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Background: With the rapid development of high-throughput sequencing
technology and the explosive growth of genomic data, storing, transmitting
and processing massive amounts of data has become a new challenge. How
to achieve fast lossless compression and decompression according to the
characteristics of the data to speed up data transmission and processing
requires research on relevant compression algorithms.

Methods: In this paper, a compression algorithm for sparse asymmetric gene
mutations (CA_SAGM) based on the characteristics of sparse genomic mutation
data was proposed. The data was first sorted on a row-first basis so that
neighboring non-zero elements were as close as possible to each other. The
data were then renumbered using the reverse Cuthill-Mckee sorting technique.
Finally the data were compressed into sparse row format (CSR) and stored. We had
analyzed and compared the results of the CA_SAGM, coordinate format (COO)
and compressed sparse column format (CSC) algorithms for sparse asymmetric
genomic data. Nine types of single-nucleotide variation (SNV) data and six types of
copy number variation (CNV) data from the TCGA database were used as the
subjects of this study. Compression and decompression time, compression and
decompression rate, compression memory and compression ratio were used as
evaluation metrics. The correlation between each metric and the basic
characteristics of the original data was further investigated.

Results: The experimental results showed that the COOmethod had the shortest
compression time, the fastest compression rate and the largest compression ratio,
and had the best compression performance. CSC compression performance was
the worst, and CA_SAGM compression performance was between the two. When
decompressing the data, CA_SAGM performed the best, with the shortest
decompression time and the fastest decompression rate. COO
decompression performance was the worst. With increasing sparsity, the COO,
CSC and CA_SAGM algorithms all exhibited longer compression and
decompression times, lower compression and decompression rates, larger
compression memory and lower compression ratios. When the sparsity was
large, the compression memory and compression ratio of the three algorithms
showed no difference characteristics, but the rest of the indexes were still
different.

Conclusion: CA_SAGM was an efficient compression algorithm that combines
compression and decompression performance for sparse genomicmutation data.
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1 Introduction

Genes are one of the basic units of life and are of irreplaceable
importance in the fields of understanding life phenomena, exploring
the laws of biological evolution, and preventing and controlling
human diseases (Tu et al., 2006; Oh et al., 2012). Gene sequences are
the carriers of biological genetic information, and the biological
properties of all organisms are related to genes (Mota and Franke,
2020). Due to the enormous usefulness of genetic data and the
reduced cost of sequencing, many countries and organizations have
initiated various genetic engineering projects, such as the Personal
Genome Project (Ball et al., 2012) and the Bio Genome Project
(Lewin et al., 2018). The rapid growth of genetic data can provide a
significant boost to the life sciences. A rich gene pool can be very
beneficial to the study of certain types of diseases, providing a new
breakthrough to promote precision medicine and help solve medical
problems (Janssen et al., 2011; Chen et al., 2020; Garand et al., 2020).

However, the growth of genetic data has now greatly outpaced
the growth of storage and transmission bandwidth, posing
significant storage and transmission challenges (Xi et al., 2023a).
The Human Genome Project (Cavalli-Sforza, 2005; Boeke et al.,
2016) and the 1000 Genomes Project (Belsare et al., 2019; Fairley
et al., 2020), for example, generate huge amounts of data, tens of
terabytes or even more. Thus, issues related to genetic data
compression have become a hot topic and focus of research in
recent years. Genomic mutation data contain a large amount of
genetic variation information that can be used to resolve the
functional and phenotypic effects of genetic variants, which is of
great value for human evolutionary genetic and medical research.
Comparative databases (such as dbSNP and ClinVar) allow
sequencing and differential analysis of genes in individuals or
populations of species. Genetic information such as single-
nucleotide variation (SNV), insertion deletion (InDel), structural
variation (SV) and copy number variation (CNV) can be used to
develop molecular markers and create databases of genetic
polymorphisms. Cross-species genome alignment methods
provide genomic context for the identification of annotated gene
regions for variation across species (Samaha et al., 2021). In recent
years, many researchers have developed a variety of rapid detection
methods or tools for CNV (Huang et al., 2021; Lavrichenko et al.,
2021; Kim et al., 2022) and SNV (van der Borght et al., 2015;
Schnepp et al., 2019; Li et al., 2022). However, variant genomic
mutation data are often sparse data formats that are difficult to apply
with traditional compression methods.

