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Introduction: Clear cell renal cell carcinoma (ccRCC) is associated with
unfavorable clinical outcomes. To identify viable therapeutic targets, a
comprehensive understanding of intratumoral heterogeneity is crucial. In this
study, we conducted bioinformatic analysis to scrutinize single-cell RNA
sequencing data of ccRCC tumor and para-tumor samples, aiming to elucidate
the intratumoral heterogeneity in the ccRCC tumor microenvironment (TME).

Methods: A total of 51,780 single cells from seven ccRCC tumors and five para-
tumor samples were identified and grouped into 11 cell lineages using
bioinformatic analysis. These lineages included tumor cells, myeloid cells, T-
cells, fibroblasts, and endothelial cells, indicating a high degree of
heterogeneity in the TME. Copy number variation (CNV) analysis was
performed to compare CNV frequencies between tumor and normal cells. The
myeloid cell population was further re-clustered into three major subgroups:
monocytes, macrophages, and dendritic cells. Differential expression analysis,
gene ontology, and gene set enrichment analysis were employed to assess inter-
cluster and intra-cluster functional heterogeneity within the ccRCC TME.

Results: Our findings revealed that immune cells in the TME predominantly
adopted an inflammatory suppression state, promoting tumor cell growth and
immune evasion. Additionally, tumor cells exhibited higher CNV frequencies
compared to normal cells. The myeloid cell subgroups demonstrated distinct
functional properties, with monocytes, macrophages, and dendritic cells
displaying diverse roles in the TME. Certain immune cells exhibited pro-tumor
and immunosuppressive effects, while others demonstrated antitumor and
immunostimulatory properties.

Conclusion: This study contributes to the understanding of intratumoral
heterogeneity in the ccRCC TME and provides potential therapeutic targets for
ccRCC treatment. The findings emphasize the importance of considering the
diverse functional roles of immune cells in the TME for effective therapeutic
interventions.
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1 Introduction

Over the past two decades, there has been a steady annual
increase of 2% in the global incidence of renal cell carcinoma
(RCC), resulting in estimated new RCC cases exceeding 77,000 in
China and 71,000 in the United States, with RCC-related deaths
surpassing 46,000 and 15,000 in the respective countries in 2022 (Xia
et al., 2022). Clear cell renal cell carcinoma (ccRCC) represents the
predominant clinicopathological subtype, accounting for
approximately 70%–80% of all RCC cases (Bray et al., 2018;
Ljungberg et al., 2022). Despite advancements in tumor biology
and therapeutic modalities, the long-term clinical prognosis of
patients with ccRCC remains poor.

Rossi et al. (2022) have reported that tumor metabolic
heterogeneity plays a key role in tumor invasion and metastasis
and vascular endothelial cells (ECs) are involved in regulating
tumor cell metabolic status. In addition to intrinsic factors of
tumor cells, the interaction between tumor cells and other cell
types within the tumor microenvironment (TME) contribute to
tumor metabolic heterogeneity, influencing disease progression. For
instance, single-cell sequencing indicated substantial variations in
energy metabolism and oxidative phosphorylation among different
clusters of tumor cells and intratumoral ECs in our bioinformatics
study. Additionally, single-cell sequencing analysis revealed that
immune cells, constituting approximately 30% of the total cells in
ccRCC samples, exhibited diverse functional profiles, including
tumor-promoting and anti-inflammatory effects (Zhang et al.,
2021a). Although cytotoxic CD8+ T cells are a critical component
of antitumor immune response, tumor cells can induce CD8+ T cell
dysfunction through complex intercellular mechanisms, contributing
to tumor immune escape in patients with ccRCC (Iwai et al., 2002;Wu
et al., 2020; Borcherding et al., 2021). Cell function heterogeneity has
also been observed and further studied in tumor-infiltrating immune
cells. There are two types of tumor-associated macrophages (TAMs)
in the TME: M1 and M2 (Mortezaee and Majidpoor, 2022). Analysis
of single-cell sequencing data of clinical samples obtained from a
publicly available transcriptome database revealed that TAMs
displayed elevated expression levels of the immune checkpoint
genes, namely, CD274 and CD276, which bind to receptors on the
surface of T lymphocytes, consequently impairing their tumor-killing
capacity. Moreover, the abundance of M2-like TAMs in the TME is
significantly associated with adverse clinical outcomes (Hu et al.,
2020). Notably, these complex M2-like macrophages were found to
exhibit high cytokines, such as CCL3 and CXCL2, and the
angiogenic factor VEGFA, indicating a paradoxical population of
immunosuppressive and angiogenic macrophages in tumors with the
ability to both inhibit adaptive immune responses and recruit immune
cells (Young et al., 2018; Borcherding et al., 2021; Obradovic et al.,
2021).

