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Non-small cell lung cancer (NSCLC) is one of the most common types of
malignant tumors as well as the leading cause of cancer-related deaths in the
world. The application of epidermal growth factor receptor (EGFR)-tyrosine kinase
inhibitors (TKIs) has dramatically improved the prognosis of NSCLC patients who
harbor EGFR mutations. However, despite an excellent initial response, NSCLC
inevitably becomes resistant to EGFR-TKIs, leading to irreversible disease
progression. Hence, it is of great significance to shed light on the molecular
mechanisms underlying the EGFR-TKI resistance in NSCLC. Long non-coding
RNAs (lncRNAs) are critical gene modulators that are able to act as oncogenes or
tumor suppressors that modulate tumorigenesis, invasion, and metastasis.
Recently, extensive evidence demonstrates that lncRNAs also have a significant
function in modulating EGFR-TKI resistance in NSCLC. In this review, we present a
comprehensive summary of the lncRNAs involved in EGFR-TKI resistance in
NSCLC and focus on their detailed mechanisms of action, including activation
of alternative bypass signaling pathways, phenotypic transformation, intercellular
communication in the tumor microenvironment, competing endogenous RNAs
(ceRNAs) networks, and epigenetic modifications. In addition, we briefly discuss
the limitations and the clinical implications of current lncRNAs research in this
field.
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1 Introduction

Lung cancer is the second most frequent type of malignant tumor that causes the highest
cancer-related mortalities globally (Sung et al., 2021; Siegel et al., 2023). Lung cancer is
categorized into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC)
according to the cell morphology. NSCLC, which primarily includes lung squamous cell
carcinoma (LUSC), lung adenocarcinoma (LUAD), and large cell lung cancer, makes up
almost 85% of lung cancer, while SCLC accounts for the remaining cases (Sung et al., 2021).
Since NSCLC patients are not discovered and diagnosed until their symptoms are apparent
in advanced stages, the prognosis of NSCLC patients is very poor, with the 5-year survival
rate less than 20% (Choi and Mazzone, 2022; Ettinger et al., 2022).

EGFR mutations, which are revealed as drivers of NSCLC in 2004 (Lynch et al., 2004;
Paez et al., 2004), are the most prevalent somatic genetic alterations in NSCLC that can be
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used as therapeutic targets. Approximately 20% of Caucasians and
up to 40% of East Asians with NSCLC harbor EGFR mutations
(Yatabe et al., 2015; Kobayashi andMitsudomi, 2016). The advent of
EGFR-TKIs has completely transformed the treatments for NSCLC,
substantially prolonging the progression-free survival (PFS) as well
as overall survival (OS) of NSCLC patients harboring EGFR
mutations (Zhou et al., 2011). However, due to the development
of EGFR-TKI resistance, most advanced NSCLC patients will
inevitably experience disease progression around 10 months after
treatment with EGFR-TKIs (Mok et al., 2009). The mechanisms of
EGFR-TKI resistance in NSCLC include secondary or tertiary
mutations of EGFR sites, upregulation of alternative bypass
signaling pathways, phenotypic transformations, alterations in the
tumor microenvironment, etc (Gomatou et al., 2023).

LncRNAs are non-coding RNAs (ncRNAs) that are more than
200 nt in length. Although lncRNAs were once regarded as
transcriptional noise, they have a wide range of functions,
interoperating with DNAs, RNAs, and proteins to regulate
cellular genetic expression and diverse signaling pathways
(Mercer et al., 2009). Many investigations have demonstrated
that dysregulated lncRNAs are capable of acting as oncogenes or
tumor suppressors to control the resistance to EGFR-TKIs in
NSCLC through multiple mechanisms. Consequently, lncRNAs
are likely to be new targets to overcome the resistance to EGFR-
TKIs. In this review, we provide a brief overview of the biological
occurrence and action mechanisms of lncRNAs. Furthermore, we
synthetically summarize the various roles of lncRNAs in the
mechanism of EGFR-TKI resistance. And finally, the current
limitations and possible future trends in this field are also discussed.

2 An overview of lncRNAs

According to the Human Genome Project, about 2% of human
genes can encode proteins, while over 90% of human genes are
eventually transcribed into ncRNAs (Carninci et al., 2005; Birney
et al., 2007; Ezkurdia et al., 2014). Initially, ncRNAs were regarded as
junk fragments or transcriptional by-products with no practical role.
However, new investigations have indicated that ncRNAs are critical
for the biological function of cells (Prasanth and Spector, 2007;
Statello et al., 2021). Based on their length, ncRNAs are divided in
two groups: small non-coding RNAs (sncRNAs), which are less than
200 nt in length, and long non-coding RNAs (lncRNAs), whose
lengths are more than 200 nt (Dinger et al., 2008). The majority of
lncRNAs are transcribed from different genomic areas by RNA
polymerase II as well as polymerase III (Dieci et al., 2007; Derrien
et al., 2012). According to their transcriptional source areas,
lncRNAs can be broadly classified into five types: intergenic
lncRNAs, intronic lncRNAs, sense lncRNAs, antisense lncRNAs,
and bidirectional lncRNAs. It is worth mentioning that some
lncRNAs can form closed-loop structures, which are called
circular RNAs (circRNAs) (St Laurent et al., 2015).

The action mechanisms of lncRNAs are complex and can be
summarized into four types (Siegel et al., 2023): signals: lncRNAs are
transcribed and act as signaling molecules to regulate the
transcription of downstream genes under specific stimulation
conditions (Sung et al., 2021); decoys: lncRNAs bind proteins or
RNAs and block their actions (Choi and Mazzone, 2022); guides:

lncRNAs incorporate and direct transcription factors to specific
DNA sequences (Ettinger et al., 2022); scaffolds: lncRNAs are
capable of serving as center platforms for multiple proteins to
assemble into complexes (Rinn and Chang, 2012; Fang and
Fullwood, 2016). Through these action modes, lncRNAs in the
nucleus, cytoplasm, and exosomes can regulate gene expression
on a variety of levels such as epigenetic, transcriptional as well as
post-transcriptional levels, etc. As an example, in the nucleus,
lncRNAs recruit histone modification enzymes to regulate
histone modification (Li et al., 2016); in the cytoplasm, lncRNAs
sponge miRNAs or form double strands with specific mRNAs to
improve the stability of mRNAs (Rashid et al., 2016); and lncRNAs
in exosomes can participate in intercellular communication (Zhang
et al., 2017). Thus, as key genetic regulators, lncRNAs play
comprehensive and pivotal roles in cellular physiological and
pathological processes.