Traditional compression algorithms generally reduce the storage
space of data by encoding it, such as Huffman coding (Moffat, 2019),
Lempel-Ziv-Welch coding (Fira and Goras, 2008; Naqvi et al., 2011),
etc. These algorithms are designed based on the assumption that
there is a large amount of repetitive information in the data. But for
sparse data, there is less redundancy in the information present in
the data, making it difficult to compress effectively. The operations
in turn waste a lot of time performing invalid operations with zero
elements. As a result, traditional algorithms such as gzip, bzip2, lzo,
snappy, etc. Are memory wasting and inefficient. As a result,
compressed storage methods for sparse genes, a special form of

data, have received increasing attention from researchers
(Shekaramiz et al., 2019; Yao et al., 2019; Li et al., 2021; Wang
et al., 2022). Although there are some sparse compression methods
available, such as coordinate format (COO) and compressed sparse
column format (CSC) compression (Park et al., 2020), they suffer
from different drawbacks. Some are difficult to operate and cannot
perform matrix operations, while others have problems such as slow
inner product operations and slow row/column slicing operations,
so none are particularly desirable either.

In this paper, based on the sparse asymmetry of variant genomic
data, we propose a method for lossless compression of genomic
mutation data called CA_SAGM. Preprocessing steps such as
prioritization and reverse Cuthill-Mckee (RCM) sorting are
performed on the data to greatly reduce the bandwidth of the
matrix, so that the scattered non-zero elements all converge
towards the diagonal. The data is then compressed sparse row
format (CSR) (Koza et al., 2014; Chen et al., 2018; Xing et al.,
2022) and stored. This method can theoretically optimize the
efficiency and quality of the rearranged data, saving processing
time and memory requirements. This study shows that CA_
SAGM exhibits higher compression performance and best
decompression performance for sparse genomic data compared
to COO and CSC. From a combination of several evaluation
metrics such as compression and decompression time,
compression and decompression rate, compression size and
compression ratio, the CA_SAGM method performs the best and
outperforms the rest of the methods. It is confirmed that the CA_
SAGM method has fast and efficient compression and
decompression performance for sparse genomic data, has good
applicability and can be further extended to other similar data.

2 Materials and methods

Both SNV and CNV are common formats for genomic mutation
data storage. SNV is a single nucleotide mutation resulting in a
deletion, insertion or substitution in a normal human gene. Large-
scale tumor sequencing studies have shown that most cancers are
caused by SNV (Macintyre et al., 2016). DNA copy number
variation is a structural form of genomic variation (Medvedev
et al., 2009; Stankiewicz and Lupski, 2010). Many studies have
shown that CNVs are associated with complex diseases such as
autism, schizophrenia, Alzheimer’s disease, and cancer. In recent
years, there have been a large number of studies on SNVs and CNVs
(Jugas et al., 2021; Prashant et al., 2021; Ladeira et al., 2022; Lee et al.,
2022; Li et al., 2022; Zheng, 2022).

2.1 Materials

In this paper, SNV data for nine different diseases and CNV data
for six different diseases were selected from the TCGA database (The
ICGC/TCGA Pan-Cancer Analysis ofWhole Genomes Consortium,
2020), all data are level3. SNVs or mutations are less common than
other variants andmutations and cannot be observed in the diversity
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of the genome (Press et al., 2019). It is a single-nucleotide variation
without any frequency restriction andmay arise in somatic cells. The
number and type of SNVs and other characteristics can reflect the
genetic diversity, evolutionary history and other information of a
species. SNVs also play an important role in the occurrence and
development of human diseases (Xi et al., 2020a; Xi et al., 2023b).
For example, some SNVs may cause gene mutations and affect
protein structure and function, leading to the development of
diseases; SNV-based research also helps to find susceptibility
genes for diseases and develop corresponding drug targets, etc.
SNV data are from brain tumor, acute myeloid leukemia, thyroid
cancer, prostate cancer, ovarian cancer, breast cancer, bladder
cancer, renal clear cell carcinoma and colorectal cancer.

CNV, or copy number variation, is caused by rearrangements in the
genome. It generally refers to an increase or decrease in the copy
number of a large segment of the genome. It is mainly manifested as
deletions and duplications at the sub-microscopic level. CNV is an
important genetic basis for individual differences and is widely
distributed in the human genome (Xi and Li, 2016; Xi et al., 2020b).
The CNV data are more complex than the SNV data, with larger data
sets, higher numbers of non-zeros and higher densities. CNV data were
obtained from acute spinal leukemia, thyroid cancer, prostate cancer,
bladder cancer, renal clear cell carcinoma and colorectal cancer. The
basic characteristics of SNV and CNV data were analyzed in detail,
including Data set size (n), non-zero number (n), sparsity (%), rows (n),
rows/columns (%), file size (K), L1-norm, L2-norm and Rank. They are
shown in Tables 1, 2 respectively.

