-Actin was controlled. (A,B) H&E staining of livers from control (A)
and high-fat diet (HFD) fed mice (B). Magnification ×400. (C) Hepatic triglyceride (TG) concentrations. (D–F) Relative mRNA levels of (D) DDO, (E) FRK,
and (F) TMEM19. Relative mRNA levels were normalized to those of β-actin. Values are shown as the mean ± s.d. *p < 0.05; **p < 0.01, ***p < 0.001.
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that specifically acts on free acidic d-amino acids (Zaar et al., 2002).
This d-amino acid may function as an endogenous NMDA
receptor agonist, which is important in neurodevelopmental
problems and is substantially enriched in the brain before birth
(Molinaro et al., 2010; Molla et al., 2020). Recent research indicates
a connection between DDO and schizophrenia (Lombardo et al.,
2022). Additionally, NAFLD, a multisystem illness, has a
significant co-morbidity rate with psychological disorders
(Gangopadhyay et al., 2022). DDO may be a significant factor
connecting these two diseases. This may assist in understanding
the processes behind the connection between NAFLD and mental
diseases. FRK is also known as protein tyrosine kinase 5 (Goel and
Lukong, 2015). It has been discovered that FRK mostly inhibits
tumor cell growth in gliomas and breast cancer (Yim et al., 2009);
by contrast, FRK contributes to the development of tumors in cases
of pancreatic and hepatocellular carcinoma (Goel and Lukong,
2016). And its expression was upregulated in 50% of hepatocellular
carcinoma tissues compared to normal liver tissues (Chen et al.,
2013). Meanwhile, a previous study found that overexpression of
FRK promoted tumor cell proliferation, invasion, and non-
adherent cell growth (Chen et al., 2013). Effective inhibitors
against FRK, fortunately, have been reported (Li et al., 2010).
This might have a big impact on how the disease is treated. As with
NAFLD, our research raises the possibility that strategies to reduce
FRK expression may aid in the treatment of the condition,
although additional clinical and experimental research is still
needed to validate this. Additionally, CRISPR-Cas9-mediated
gene editing techniques make it possible to spatially control
FRK expression, which is critical for the targeted inhibition of
FRK gene expression. Little is known about TMEM19, a member of
the transmembrane protein family that encodes a transmembrane
protein involved in protein binding (Kanamoto et al., 2009). It is
significant to note that the “JAK-STAT signaling pathway” was
blocked in the high expression groups of DDO, FRK, and
TMEM19, according to functional enrichment data. The
activation of the JAK-STAT pathway was found to be closely
related to the resistance to cellular oxidative stress and the
maintenance of mitochondrial function (Ni and Wang, 2016;
Ou et al., 2018). Therefore, we propose a hypothesis that these
genes promote NAFLD disease progression by inhibiting the JAK-
STAT signaling pathway by promoting endoplasmic reticulum
oxidative stress damage and apoptosis. However, the regulatory
relationships between these key genes and the mechanisms of
action of various signaling pathways with NAFLD still need further
experimental validation.

The 3-gene-based SVM model could correctly identify
NAFLD, according to the external validation datasets
GSE63067 (AUC = 1.000) and GSE164760 (AUC = 0.909),
which provided additional insight for the diagnosis of NAFLD.
More significantly, we then developed a nomogram model for the
diagnosis of NAFLD subtypes using DDO, FRK, and TMEM19.
The results showed that the actual results in the calibration plots
were highly consistent with the predicted results, indicating that
the model could provide a valuable reference for the prediction of
NAFLD, and the DCA showed that the model had significant
clinical utility. Therefore, this model was found to have significant
predictive efficacy, demonstrating its applicability in clinical
applications.

Finally, we designed in mouse experiments to verify whether the
model genes were differentially expressed in the liver of the NAFLD
mouse model. Based on the qRT-PCR results, we found that the three
model genes DDO, FRK, and TMEM19 were differentially expressed
in the HFD group and the control group, and the expression trends
were consistent with the results of bioinformatics analysis.

Of course, this study inevitably has some limitations. First,
individual differences in the samples in the dataset used in this
study may affect the generalizability of the results of the analysis. In
addition, only the mRNA level of the model genes, not the protein
level, was verified by RT-qPCR. The use of mouse models rather
than human samples may affect the validation of mRNA
expression differences of model genes in NAFLD disease.
Finally, the evidence provided for the validation of the model is
weak and more relevant in vivo and in vitro experiments are
needed to demonstrate the role of these model genes and their
potential mechanisms in NAFLD.

In conclusion, our study demonstrates a relationship between
DRGs and immune cells and clarifies the immune system’s
variability across individuals with various disulfidptosis clusters.
Combining WGCNA analysis and machine learning models to
screen for disease signature genes, SVM model were identified as
the optimal prediction models for NAFLD. Three disease signature
genes, DDO, FRK and TMEM19, were predicted. And their mRNA
expression levels were validated in the NAFLD model. The
prognostic model based on the 3 genes may provide a new
approach to predicting the prognosis of NAFLD.
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