Emerging evidence suggests that lncRNAs are capable of acting
as oncogenes or tumor suppressors to regulate oncogenesis, tumor
progression, metastasis, recurrence, and drug resistance (Isin and
Dalay, 2015). Additionally, the expression of lncRNAs exhibits high
tissue specificity and tumor cell specificity (Yan et al., 2015). For
instance, lncRNAs expression differs significantly in the EGFR TKI-
resistant and EGFR TKI-sensitive NSCLC (Cheng et al., 2015a; Shi
et al., 2020). Therefore, lncRNAs are probably valuable tumor
diagnostic signatures as well as tumor treatment targets with
great potential for clinical applications (Qi and Du, 2013), and
this potential is even more prominent for exosomal lncRNAs (Tao
et al., 2020; Han et al., 2021). Despite the huge amount of lncRNAs
are already been found (Li et al., 2023), only a small fraction of
lncRNAs have been elucidated regarding their mechanism of action
and function. Moreover, the broad prospect of clinical applications
based on lncRNAs has not yet become a reality. Thus, more research
on lncRNAs, including the refinement of molecular mechanisms,
the adjustment of research strategies, and the innovation of related
technologies, is necessary.

3 LncRNAs and EGFR-TKI resistance in
NSCLC

EGFR-TKIs are successful as first-line treatments for advanced
NSCLC patients who harbor EGFR mutations. However, most
patients develop drug resistance, which significantly diminishes
the therapeutic efficacy of EGFR-TKIs treatments (Mok et al.,
2009; Zhou et al., 2011). Cumulative evidence suggests that the
mechanisms of EGFR-TKI resistance in NSCLC can be broadly
divided into EGFR-dependent as well as EGFR-independent
mechanisms (Gomatou et al., 2023). It is well known that the
EGFR-dependent resistance mechanisms mainly refer to EGFR
site mutations, among which T790M, a secondary mutation in
EGFR site, is found to be the leading cause for resistance to the
first- and second-generation EGFR-TKIs, such as gefitinib and
erlotinib (Mok et al., 2017). And the EGFR C797S tertiary
mutation is the most frequent EGFR-dependent resistance
mechanism of third-generation EGFR-TKIs such as osimertinib
(Oxnard et al., 2018). EGFR-independent resistance mechanisms,
which can co-exist with EGFR site mutations, mainly include
aberrant activation of alternative bypass signaling pathways,
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TABLE 1 LncRNAs involved in EGFR-TKI resistance of NSCLC.

Mechanism LncRNA Expression Target/Signaling
network

Function Reference

alternative bypass signaling pathways GAS5 ↓ IGF-1R gefitinib resistance Dong et al. (2015)

LINC01510 ↑ MET erlotinib resistance Pal et al. (2022)

UCA1 ↑ miR-193a-3p/ERBB4 tumor-promoting Nie et al. (2016)

UCA1 ↑ PI3K/AKT gefitinib resistance Cheng et al. (2015b)

LINC01128 ↓ miR-25-3p/PTEN gefitinib resistance Ding et al. (2022)

LCETRL3 ↑ TDP43/NOTCH1/PTEN gefitinib resistance Li et al. (2022)

LCETRL4 ↑ EIF2S1/PDK1 gefitinib resistance Li et al. (2022)

H19 ↑ PTEN gefitinib resistance Zhou and Zhang
(2020)

H19 ↓ PKM2 erlotinib resistance Chen et al. (2020a)

PCAT-1 ↑ GSK3 gefitinib resistance Wang et al. (2021a)

MIR31HG ↑ MDM2/p53 gefitinib resistance Wang et al. (2017b)

CASC9 ↑ miR-195-5p/FOXO3 gefitinib resistance Bing et al. (2021)

UCA1 ↑ EZH2/p21 gefitinib resistance Xu et al. (2020)

HOTAIR ↑ EZH2/p21 and p16 gefitinib resistance Li et al. (2021)

LINC00460 ↑ miR-769-5p/EGFR gefitinib resistance Ma et al. (2019)

CRNDE ↑ eIF4A3/MUC1/EGFR EGFR-TKI
resistance

Takahashi et al. (2021)

CASC9 ↑ EZH2/DUSP1 gefitinib resistance Chen et al. (2020b)

LOC554202 ↑ miR-31/RASA1 and FIH-1 gefitinib resistance He et al. (2019)

H19 ↑ microRNA-107/NF1 tumor-promoting Qian et al. (2018)

LINC00460 ↑ miR-149-5p/IL-6 gefitinib resistance Nakano et al. (2020)

TSLNC8 ↓ IL-6/STAT3/HIF-1α tumor-suppressor Fan et al. (2019)

TSLNC8 ↓ EGFR/STAT3 osimertinib
resistance

Zhou et al. (2020)

PCAT6 ↑ miR-326/IFNAR2 gefitinib resistance Zheng et al. (2022)

LINC01116 ↑ IFI44 gefitinib resistance Wang et al. (2020b)

UCA1 ↑ JAK/STAT gefitinib resistance Zhang et al. (2019)

BLACAT1 ↑ JAK/STAT afatinib resistance Shu et al. (2020)

phenotypic transformation CASC8 ↑ FOXM1 osimertinib
resistance

Jiang et al. (2021)

OSER1-AS1 ↑ miR-612/FOXM1 gefitinib resistance Shi et al. (2021)

MALAT1 ↑ ZEB1 gefitinib resistance Feng et al. (2019)

lnc-ABCA12-8 ↑ FN1 gefitinib resistance He et al. (2022)

WT1-AS ↓ lncRNA UCA1 tumor-suppressor Wan et al. (2021)

WT1-AS ↓ miR-494-3p/PTEN tumor-suppressor Wu et al. (2021a)

SNHG15 ↑ miR-451/MDR-1 gefitinib resistance Huang et al. (2020a)

exosomal lncRNAs in the tumor
microenvironment

UCA1 ↑ miR-143/FOSL2 gefitinib resistance Chen et al. (2020c)

H19 ↑ hnRNPA2B1 gefitinib resistance Lei et al. (2018)

H19 ↑ miR-615-3p/ATG7 erlotinib resistance Pan and Zhou (2020)

(Continued on following page)
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phenotypic transformation, alterations in the tumor
microenvironment, etc. Aberrant activation in cellular signaling
pathways, for example, the PI3K/AKT and classical MAPK
pathways, dominates EGFR-independent resistance mechanisms,
of which the common ones are mesenchymal-epithelial transition
factor (MET) amplification, human epidermal growth factor
receptor 2 (HER2) amplification, and oncogenic fusions (Liu
et al., 2018).