2.2 Methods

2.2.1 Compression algorithm
COO and CSC are two common compression methods for

sparse data. COO uses a triplet to store information about the
non-zero elements of the matrix, storing the row subscripts, column
subscripts and values of the non-zero elements respectively. The
non-zero elements are found by traversing the rows and columns
and storing the corresponding number of rows, columns and values
in the corresponding arrays. Let A ∈ Rm×n be a sparse matrix where
the number of non-zero elements. Using the COO storage method,
A can be stored as three vectors (I, J, V). Where I and J store the
coordinates of the rows and columns of the non-zero elements
respectively, and V stores the values of the non-zero elements.
Examples of mathematical formulas are as follows:

A �
z00 0 z02
0 0 z12
z20 z21 z22

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦0I �
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(1)

Data can be converted to other storage formats by COO method
quickly and easily, and data can be quickly converted with compressed
sparse row format (CSR)/CSC formats and can be repeatedly indexed.
However, the COO format is almost impossible to manipulate or
matrix-operate except by converting it to other formats.

The CSC is compressed and stored according to the principle of
data column precedence. The matrix is determined by the rowTA
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indexes of non-zero elements, index pointers, and non-zero data.
Suppose an m × n sparse matrix, with Aij denoting the elements of
row i and column j. CSC can store A as three vectors (in_dices,
indptr and value). Where in_dices is the row index of the non-zero
elements, indptr is an array of index pointers and value is the non-
zero data in the matrix. The steps are as follows:

1. Get the row index of the non-zero element in column i according
to indices [indptr[i]: indptr[i+1]].

2. Get the number of non-zero elements in column i according to
[indptr[i]: indptr[i+1]].

3. The column index and row index are obtained and the
corresponding data is stored in: value [indptr[i]: indptr[i+1]].
The following mathematical formula is an example:

A �
z00 0 z02
0 0 z12
z20 z21 z22
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The CSC data format performs efficient column slicing, but the
inner matrix product and row slicing operations are relatively slow.

2.2.2 CA_SAGM algorithm
CA_SAGM is an optimization algorithm based on compressed

sparse row format, which is implemented by optimizing the matrix
ordering for the characteristics of variable genomic data. The process is
as follows: first, the variant genomic data is sorted by row-major order
so that adjacent non-zero elements are also physically stored as close as
possible to each other. Then, the reverse Cuthill-McKee sorting
algorithm is used to renumber the rows and columns of the data
according to the sorting results. Finally, using the new row and column
numbering, the sparse matrix is CSR compressed and stored in a file.

Reverse Cuthill-Mckee sorting is an algorithm that can be used
to optimize the storage of sparse matrices by rearranging the rows
and columns of a sparse matrix so that the matrix has a smaller
bandwidth. Bandwidth is understood to be the widest diagonal
distance between the non-zero elements of a matrix and has a
significant impact on the efficiency of computational operations
such as matrix multiplication. The basic idea of the RCM sorting
algorithm is to reduce the bandwidth of a matrix by arranging
interconnected points as close to each other as possible. The sparse
matrix is first transformed into an undirected graph, and then this
graph is traversed and pruned as a way to determine the new order of
nodes, which in turn leads to the rearranged matrix. Specifically,
when a node is processed, the traversal of that branch is stopped if
the number of remaining nodes is not sufficient to cause a smaller
bandwidth to the already traversed nodes. In addition, the RCM
sorting algorithm can also use other heuristic rules such as degree
sorting and greedy strategy to further improve the efficiency and
quality of matrix reordering. The main ideological steps of the RCM
algorithm are as follows:TA
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1. Select a starting point and mark it as a visited node.
2. Sort the nodes adjacent to this starting point in order of traversal

distance from closest to farthest.
3. Recursively executes steps 1 and 2 for the sorted neighboring

nodes.
4. When all adjacent nodes have been traversed, return to the

previous level of nodes and continue until the last level has
been traversed.

5. For all unvisited nodes, sort the nodes according to the depth-first
traversal method, again prioritizing the nodes adjacent to the
visited nodes until all nodes have been traversed.