Despite lacking the ability to encode proteins (Niazi and
Valadkhan, 2012), lncRNAs are responsible for a wide range of
biological processes. Aberrant lncRNAs expression is involved with
many diseases, notably cancer (Bhan et al., 2017; Cao et al., 2022). In
the setting of EGFR TKI-resistant NSCLC, lncRNAs are already
been demonstrated to have significant roles (Wang Q. et al., 2020;
Hu J. et al., 2021). There is not enough proof to support the role of
lncRNAs in EGFR-dependent resistance mechanisms. However,
numerous investigations have shown that lncRNAs have a broad
control over EGFR-independent resistance mechanisms in NSCLC.
After summarizing the large number of reported lncRNAs that are
related to EGFR-TKI resistance, we have identified that in terms of
activation of signaling pathways, lncRNAs mainly regulate three
signaling pathways, which are the PI3K/AKT, classical MAPK, as
well as JAK/STAT pathways; in terms of phenotypic transformation,
epithelial to mesenchymal transition (EMT) is the main type of
phenotypic transformation regulated by lncRNAs; in terms of the
tumor microenvironment, exosomal lncRNAs affect EGFR-TKI
response by participating in intercellular communication.
Additionally, some lncRNAs modulate EGFR-TKI resistance via
ceRNA networks and epigenetic modifications. In the following, we
describe the above mechanisms through which lncRNAs mediate

the EGFR-TKI resistance in NSCLC. The lncRNAs involved in
EGFR-TKI resistance in NSCLC are listed in Table 1.

4 Modulation of alternative bypass
signaling pathways

4.1 The PI3K/AKT signaling pathway

Survival signals induced by multiple receptors are mediated
mainly through the PI3K/AKT signaling pathway, which has pivotal
functions for the regulation of cellular growth, cell cycle progression,
and cell survival (Fresno Vara et al., 2004). Abnormal upregulation
of the PI3K/AKT signaling pathway facilitates the resistance to
EGFR-TKIs in NSCLC (Liu et al., 2018). Extensive investigations
have already documented that the upstream receptors, regulatory
factors, and downstream molecules of this pathway can be regulated
by lncRNAs to modulate EGFR-TKI resistance in NSCLC (Figure 1).

A number of receptors of the PI3K/AKT signaling pathway, such
as insulin-like growth factor 1 receptor (IGF-1R), MET and EGFR,
are regulated by lncRNAs to affect EGFR-TKI response in NSCLC.
For example, in an investigation by Dong and collaborators, lncRNA
GAS5 was revealed to be lowly expressed in gefitinib-resistant
NSCLC cell lines. Overexpression of GAS5 reversed gefitinib
resistance in vitro and in vivo through downregulating IGF-1R
expression and inhibiting PI3K/AKT pathway (Dong et al.,
2015). In another recent study, investigators found that loss of
KMT5C in erlotinib-resistant cell lines resulted in enhanced
transcription of lncRNA LINC01510, which could lead to
upregulation of MET expression, activation of PI3K/AKT

TABLE 1 (Continued) LncRNAs involved in EGFR-TKI resistance of NSCLC.

Mechanism LncRNA Expression Target/Signaling
network

Function Reference

MSTRG.292666.16 ↑ miR-6836-5p/MAPK8IP3 osimertinib
resistance

Wan et al. (2022)

SOX2-OT ↑ miR-627-3p/Smads osimertinib
resistance

Zhou et al. (2021)

PCAT6 ↑ miR-326/KLF1 tumor-promoting Chen et al. (2022)

lnc-MZT2A-5:1 ↑ Undefined tumor-promoting Song et al. (2021)

other mechanisms PCAT6 ↑ miR-330-5p tumor-promoting Cui et al. (2018)

SNHG14 ↑ miR-206-3p/ABCB1 gefitinib resistance Wu et al. (2019)

HOST2 ↑ miRNA-621/SYF2 gefitinib resistance Chen et al. (2019)

lnc-
TMEM132D-AS1

↑ miR-766-5p/ENTPD1 osimertinib
resistance

Wang et al. (2023)

MIAT ↑ Dnmt3a/miR-34a gefitinib resistance Fu et al. (2018)

FTH1P3 ↑ LSD1/TIMP3 gefitinib resistance Zheng et al. (2020a)

HAS2-AS1 ↑ LSD1/EphB3 gefitinib resistance Sun et al. (2020)

LINC00665 ↑ EZH2 gefitinib resistance Liu et al. (2019)

SNHG17 ↑ EZH2/LATS2 gefitinib resistance Zhang et al. (2022)

LINC00969 ↑ EZH2 and METTL3/NLRP3 gefitinib resistance Dai et al. (2023)
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signaling pathway, and ultimately erlotinib resistance (Pal et al.,
2022). The highlight in this study is the elucidation of the upstream
mechanisms of LINC01510 dysregulation. In addition, since MET
amplification is the most common EGFR-independent resistance
mechanism (Qin et al., 2023), KMT5C/LINC01510/MET axis is of
great importance in overcoming EGFR-TKI resistance and might
become a potential target. In addition to IGF-1R andMET, lncRNAs
also regulate other receptors in the PI3K/AKT pathway. LncRNA
TRPM2-AS was reported to facilitate NSCLC cell proliferation,
migration, and invasion by upregulation of EGFR and activation
of the PI3K/AKT pathway via functioning as a ceRNA of miR-138-
5p (Cui et al., 2020). However, whether lncRNA TRPM2-AS
promotes EGFR-TKI resistance in NSCLC is still unclear, which
urgently requires further exploration. Similarly, lncRNA
UCA1 functioned as the ceRNA of miR-193a-3p to upregulate
ERBB4 (Nie et al., 2016), which can activate the PI3K/AKT
pathway (Yu et al., 2015). Moreover, UCA1 was revealed to
induce EGFR-TKI resistance in non-T790M NSCLC cells via
activating the AKT/mTOR pathway in another study (Cheng
et al., 2015b). Thus, the miR-193a-3p/ERBB4 axis may be the
mechanism by which lncRNA UCA1 leads to EGFR-TKI
resistance in NSCLC.

Among numerous regulatory factors in the PI3K/AKT pathway,
Phosphatase and Tensin Homolog (PTEN), one well-known
inhibitor in this pathway (Kim et al., 2010), is modulated by

lncRNAs to affect EGFR-TKIs response in NSCLC. Mainly
through bioinformatics analysis, Ding and collaborators
discovered LINC01128 was low expressed in gefitinib-resistant
NSCLC cells and LINC01128/miR-25-3p/PTEN pathway was
likely to enhance the resistance to EGFR-TKIs in NSCLC
through mediating the PI3K/AKT pathway (Ding et al., 2022).
However, due to the lack of sufficient experiments in this study,
additional in vitro and in vivo experiments will be needed for the
confirmation of their conclusions. In a recent investigation, Li et al.
first identified lncRNAs LCETRL3 and LCETRL4 as new oncogenic
genes that were highly expressed in NSCLC tissues and can reduce
gefitinib efficiency against NSCLC in vitro and in vivo.
Mechanistically, LCETRL3 activates NOTCH1-PTEN-AKT
signaling by stabilizing TDP43 and LCETRL4 activates PDK1-
AKT signaling by stabilizing EIF2S1 (Li et al., 2022). It was
revealed that lncRNA H19 was upregulated in lung cancer cells
and H19 knockdown augmented the gefitinib sensitivity by
enhancing PTEN and PDCD4 and decreasing NFIB (Zhou and
Zhang, 2020). Paradoxically, in another study, H19 was identified as
significantly downregulated in clinical samples and in vitro models
of resistance to EGFR-TKIs. H19 knockdown contributed to
erlotinib resistance by upregulating PKM2 and activating the
AKT pathway (Wang C. et al., 2017; Chen C. et al., 2020).
Consequently, the exact effect of H19 within the mechanism of
EGFR-TKI resistance in NSCLC still needs to be further explored.

FIGURE 1
Mechanisms of lncRNAs involved in EGFR-TKI resistance in NSCLC by modulating signaling pathways. LncRNAs can regulate multiple signaling
pathways to affect EGFR-TKI resistance in NSCLC, including the PI3K/AKT, classical MAPK, and JAK/STAT signaling pathways. Mechanistically, lncRNAs
activate or inactivate these pathways by regulating their upstream receptors, regulatory factors, and downstream molecules. The Figure was drawn by
Figdraw.
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In addition to modulating upstream receptors and regulatory
factors, lncRNAs also regulate downstream molecules of the
PI3K/AKT pathway, such as glycogen synthase kinase-3
(GSK3), mouse double minute 2 homolog (MDM2),
FOXO3 and P21, to influence EGFR-TKI resistance in NSCLC.
For example, in a study by Wang et al., lncRNA PCAT-1 was
found to be highly expressed in EGFR TKI-resistant NSCLC and
its knock-down inhibited the phosphorylation of AKT and GSK3,
thus improving gefitinib sensitivity in NSCLC (Wang S. et al.,
2021). But the more detailed mechanism of GSK3 regulation
by PCAT-1 is unclear and requires further exploration.
Similarly, the knockdown of lncRNA MIR31HG inhibited the
PI3K/AKT signaling pathway and MDM2, thereby increasing
p53 expression and enhancing gefitinib sensitivity in PC9-R
cells (Wang B. et al., 2017). Interestingly, Bing et al. identified
the lncRNA CASC9/miR-195-5p/FOXO3 positive feed-back
loops that can enhance gefitinib resistance in NSCLC (Bing
et al., 2021). In addition, both lncRNAs UCA1 and HOTAIR
promoted gefitinib resistance in NSCLC through epigenetically
silencing p21 expression by interacting with EZH2, a
methyltransferase responsible for the trimethylation of H3K27
(Xu et al., 2020; Li et al., 2021). According to the large number of
lncRNAs reported above, the regulation of the PI3K/AKT
signaling pathway by lncRNAs has a significant impact in
EGFR-TKI resistance.

4.2 The classical MAPK signaling pathway

The classical MAPK signaling pathway, which is generally called
the RAS/MEK/ERK pathway, is one of the key signaling pathways
downstream of EGFR that modulates cancer growth, survival,
migration, and angiogenesis (Martinelli et al., 2017). It has
already been shown that the dysregulation of this pathway was
related to EGFR-TKI resistance in NSCLC (Coco et al., 2015). In a
similar way to the PI3K/AKT signaling pathway, lncRNAs can
activate or inhibit the classical MAPK signaling pathway by
regulating its upstream receptors and regulatory factors (Figure 1).

EGFR is the primary upstream receptor in the classical MAPK
pathway that is regulated through lncRNAs. For example, lncRNA
LINC00460 was demonstrated to promote gefitinib resistance in
NSCLC via sponging miR-769-5p and facilitating EGFR expression
(Ma et al., 2019). Nevertheless, lncRNA CRNDE downregulated
eIF4A3, mucin 1 (MUC1), as well as p-EGFR, thereby increasing
EGFR-TKI resistance (Takahashi et al., 2021). Therefore, the
relationship between EGFR expression and EGFR-TKI resistance
requires further investigation. Furthermore, lncRNA DUXAP9-206
was found to interact with Cbl-b, one of the E3 ubiquitin ligases, to
partially reduce EGFR degradation and activate the RAS/MEK/ERK
and PI3K/AKT pathways, resulting in a degree of promotion of the
malignant phenotype in NSCLC cells (Zhu et al., 2019). It indicates
that DUXAP9-206 may be involved in EGFR-TKI resistance. In
addition to activating the PI3K/AKT signaling pathway, as
mentioned above, lncRNA LINC01510 can activate the classical
MAPK signaling pathway by upregulating MET to promote EGFR-
TKI resistance (Pal et al., 2022). Moreover, other lncRNAs, such as
Linc00284, FAM83A-AS1, and LINC00857, were revealed to
mediate lung cancer progression through the regulation of MET

(Su et al., 2020; Sheng et al., 2021; Zhao et al., 2022), but their roles in
EGFR-TKI resistance need to be further explored.

The modulation of regulators in the classical MAPK pathway,
including DUSP1 as well as RASA, by lncRNAs contributes to
EGFR-TKI resistance. Mainly through bioinformatics analysis,
Ma et al. revealed that lncRNA CASC9 mediated EGFR-TKI
resistance via interacting with some protein-coding genes (PCGs)
(Ma et al., 2017). In a subsequent study, Chen et al. revealed that
CASC9 epigenetically silenced DUSP1 and activated the ERK
pathway by recruiting EZH2, resulting in enhancing gefitinib
resistance in NSCLC (Chen Z. et al., 2020). Considering that the
CASC9/miR-195-5p/FOXO3 regenerative feed-back loops
described above can also enhance gefitinib resistance (Bing et al.,
2021), CASC9 may be a target with great promise for surmounting
EGFR-TKI resistance in NSCLC. Moreover, lncRNA
LOC554202 promoted gefitinib resistance by upregulating the
expression of miR-31, which can directly repress RASA1 and
Hypoxia Inducible Factor 1 Subunit Alpha Inhibitor (FIH-1)
expression, resulting in partial upregulation of the classical
MAPK and PI3K/AKT pathways (He et al., 2019). Similar to
DUSP1 and RASA1, as a negative regulatory factor in the
classical MAPK pathway, NF1 is also capable of affecting EGFR-
TKI resistance in NSCLC (de Bruin et al., 2014). One investigation
has reported lncRNA H19 increased NF1 by competitively
combining with microRNA-107, thus promoting NSCLC
progression (Qian et al., 2018). In theory, the upregulation of
NF1 could inhibit the classical MAPK signaling pathway, thereby
inhibiting tumor development, which is contrary to the results of
this study. Therefore, the mechanism by which H19 regulates
NF1 and the classical MAPK signaling pathway needs to be
further explored. In addition, whether H19 promotes EGFR-TKI
resistance in NSCLC by regulating NF1 is also unknown and needs
further investigation.