Sparse genomic matrix data has a large bandwidth due to the
dispersed arrangement of non-zero elements.With the use of reverse
Cuthill-Mckee matrix bandwidth compression, the bandwidth of the
matrix is greatly reduced, and the scattered non-zero elements all
converge towards the diagonal, which greatly improves
computational efficiency and reduces memory requirements
according to the relationship between computational complexity
of lower-upper (LU) decomposition and memory requirements and
bandwidth, which is followed by LU decomposition after RCM pre-
processing. For most sparse matrix problems, due to the small
number of elements being sorted, RCM has proven to be a more
efficient algorithm in practice, as neither quick sort nor merge sort is
as fast. It performs as fast as traditional execution, but with no

reduction in speed for problems with a high number of nodes. The
steps of the reverse Cuthill-Mckee algorithm are as follows:

1. Instantiate an empty queue Q for the alignment of the object R.
2. Find the object with the smallest degree whose index has not been

added to R. Assume that the object corresponding to row p has
been identified as the object with the smallest degree. Add p to R.
(The degree of a node is defined as the sum of the non-diagonal
elements in the corresponding row.)

3. Add the index to R, and add all neighbors of the corresponding
object at the index, in increasing order to Q. Neighbors are nodes
with non-zero values between them.

4. Extract the first node in Q, e.g., C. Insert C into R if it has not
already been inserted, then add Q’s C neighbors to Q in
increasing order.

5. If Q is not empty, repeat step4.
6. If Q is empty, but there are objects in the matrix that are not yet

included in R, start again from Step2.
7. Until all objects are contained in R terminate the algorithm.

2.3 Performance evaluation metrics

A number of metrics were used to evaluate the compression and
decompression performance between COO, CSC and CA_SAGM.

FIGURE 1
Compares the compression and decompression metrics of COO, CSC and CA_SAGM for SNV. Where (A) stands for compression time, (B) for
decompression time, (C) for compression speed, (D) for decompression speed, (E) for compressed memory and (F) for compression ratio.
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Compression time (CT, Milliseconds or Seconds), compression rate
(CR, Megabytes/Second), compression memory (CM, Kilobytes
or Megabytes), compression ratio (CRO), decompression time
(DCT, Milliseconds) and decompression rate (DCR, Megabytes/
Second) are included. These parameters are calculated in
Eqs 3–8.

CT � Compression end time − Compression start time (3)
DCT � Decompression end time − Decompression start time (4)

CR � Compression size /CT (5)
DCR � Decompression size /DCT (6)

CM � Memory size af ter compression (7)
CRO � Pre − compressedmemory / post − compressedmemory

(8)
The above metrics allow the compression algorithms to be

evaluated in terms of the speed at which the data is compressed/
decompressed for work, the amount of data, the memory space
occupied and other different aspects. In general, shorter CT and
DCT, faster CR and DCR, smaller CM and larger CRO represent
better compression and decompression performance. And, we
performed a statistical analysis of the experimental results.
However, we can also evaluate algorithms based on different
data, different usage scenarios and requirements. Different
compression algorithms will perform differently in these

performance metrics, users will need to choose the right
algorithm for their specific scenario and needs.

3 Experiments and results

In order to objectively compare the performance metrics of
the different algorithms, all experiments were conducted in the
same environmental configuration. The system configuration
used in this study is Windows 10 (Microsoft Corporation,
United States), CPU: Inter(R) Core(TM) I5-10500, 3.10 GHz;
RAM: 8 G. The compression algorithm processing software is
MATLAB R2022a (Mathworks. United States). And the
statistical analysis software is IBM SPSS Statistics 26 (IBM
Corp. United States). No other applications were run during
any of the programs to ensure a consistent working
environment.

3.1 SNV data compression performance

3.1.1 Comparison of SNV data compression
algorithms

The general process of processing SNV data includes data
read-in, pre-processing, compression and storage. The original

TABLE 3 Spearman correlation analysis between compression and decompression metrics of COO, CSC and CA_SAGM algorithms for SNV data and basic
characteristics of the original data.