4.3 The JAK/STAT signaling pathway

The JAK/STAT signaling pathway, which is mainly composed of
ligands, receptors, JAKs and STATs, plays a crucial role in mediating
immune adaptation, tissue repair, inflammatory response, and cell
apoptosis (Owen et al., 2019). The abnormal upregulation of this
pathway is related to tumor progression as well as drug resistance
(Jin, 2020; Hu X. et al., 2021). LncRNAs are able to mediate EGFR-
TKI resistance in NSCLC via impacting the ligands, receptors, and
regulatory factors in the JAK/STAT pathway (Figure 1).

More than 50 cytokines have been identified in the JAK/STAT
signaling pathway (Morris et al., 2018). Interleukin 6 (IL-6), an
important cytokine associated with chronic inflammatory diseases,
was engaged in the progression of lung cancer (Gao et al., 2007).
Researchers discovered that lncRNA LINC00460 can competitively
bind with miR-149-5p to facilitate IL-6 expression, thus promoting
gefitinib resistance of NSCLC cells. In mechanism, IL-6 can activate
the JAK/STAT and PI3K/AKT pathways, thereby inducing an EMT-
like phenotype, which is one of the mechanisms responsible for
EGFR-TKI resistance in NSCLC (Nakano et al., 2020). Similarly,
lncRNA TSLNC8 was downregulated in NSCLC and its over-
expression suppressed the development of NSCLC by modulating
the IL-6/STAT3/HIF-1α pathway (Fan et al., 2019). It is noteworthy
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that in another study, upregulation of TSLNC8 also markedly
augmented the antitumor activity of osimertinib on NSCLC by
repressing the EFGR/STAT3 signaling pathway (Zhou et al., 2020).
Therefore, TSLNC8 is able to impact the JAK/STAT pathway not
only by regulating IL-6 but also by EGFR, thus mediating the
development as well as EGFR-TKI resistance of NSCLC. In
addition, lncRNA PCAT6 was revealed to augment gefitinib
resistance by serving as a competitive endogenous RNA for miR-
326 in increasing interferon-alpha receptor 2 (IFNAR2) expression,
an upstream receptor in the JAK/STAT pathway (Zheng et al., 2022).

Similar to the PI3K/AKT and classical MAPK signaling
pathways, lncRNAs are also able to modulate the JAK/STAT
pathway via affecting its regulatory factors. For example,
interferon-induced protein 44 (IFI44), an upstream regulator in
the JAK/STAT signaling pathway, was found to be inhibited by
LINC01116 to promote gefitinib resistance in NSCLC (Wang H.
et al., 2020). In addition, both lncRNA UCA1 and lncRNA
BLACAT1 have been reported to mediate EGFR-TKI resistance
of NSCLC cells through targeting the JAK/STAT signaling pathway
(Zhang et al., 2019; Shu et al., 2020). The fundamental mechanisms
through which these lncRNAs modulate the JAK/STAT signaling
pathway, however, are still unknown and require additional
investigation.

5 Modulation of phenotypic
transformation

Phenotype transformations, including EMT, transformations
from LUAD to LUSC as well as NSCLC to SCLC, are considered
to be essential mechanisms of EGFR-TKI resistance in NSCLC
(Rubin et al., 2020; Shaurova et al., 2020). EMT was found to be
a reversible procedure in which cancer cells lose epithelial features as
well as gain mesenchymal phenotypes, resulting in the acquisition of
invasiveness, metastasis, and drug resistance (Witta et al., 2006;
Singh and Settleman, 2010). The molecular mechanisms underlying
EMT are not well studied. Current evidence suggests that this
process is accompanied by abnormal expression of a wide range
of molecules, including reduced expression of epithelial markers, for
example E-cadherin, as well as upregulation of mesenchymal
markers, for example vimentin (Sinha et al., 2020). Furthermore,
alterations of multiple transcription factors (Yuan et al., 2019) and
cellular signaling pathways, such as transforming growth factor-β
(TGF-β), Wnt/β-catenin and PI3K/AKT signaling pathways, were
found to be involved in EMT (Xu et al., 2015; Hao et al., 2019; Liu L.
et al., 2020). According to recent studies, some lncRNAs associated
with EGFR-TKI resistance can mediate EMT mainly by regulating
transcription factors and some signaling pathways. In addition,
SCLC transformation and LUSC transformation are also
implicated with EGFR-TKI resistance (Shaurova et al., 2020).
Nevertheless, the mechanism by which lncRNAs in regulating
SCLC and LUSC transformation is ambiguous and urgently
needs to be further explored.

It is revealed that silencing lncRNA CASC8 promoted
osimertinib sensitivity in NSCLC cells through downregulation of
Forkhead box M1 (FOXM1) (Jiang et al., 2021), one of the critical
transcription factors for EMT (Balli et al., 2013; Wei et al., 2015).
Researchers in this study speculated that CASC8 acted as the

competitive endogenous RNA for miR-671-5P to enhance the
transcription of FOXM1. However, the exact mechanism is not
explored and needs further validation. Similarly, lncRNA OSER1-
AS1 served as a sponge for miR-612 to enhance
FOXM1 transcription, resulting in promoting gefitinib resistance
(Shi et al., 2021). Zinc finger E-box binding homeobox 1 (ZEB1) has
also been proven to be a transcription factor that can induce EMT in
carcinoma cells (Zhang et al., 2015). LncRNA MALAT1 can
promote gefitinib resistance through the miR-200a/ZEB1 axis
(Feng et al., 2019). In another study, it was demonstrated that
MALAT1 can promote EMT by sponging miR-124 (Wu et al., 2018).
Therefore, the MALAT1/ZEB1 pathway may affect EGFR-TKI
resistance by promoting EMT. LncRNA linc00673 can upregulate
ZEB1 by sponging miR-150-5p to promote EMT (Lu et al., 2017).
Nevertheless, the association of linc00673 with EGFR-TKI resistance
needs to be further studied. Furthermore, through in vitro and in
vivo experiments, lnc-ABCA12-8 was revealed to promote gefitinib
resistance in NSCLC via interacting with alternative splicing factor/
splicing factor 2 (ASF/SF2) and enhancing the expression of IIICS
region of fibronectin 1 (FN1) (He et al., 2022), an important marker
of EMT (Liu et al., 2020b).

In terms of signaling pathways, lncRNA LINC00460 was shown
to serve as a sponge of miR-149-5p to activate the JAK/STAT and
PI3K/AKT signaling pathways to induce EMT, thus promoting
EGFR-TKI resistance in NSCLC (Nakano et al., 2020).
Researchers revealed the low expression of lncRNA WT1-AS
rendered lncRNA UCA1 highly expressed, thereby promoting
EMT (Wan et al., 2021). Interestingly, WT1-AS also functioned
as a competitive endogenous RNA of miR-494-3p to activate the
PI3K/AKT pathway, thus facilitating the proliferation, migration,
and invasion in NSCLC (Wu C. et al., 2021). Moreover, UCA1 was
revealed to regulate gefitinib resistance through activating the PI3K/
AKT pathway and mediating EMT (Cheng et al., 2015b). For this
reason, the mechanism of the regulatory relationship betweenWT1-
AS and UCA1 in EGFR-TKI resistance in NSCLC deserves further
exploration. Additionally, NOTCH-1, the primary upstream
receptor of NOTCH signaling pathway that regulates EMT (Xie
et al., 2013), conferred gefitinib resistance of NSCLC via the lncRNA
SNHG15/miR-451/ZEB1 feedback loop (Huang J. et al., 2020).
Moreover, lncRNA XIST and HCP5 can promote EMT mediated
by TGF-β through modulating miR-367/miR-141-ZEB2 or miR-
203/SNAI axis, respectively (Li et al., 2018; Jiang et al., 2019).
Nevertheless, it is not clear whether lncRNA XIST and
HCP5 can mediate EGFR-TKI resistance of NSCLC via
promoting EMT, which warrants further investigation.

6 Exosomal lncRNAs in the tumor
microenvironment

Tumor formation results from the interaction of tumor cells
with the extracellular matrix, tumor vasculature, and a variety of
immune cells, so the development, metastasis, and drug resistance
of tumor depend not only on genetic alterations within the tumor
cells but also on the external tumor microenvironment (Junttila
and de Sauvage, 2013). The tumor microenvironment, mainly
including the vascular network, catabolic cancer-associated
fibroblasts (CAFs), immune-related cells, as well as extracellular
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matrix (Klemm and Joyce, 2015), has a pivotal function in EGFR-
TKI resistance in NSCLC (Jia et al., 2019; Dzul Keflee et al., 2022).
Currently, many studies on the tumor microenvironment of lung
cancer focus on immune cells and immunotherapy; nevertheless, the
roles of exosomes from the tumor microenvironment for resistance
to EGFR-TKIs in NSCLC are also significant (Liu et al., 2020c; Yuan
et al., 2022). Released by eukaryotic cells, exosomes, a type of
extracellular vesicles that mainly contain proteins, lipids and
genetic materials, play essential roles in the intracellular
communication network in the tumor microenvironment
(Mostafazadeh et al., 2021). Substantial evidence indicates that
lncRNAs in tumor cells or other cells can be transported as well
as secreted into the tumor microenvironment via exosomes to
regulate cell function and promote drug resistance (Pathania and
Challagundla, 2021). Exosomal lncRNAs in the tumor
microenvironment affect EGFR-TKI resistance of NSCLC mainly
by regulating EGFR TKI-sensitive NSCLC cells or other non-tumor
cells (Figure 2).

6.1 Regulation of EGFR TKI-sensitive NSCLC
cells

Exosomes in the tumor microenvironment can be taken up by
adjacent EGFR TKI-sensitive NSCLC cells, which results in NSCLC
cells becoming resistant to EGFR-TKIs (Wu S. et al., 2021). For
example, lncRNA UCA1 can be delivered to gefitinib-sensitive
recipient cells by exosomes isolated from gefitinib-resistant cell
lines. And it promoted gefitinib resistance in NSCLC in vitro and

in vivo through functioning as a ceRNA for miR-143 and
modulating FOSL2 expression (Chen X. et al., 2020). It has been
reported that hnRNPA2B1, an RNA-binding protein that regulates
RNA loading into exosomes, mediated the packaging of lncRNA
H19 into exosomes, which promoted gefitinib resistance in NSCLC
cells (Lei et al., 2018). Additionally, another research has
demonstrated that exosomal lncRNA H19 could enhance
erlotinib resistance in NSCLC cells through the regulation of
miR-615-3p/ATG7 axis (Pan and Zhou, 2020), indicating that
exosomal lncRNA H19 may be a potential treatment target for
NSCLC. Moreover, Deng et al. discovered exosomal lncRNA
MSTRG.292666.16 was able to be uptaken by osimertinib-
sensitive NSCLC cells, which led to these cells becoming resistant
to osimertinib (Deng et al., 2020). However, given that this study
only used one cell line for in vitro experiments, the mechanism by
which this exosomal lncRNAmodulates EGFR-TKI resistance needs
to be explored in more NSCLC cell lines and in vivo experiments. In
a subsequent study, investigators isolated exosomal lncRNA
MSTRG.292666.16 from M2 type tumor-associated macrophages
(TAMs) and demonstrated that it could promote osimertinib
resistance of NSCLC through modulating miR-6836-5p/
MAPK8IP3 axis (Wan et al., 2022). Thus, exosomal lncRNA
MSTRG.292666.16 may be used as a promising therapeutic target
to overcome osimertinib resistance in NSCLC. These studies
illustrate that exosomal lncRNAs associated with EGFR-TKI
resistance can be derived not only from EGFR TKI-resistant
NSCLC cells but also from non-tumor cells, such as M2 type
TAMs, which fully exemplifies the complexity of cellular
communication in the tumor microenvironment.