Index Data set
size(n)

Non-zero
number(n)

Sparsity
(%)

Rows
(n)

Row/
column (%)

File
size (K)

L1-
norm

L2-
norm

Rank

1_CT 0.167 .983** .967** 0.167 0.167 .967** 0.617 .933** 0.167

2_CT 0.233 1.000** .983** 0.233 0.233 .983** .667* .950** 0.233

3_CT 0.467 .933** .883** 0.467 0.467 .950** .700* .850** 0.467

1_DCT 0.333 .983** .967** 0.333 0.333 1.000** .717* .933** 0.333

2_DCT 0.45 .950** .917** 0.45 0.45 .983** .733* .883** 0.45

3_DCT .717* .750* .717* .717* .717* .833** .667* .683* .717*

1_CM 0.233 1.000** .983** 0.233 0.233 .983** .667* .950** 0.233

2_CM 0.233 1.000** .983** 0.233 0.233 .983** .667* .950** 0.233

3_CM 0.233 1.000** .983** 0.233 0.233 .983** .667* .950** 0.233

1_CR .833** −0.3 −0.35 .833** .833** −0.217 0.033 −0.283 .833**

2_CR −0.033 −.933** −.950** −0.033 −0.033 −.917** −0.6 −.883** −0.033

3_CR 0.45 −0.55 −0.517 0.45 0.45 −0.517 −0.133 −0.483 0.45

1_DCR −0.167 −.983** −1.000** −0.167 −0.167 −.967** −.717* −.933** −0.167

2_DCR 0.333 −.733* −.783* 0.333 0.333 −.700* −0.333 −.717* 0.333

3_DCR 0.467 −0.6 −0.617 0.467 0.467 −0.55 −0.167 −0.55 0.467

1_CRO 0.167 .983** 1.000** 0.167 0.167 .967** .717* .933** 0.167

2_CRO −0.117 .867** .883** −0.117 −0.117 .850** 0.533 .783* −0.117

3_CRO 0.167 .983** 1.000** 0.167 0.167 .967** .717* .933** 0.167

Where 1_ represents the COO compression algorithm, 2_ represents the CSC compression algorithm and 3_ represents the CA_SAGM compression algorithm. ** At level 0.01, the correlation

was significant.* At level 0.05, the correlation was significant.
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SNV data is read in and tested for basic characteristics, including
data set size (n), non-zero number (n), sparsity (%), rows (n),
rows/columns (%), file size (K), L1-norm, L2-norm and rank.
First, the SNV data runs the COO and CSC programs separately.
The sparse data matrix was then preprocessed by row-first
sorting and RCM sorting successively. Next, SNV data were
run through CA_SAGM compression programs. Compression
time, decompression time, compression rate, decompression
rate, compression memory and compression ratio are
respectively obtained by the three methods. The results are
shown in Figure 1. Finally, the compressed data were stored in
a suitable location. The experimental results were in mean ± SD
(Standard deviation, SD) format, and were analyzed by
comparing the evaluation indexes among different algorithms
and using statistical methods.

As can be seen from the Figure 1, the COO algorithm has the
shortest CT (5.91 ± 2.42 vs. 184.61 ± 142.89 vs. 12.25 ± 5.81), the
largest CR (4989.43 ± 2753.14 vs. 238.85 ± 153.2 vs. 2377.17 ±
1093.17), the smallest CM (509.53 ± 472.56 vs. 604.55 ±
472.59 vs. 511.97 ± 472.65), CRO was the largest (170.31 ±
192.38 vs. 70.8 ± 46.65 vs. 164.48 ± 181.78), compression
performance was the best. However, decompression took the
longest to recover the original data (30.76 ± 23.89 vs. 21.33 ±
9.42 vs. 7.96 ± 3.32) and had a smaller decompression rate

(1596.72 ± 1187.87 vs. 1389.44 ± 629.08 vs. 3467.85 ±
1246.34). The performance of CSC was the opposite of COO,
CT was the longest (184.61 ± 142.89), CR was the lowest
(238.85 ± 153.2), CM was the largest (604.55 ± 472.59) and
CRO was the smallest (70.8 ± 46.65). The decompression
performance of CSC is between COO and CA_SAGM, with
DCT and DCR both performing in the middle. In addition,
CA_SAGM has the best decompression performance, with the
shortest DCT (7.96 ± 3.32) and the largest DCR (3467.85 ±
1246.34). If the overall total time of compression and
decompression time, the average rate of compression rate and
decompression rate are considered, it is clear that the CA_SAGM
algorithm has the shortest total time and the largest average rate.