FIGURE 2
Mechanisms of lncRNAs involved in EGFR-TKI resistance in NSCLC by modulating tumor microenvironment. LncRNAs in cells can be transported
and secreted into the tumor microenvironment via exosomes to participate in intercellular communication. And exosomal lncRNAs are able to affect
EGFR-TKI resistance in NSCLC by regulating EGFR TKI-sensitive NSCLC cells and other non-tumor cells. The Figure was drawn by Figdraw.
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6.2 Regulation of other non-tumor cells

Besides regulating tumor cells, exosomes in the tumor
microenvironment can act on other non-tumor cells and, in turn,
influence the drug resistance in tumor cells. For instance, in an
investigation conducted by Zhou and collaborators, exosomal
lncRNA SOX2 overlapping transcript (SOX2-OT) was delivered
from NSCLC cell line H1975 to THP-1 cells and it was able to
enhance macrophage M2 polarization as well as inhibit macrophage
M1 polarization by regulating miR-627-3p/Smad axis, thereby
promoting EGFR-TKI resistance (Zhou et al., 2021). Similarly,
exosomal lncRNA PCAT6 derived from NSCLC cells also could
promote macrophage M2 polarization, which enhances metastasis
and EMT processes in NSCLC through modulating miR-326/
KLF1 pathway (Chen et al., 2022). In addition, the phenomenon
of macrophage M2 polarization in the tumor microenvironment is
able to promote the EGFR-TKI resistance of NSCLC cells (Xiao et al.,
2020). So exosomal lncRNAs may serve as targets to inhibit
macrophage M2 polarization to suppress NSCLC. Furthermore,
exosomal lnc-MZT2A-5:1 from AZD9291-resistant NSCLC cells
was significantly upregulated compared with wild-type NSCLC
cells, and it was able to enhance the activation of lung fibroblasts
(MRC-5 cells) (Song et al., 2021). Nevertheless, whether and how
activated MRC-5 cells can further influence the tumor
microenvironment and EGFR-TKI resistance of NSCLC urgently
requires in-depth exploration.

7 LncRNAs and other mechanisms

7.1 CeRNA networks

The intricate interplay among diverse RNA species critically
contributes to the regulation of cellular functions. Different RNA
transcripts that have the same miRNA response elements (MREs)
and constitute a competitive relationship can act as competitive
endogenous RNAs (ceRNAs), the so-called miRNA sponges (Tay
et al., 2014). In recent years, there is accumulating evidence
suggesting that lncRNAs and their constituent ceRNA networks
are implicated with EGFR-TKI resistance of NSCLC (Kong et al.,
2020; Wang T. et al., 2021). Many lncRNAs that act as ceRNAs to
regulate EGFR-TKI resistance in NSCLC have been mentioned
above. However, because ceRNA networks are unique and
important for drug resistance, there are some points to be
emphasized and elaborated. LncRNA PCAT6 has been reported
to enhance gefitinib resistance of NSCLC through modulation of
miR-326/IFNAR2 pathway (Zheng et al., 2022). Another study
found PCAT6 promoted EMT process in NSCLC through miR-
326/KLF1 pathway (Chen et al., 2022). Moreover, PCAT6 can
enhance NSCLC proliferation, migration and invasion via acting
as ceRNA of miR-330-5p (Cui et al., 2018). Accordingly, one
lncRNA can competitively bind to different miRNAs, and one
miRNA can also target different mRNAs, illustrating that ceRNA
networks are heterogeneous.

In the field of lncRNAs and ceRNA networks research,
bioinformatics prediction tools are used to predict and construct
lncRNA-miRNA-mRNA Networks (Rincón-Riveros et al., 2021),
which could subsequently be validated with dual luciferase reporter

or RNA immunoprecipitation assays (Huang et al., 2019). For example,
Wu et al. predicted and validated that lncRNA SNHG14 could sponge
to miR-206-3p through online software starbase v2.0 and luciferase
reporter analysis. Then similarly, they predicted and validated ABCB1,
amember in the ATP-binding cassette (ABC) transporter family, as the
target of miR-206-3p. Eventually, they demonstrated that
SNHG14 promoted gefitinib resistance of NSCLC via the regulation
of miR-206-3p/ABCB1 axis (Wu et al., 2019). In similar ways, it is
proved lncRNA human ovarian cancer-specific transcript 2 (HOST2)
facilitated gefitinib resistance via functioning as ceRNA formiRNA-621
to upregulate SYF2, a cell cycle-associated protein (Chen et al., 2019). In
addition, CCAT1 and lnc-TMEM132D-AS1 were demonstrated to
regulate EGFR-TKI resistance in NSCLC through their corresponding
ceRNA networks (Jin et al., 2020; Wang et al., 2023). This evidence
demonstrates the significance of bioinformatics prediction tools for
ceRNA networks research. However, due to the wide variability in the
timing, space, as well as the abundance of expression of diverse RNA
species in cells, the prediction strategies of bioinformatic tools need to
be continuously refined (Ebert and Sharp, 2010; Tay et al., 2014).

7.2 Epigenetic modifications

Cancer is both amulti-genic as well as an epigenetic disease, as there
are not only genetic mutations but also a great number of epigenetic
alterations in tumor cells (Iacobuzio-Donahue, 2009). Epigenetic
modifications, for example, DNA methylation and histone
modification, are critical in tumor growth, metastasis, and drug
resistance (Gao et al., 2017; Bajbouj et al., 2021). LncRNAs can affect
EGFR-TKI resistance in NSCLC through epigenetic modifications. For
instance, lncRNAs MIAT recruited Dnmt3a, a DNA methyltransferase,
to methylate the miR-34a promotor, leading to silencing miR-34a
expression and finally conferring gefitinib resistance through the
PI3K/AKT signaling pathway (Fu et al., 2018). Furthermore, lncRNA
ferritin heavy chain 1 pseudogene 3 (FTH1P3) accelerated gefitinib
resistance of NSCLC by recruiting lysine-specific demethylase 1 (LSD1),
a histone-modifying enzyme, and epigenetically inhibiting the tissue
inhibitor of metalloproteinase 3 (TIMP3) (Zheng G. et al., 2020).
Likewise, lncRNA HAS2-AS1 can recruit LSD1 to the
EphB3 promoter area and repress EphB3 transcription, thus
promoting gefitinib resistance (Sun et al., 2020). EZH2, one of the
key subunits in the polycomb repressive complex 2 (PRC2) complex, is
the histone methyltransferase that can catalyze the trimethylation of
H3K27me3 (Chase and Cross, 2011). It was reported that
LINC00665 can mediate gefitinib resistance in NSCLC via
interacting with EZH2 and activating the PI3K/AKT pathway (Geng
et al., 2015; Liu et al., 2019). In addition, lncRNA UCA1 and HOTAIR
are also able to facilitate gefitinib resistance through modification of
EZH2 (Xu et al., 2020; Li et al., 2021). Therefore, EZH2 modified by
lncRNAs plays a great role in EGFR-TKI resistance in NSCLC and is a
possible therapeutic target for overcoming EGFR-TKI resistance in
NSCLC, which deserves further exploration.