A paired sample t-test was used to assess whether there were
differences in the same metrics between any two algorithms. The
results show that there is a significant difference (p < 0.05)
between any two algorithms for almost all metrics:
compression time (COO to CSC: 0.005; COO to CA_SAGM:
0.001; CA_SAGM to CSC: 0.006), decompression time (COO to
CSC: 0.111; COO to CA_SAGM: 0.013; CA_SAGM to CSC:
0.000), compression rate (COO to CSC: 0.001; COO to CA_
SAGM: 0.003; CA_SAGM to CSC: 0.000), decompression rate
(COO to CSC: 0.493; COO to CA_SAGM: 0.001; CA_SAGM to
CSC: 0.000), compression memory (COO to CSC: 0.000; COO to

FIGURE 2
Curves of compression and decompression metrics vs. sparsity variation for COO, CSC and CA_SAGM for SNV. Where (A) stands for compression
time, (B) for decompression time, (C) for compression speed, (D) for decompression speed, (E) for compressed memory and (F) for compression ratio.
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CA_SAGM: 0.000; CA_SAGM to CSC: 0.000), compression ratio
(COO to CSC: 0.003; COO to CA_SAGM: 0.000; CA_SAGM to
CSC: 0.003). There is little difference between COO and CSC in
terms of compression time and decompression speed.

3.1.2 Correlation analysis of SNV data
We used spearman correlation analysis to investigate whether

the compression and decompression performance was correlated
with the basic characteristics of the original SNV data. Table 3 shows
that the compression time, decompression time, compression rate,
decompression rate, compression memory and compression ratio
are all correlated with the non-zero number of the original data,
sparsity, file size, L1-norm and L2-norm. There was a strong
correlation between sparsity and the non-zero number of raw
data (p = 0.983), file size (p = 0.967), L1-norm (p = 0.983) and
L2-norm (p = 0.983).

As sparsity is easy to calculate and obtain, we further
analyzed the effect of sparsity on the SNV data, as shown in
Figure 2. As can be seen from the figure, CSC compression
performance performs the worst, with the longest CT, the
smallest CR and the smallest CRO. Both COO and CA_
SAGM show better compression characteristics, with shorter
CT and larger CR. In terms of decompression, COO performs
the worst, with the longest DCT and smallest DCR. CA_SAGM
performs the best, with the shortest DCT and largest DCR, CSC

performs in the middle. The difference between the compression
& decompression performance of COO, CSC and CA_SAGM is
small when the sparsity is close to 0. As the data sparsity
increases (but the sparsity is still small, <2%), the
compression & decompression time tends to become larger,
the compression and decompression rate tends to decrease,
and the compression ratio also tends to decrease. The
difference in compression and decompression times between
algorithms increases with sparsity.

3.2 CNV data compression performance

3.2.1 Comparison of CNV data compression
algorithms

CNV data are more complex than SNV data, with larger
datasets, a larger number of non-zeros and greater sparsity. Thus,
we further investigated and analyzed the experimental results of
the CNV data. Similarly, the process of processing CNV data
includes steps such as data read-in, pre-processing, compression
and storage. The raw CNV data is read in and tested for basic
characteristics, including data set size (n), non-zero number (n),
sparsity (%), rows (n), rows/columns (%), file size (K), L1-norm,
L2-norm and rank. First, the CNV data runs the COO and CSC
programs separately. The sparse data matrix was then

FIGURE 3
Compares the compression and decompression metrics of COO, CSC and CA_SAGM for CNV. Where (A) stands for compression time, (B) for
decompression time, (C) for compression speed, (D) for decompression speed, (E) for compressed memory and (F) for compression ratio.
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preprocessed by row-first sorting and RCM sorting successively.
Next, SNV data were run through CA_SAGM compression
programs. Compression time, decompression time,
compression rate, decompression rate, compression memory
and compression ratio are respectively obtained by the three
methods. The results are shown in Figure 3. Finally, the
compressed data were stored in a suitable location. The
experimental results were in mean ± SD, and were analyzed
by comparing the evaluation indexes among different algorithms
and using statistical methods.

From the Figure 3, we can see that in terms of compression
performance, COO performs the best with the shortest CT (0.11 ±
0.06 vs. 4.51 ± 3.71 vs. 0.24 ± 0.21) and the largest CR (357.02 ±
337.97 vs. 12.72 ± 12.72 vs. 238.27 ± 240.35). CSC has the worst
compression performance with the longest CT and the smallest
CR. CA_SAGM had the middle compression performance.
However, the CM (16.11 ± 12.45 vs. 16.11 ± 12.45 vs. 16.11 ±
12.45) and CRO (0.62 ± 0.41 vs. 0.62 ± 0.41 vs. 0.62 ± 0.41) were
the same after compression by the three methods, which may be
associated with a larger sparsity (19.58% ± 17.52%). In terms of
decompression, COO had the worst performance, with the longest
DCT (0.86 ± 0.59 vs. 0.09 ± 0.04 vs. 0.07 ± 0.04) and the smallest
DCR (65.71 ± 67.19 vs. 375.74 ± 252.88 vs. 639.42 ± 553.6). CA_
SAGM had the best decompression performance, with the shortest

DCT and the smallest DCR. CSC decompression performance in
the middle.

Similarly, a paired sample t-test was used to assess whether
there were differences between any two algorithms for the same
metrics. The results showed that almost all metrics were
significantly different between any two algorithms (p < 0.05),
with the exception of compression memory and compression
ratio (p > 0.05). The detailed analysis results are as follows:
Compression time (COO to CSC: 0.032; COO to CA_SAGM:
0.087; CA_SAGM to CSC: 0.031), decompression time (COO to
CSC: 0.018; COO to CA_SAGM: 0.016; CA_SAGM to CSC:
0.000), compression rate (COO to CSC: 0.05; COO to CA_
SAGM: 0.357; CA_SAGM to CSC: 0.06), decompression rate
(COO to CSC: 0.011; COO to CA_SAGM: 0.034; CA_SAGM
to CSC: 0.115), compression memory (COO to CSC: 0.018; COO
to CA_SAGM: 0.002; CA_SAGM to CSC: 0.000), compression
ratio (COO to CSC: 0.006; COO to CA_SAGM: 0.000; CA_SAGM
to CSC: 0.007).

3.2.2 Correlation analysis of CNV data
Spearman correlation analysis was used to investigate

whether the compression and decompression performance was
correlated with the basic characteristics of the CNV raw data (see
Table 4). The results show that CT, DCT, CR, DCR, CM and CRO

TABLE 4 Spearman correlation analysis between compression and decompression metrics of COO, CSC and CA_SAGM algorithms for CNV data and basic
characteristics of the original data.

Index Data set
size(n)

Non-zero
number(n)

Sparsity
(%)

Rows
(n)

Row/
column (%)

Non-negative
ratio (%)

File
size (K)

L1-
norm

L2-
norm

Rank

1_CT −0.257 .943** .829* −0.257 −0.257 −0.143 0.771* 0.714* .886* 0.143

2_CT −0.029 1.000** 0.771* −0.029 −0.029 0.086 .829* 0.771* .943** 0.257

3_CT 0.257 .829* 0.543 0.257 0.257 −0.029 1.000** .943** .943** 0.6

1_DCT −0.029 1.000** 0.771* −0.029 −0.029 0.086 .829* 0.771* .943** 0.257

2_DCT −0.029 1.000** 0.771* −0.029 −0.029 0.086 .829* 0.771* .943** 0.257

3_DCT −0.029 1.000** 0.771* −0.029 −0.029 0.086 .829* 0.771* .943** 0.257

1_CM −0.029 1.000** 0.771* −0.029 −0.029 0.086 .829* 0.771* .943** 0.257

2_CM −0.029 1.000** 0.771* −0.029 −0.029 0.086 .829* 0.771* .943** 0.257

3_CM −0.029 1.000** 0.771* −0.029 −0.029 0.086 .829* 0.771* .943** 0.257

1_CR 0.6 −0.771* −.886* 0.6 0.6 0.029 −0.429 −0.314 −0.657 0.314

2_CR 0.486 −.886* −.943** 0.486 0.486 0.086 −0.6 −0.543 −0.771* 0.143

3_CR 0.257 −.943** −.886* 0.257 0.257 −0.143 −0.657 −0.6 −.829* 0.029

1_DCR 0.6 −0.771* −1.000** 0.6 0.6 −0.029 −0.543 −0.429 −0.714* 0.314

2_DCR 0.6 −0.771* −1.000** 0.6 0.6 −0.029 −0.543 −0.429 −0.714* 0.314

3_DCR 0.6 −0.771* −1.000** 0.6 0.6 −0.029 −0.543 −0.429 −0.714* 0.314

1_CRO −0.6 0.771* 1.000** −0.6 −0.6 0.029 0.543 0.429 0.714* −0.314

2_CRO −0.6 0.771* 1.000** −0.6 −0.6 0.029 0.543 0.429 0.714* −0.314

3_CRO −0.6 0.771* 1.000** −0.6 −0.6 0.029 0.543 0.429 0.714* −0.314

Where 1_ represents the COO compression algorithm, 2_ represents the CSC compression algorithm and 3_ represents the CA_SAGM compression algorithm. ** At level 0.01, the correlation

was significant.* At level 0.05, the correlation was significant.
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all have large correlation coefficients with the non-zero number,
sparsity and L2-norm of the original data. In addition, CT, DCT
and CM are strongly correlated with data file size and L1-norm.
Also, there was a strong correlation between sparsity, non-zero
number (p = 0.771) and L2-norm (p = 0.714). There was also a
strong correlation between file size and L1-norm (p = 0.943).