7.3 Epitranscriptomic modifications

In addition to epigenetic modifications, RNA modifications,
called epitranscriptomic modifications, are also one of the

Frontiers in Genetics frontiersin.org09

Liu et al. 10.3389/fgene.2023.1222059

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1222059


mechanisms by which lncRNAs regulate EGFR-TKI resistance in
NSCLC. Epitranscriptomic modifications modulate the function of
mRNAs or ncRNAs by adding functional groups to them, of which
methylation modifications are the most common type, such as N6-
methyladenosine (m6A), 5-methylcytosine (m5C), N1-
methyladenosine (m1A), etc (Barbieri and Kouzarides, 2020).
Epitranscriptomic modifications can act not only as the upstream
mechanism for the dysregulation of lncRNAs but also as the
downstream mechanism for lncRNAs to function. For example,
Zhang et al. found that METTL3-mediated m6A modification
upregulated lncRNA SNHG17 by stabilizing its transcription,
thereby promoting gefitinib resistance in NSCLC via the EZH2/
LATS2 pathway (Zhang et al., 2022). LINC00969 was found to
interact with both EZH2 and METTL3 to regulate histone
methylation levels in the promoter region of NLRP3 and the m6A
levels of NLRP3 mRNA to inhibit the expression of NLRP3, which
promotes gefitinib resistance (Dai et al., 2023). In addition, lncRNA
DGUOK-AS1 can promote the malignant phenotype of NSCLC by
regulating the m6A modification of TRPM7 (Feng et al., 2023).
However, whether DGUOK-AS1 can promote EGFR-TKI
resistance still needs to be further investigated. This review focuses
on the mechanisms of lncRNAs in EGFR-TKI resistance in NSCLC,
but in fact, circRNAs, a subclass of lncRNAs, are also involved in
regulating EGFR-TKI resistance (Zhou et al., 2019; Huang Y. et al.,
2020; Ma et al., 2020; Yang et al., 2021; Dai et al., 2022; Fan et al., 2022;
Niu et al., 2022; Wang et al., 2022; Pan et al., 2023; Wen et al., 2023).
The relevant circRNAs are listed in Table 2.

8 Conclusion and perspective

In recent years, EGFR-TKI treatment for NSCLC has shown
promising efficacy, but the development of drug resistance is
unavoidable and significantly limits the therapeutic potency of
EGFR-TKI treatments (Mok et al., 2009; Zhou et al., 2011).
Therefore, in order to overcome EGFR-TKI resistance and
improve patients’ prognosis, researchers have conducted
numerous in-depth investigations into the mechanism of
EGFR-TKI resistance. Due to the rapid development of RNA

sequencing technology and bioinformatics analysis, many
lncRNAs were found to participate in the regulation of EGFR-
TKI resistance in NSCLC (Cheng et al., 2015a; Shi et al., 2020).
The evidence described in this review suggests that lncRNAs can
influence EGFR-TKI resistance by regulating aberrant activation
of signaling pathways, phenotypic transformation, tumor
microenvironment, and other modalities.

However, the research of lncRNAs in EGFR TKI-resistant
NSCLC is still in its infancy, and some limitations exist. To start
with, most studies concentrated on the downstream mechanisms
underlying dysregulated lncRNAs in EGFR TKI-resistant NSCLC,
while the upstream mechanism of dysregulation of lncRNA is
unclear. Second, there are many lncRNAs that have been
demonstrated to be implicated in NSCLC progression, but their
relationship with EGFR-TKI resistance was not further explored (Lv
et al., 2021; Xu et al., 2021). In third place, despite the overwhelming
evidence that lncRNAs have a crucial role in EGFR-TKI resistance,
to date, lncRNAs have not been clinically validated for their
potential value. In terms of diagnosis and prediction, exosomal
lncRNAs have great clinical application value and may be the focus
of clinical application exploration due to their natural advantages of
wide distribution and easy access to materials (Tao et al., 2020; Han
et al., 2021). On the therapeutic side, lncRNAs targeting therapies,
which rely on technologies such as RNAi, antisense oligonucleotides
(ASOs), adenoviral/lentiviral vectors and CRISPR-Cas9, face many
challenges (Goyal et al., 2017; Verdera et al., 2020; Kara et al., 2022),
particularly safety concerns caused by off-target effects, which still
need to be overcome (Toden et al., 2021). Intriguingly, many studies
have demonstrated that certain drugs can regulate lncRNAs to
reverse EGFR-TKI resistance in NSCLC by targeting upstream or
downstream molecules of lncRNAs. Examples include the
upregulation of GAS5 by ecto-ATP synthase inhibitor (Chang
et al., 2020), the downregulation of MALAT1 by polyphylin I
(Yang et al., 2018), the downregulation of HOTAIR by berberine
(Zheng F. et al., 2020), and the downregulation of CCAT1 by
hyperoside (Hu et al., 2020), all of which shed fresh light on
dealing with EGFR-TKI resistance, that is, targeting upstream or
downstream molecules of lncRNAs is also a possible alternative
therapeutic approach.

TABLE 2 CircRNAs involved in EGFR-TKI resistance of NSCLC.

circRNA Expression Target/Signaling network Function Reference

hsa_circ_0004015 ↑ miR-1183/PDPK1 gefitinib resistance Zhou et al. (2019)

hsa_circ_0002130 ↑ miR-498 osimertinib resistance Ma et al. (2020)

circSETD3 ↑ miR-520h/ABCG2 gefitinib resistance Huang et al. (2020b)

circSETD3 ↑ FXR1/ECT2 gefitinib resistance Wen et al. (2023)

circRNA_102481 ↑ miR-30a-5p/ROR1 EGFR-TKI resistance Yang et al. (2021)

circ_0014235 ↑ miR-146b-5p/YAP/PD-L1 gefitinib resistance Niu et al. (2022)

circ_MACF1 ↓ miR-942-5p/TGFBR2 gefitinib resistance Fan et al. (2022)

hsa_circ_0000567 ↑ miR-377-3p/ZFX gefitinib resistance Wang et al. (2022)

hsa_circ_0007312 ↑ miR-764/MAPK1 osimertinib resistance Dai et al. (2022)

circRBM33 ↑ DNMT1/IL-6 osimertinib resistance Pan et al. (2023)
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In conclusion, lncRNAs are crucial in EGFR-TKI resistance of
NSCLC via a variety of mechanisms. More in-depth investigations
are warranted to further uncover the regulatory role of lncRNAs in
EGFR-TKI resistance and apply lncRNAs to clinical practices to
promote the prognosis of NSCLC patients.
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