Similarly, we have further analyzed the effect of the variation
of CNV data sparsity on the experimental results, as shown in
Figure 4. It can also be seen from the figure that in terms of
compression performance, CSC has the worst compression
characteristics, with the longest CT and the smallest CR.
While both COO and CA_SAGM show better compression
characteristics, with shorter CT and larger CR, with less
difference between them. In terms of decompression, COO
has the worst performance, with the longest DCT and the
smallest DCR. CA_SAGM shows the best decompression
characteristics, with the shortest DCT and the largest DCR.
CSC decompression characteristics are between COO and CA_
SAGM. When the sparsity is relatively small, the difference in
compression and decompression performance between COO,
CSC and CA_SAGM is small. The difference in compression
and decompression time between CSC, COO and CA_SAGM
increases as the sparsity increases. However, the difference
between CR and DCR decreases with increasing sparsity.

4 Discussion and conclusion

In this paper, we propose a sparse asymmetric gene mutation
compression algorithm CA_SAGM. The compression and

decompression performance of COO, CSC and CA_SAGM is
compared and analyzed using SNV and CNV data as the study
objects. The results show that CA_SAGM can meet the high
performance requirements of compression and decompression,
achieve fast and lossless compression and decompression. In
addition, it was found that the compression and decompression
performance has a strong correlation with sparse. As the sparsity
increases, all algorithms show longer compression and
decompression times, lower compression and decompression
rates, increased compression memory and lower compression
ratios.

In our current study, CA_SAGM proved to have high
compression and decompression performance for sparse
genomic mutation data. CA_SAGM is a CSR compression
algorithm for row-first sorting and reverse Cuthill-McKee
sorting optimization. CA_SAGM has its own unique
advantages over other compression algorithms. In
combination with the reverse Cuthill-McKee sorting and
optimization algorithm phase, the scattered non-zero elements
of the data can be brought together on the diagonal and the
bandwidth of the matrix is reduced considerably. Computational
complexity versus memory and bandwidth based on the results of
low-high (LU) decomposition. RCM pre-processing followed by
LU decomposition can significantly reduce processing time,
improve computational efficiency and reduce memory
requirements. CA_SAGM has significant advantages in terms
of compression and decompression time, as well as compression
and decompression speed. CA_SAGM also has a very significant
compression ratio advantage when the sparsity is low.

It should be noted that the results of this paper also have some
limitations. Firstly, the SNV and CNV data from the experiments
are limited and the sources of test data need to be expanded.
Secondly, the data were only obtained from TCGA and the rest of
the databases (e.g., GEO) were not studied. Recently, dedicated
and integrated tools, genetic data compression algorithms,
software and methods for compression in combination with
machine learning (Wang et al., 2019; Kryukov et al., 2020;
Chen et al., 2022; Niu et al., 2022; Yao et al., 2022) have
received increasing attention and application by researchers,
making it possible to process huge amounts of genetic data.
For example, Cui Huanyu et al. proposed a new method of
matrix compression based on CSR and COO: PBC algorithm
for the problem that SPMV (sparse matrix vector multiplication)
computation leads to computational redundancy, storage
redundancy, load imbalance and low GPU utilization (Cui
et al., 2022). The method considers load balancing conditions
during the SPMV calculation. The blocks are divided according
to a row-major order strategy, ensuring that the standard
deviation between each block is minimized to satisfy the
maximum similarity in the number of non-zero elements
between each block. The result exhibits both speed-up ratio
and compression performance. For lossless compression,
researchers such as Jiabing Fu recommended LCQS; a lossless
compression tool specialized for quality scores (Fu et al., 2020).
The further development of specialized and integrated tools,
software and evaluation methods, combined with artificial
intelligence algorithms for the analysis and processing of

FIGURE 4
Curves of compression and decompression metrics vs. sparsity
variation for COO, CSC and CA_SAGM for CNV. Where (A) stands for
compression time, (B) for decompression time, (C) for compression
speed, (D) for decompression speed, (E) for compressed
memory and (F) for compression ratio.
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genetic data are also the main directions and elements of our next
research work. In summary, CA_SAGM has been shown to
reduce data transfer time and storage space, and improve the
utilization of network and storage resources. Promoting the use
of this method will make the researcher’s work more effective and
convenient.
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