Although ccRCC is an immunogenic tumor, the underlying
immunocytodynamics governing both antitumor and pro-tumor
responses are not fully understood. High-throughput single-cell
RNA sequencing (scRNA-seq) is a valuable tool for
classifying various cell subpopulations in the TME, identifying
representative gene expression signatures at the individual cell
level, and describing the transcriptional status of different cell
types. Compared to conventional bulk RNA sequencing, scRNA-
seq has the potential to unveil the contributions of various cell

populations within tumors and reveal the underlying
mechanisms influencing tumor cell viability and progression
(Obradovic et al., 2021). Tumor stromal cells, including
tumor-infiltrating immune cells, ECs, and fibroblasts, have
been reported to exhibit pronounced heterogeneity, which has
been implicated in the limited response to targeted therapies
among patients with malignancies (Papalexi and Satija, 2018).
Therefore, a comprehensive understanding of the intratumoral
landscape is necessary for effective treatment.

Here, we analyzed scRNA-seq data of 12 samples, including
seven ccRCC tumor and five para-tumor samples to elucidate the
intricate intratumoral heterogeneity prevalent in ccRCC. It is
anticipated that these findings of this study will significantly
contribute to the understanding of the biological characteristics
of ccRCC, thereby laying the foundation for the implementation of
individualized and precise treatment approaches tailored to ccRCC
patients.

2 Materials and methods

2.1 Data correction and quality control

Raw scRNA-seq profiling dataset GSE156632 was downloaded
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). A
comprehensive set of 12 samples, including seven tumor and five
para-tumor samples, was included in the analysis. Quality control
measures were performed using the Seurat package (version 3.0.6)
(Butler et al., 2018). Single cells characterized by mitochondrial gene
content exceeding 10% or possessing fewer than 200 genes were
excluded from further analysis. The harmony algorithm was applied
to eliminate batch effect between the different samples. Finally,
51,780 single cells, comprising 18,682 cells derived from normal
tissue and 33,098 cells derived from tumor tissue, were retained for
further investigation. Additionally, we utilized two additional
scRNA-seq profiles from Su et al. (2021) and Young et al. (2018),
available in their Supplementary material, to validate certain
findings. These profiles collectively encompassed 42,958 cells.
Bulk RNA-seq data of ccRCC samples, including 533 tumor
samples, were obtained from The Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov/).

2.2 Dimensionality reduction and cell
clustering

Dimensionality reduction and cell clustering analysis were
performed on the sequencing data, and each cluster was visualized
using 2D uniform manifold approximation and projection (UMAP).
The main cell types were identified using markers obtained from the
CellMarker database and previous studies (Lake et al., 2019; Zhang et al.,
2019; Hu et al., 2020), and marker genes were visualized using dot plots
or violin plots. The 51,780 cells were clustered into 11 major cell types,
and each cell type was further clustered into subclusters to detect
intracellular heterogeneity. Preferentially expressed genes in clusters or
differentially expressed genes (DEGs) between tumor- and normal-
derived cells were identified using the FindAllMarkers function in
Seurat.
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2.3 Estimation of copy number variations
(CNVs) in epithelial cells

Estimation of CNVs in epithelial cells entailed employing the
default parameters of the InferCNV package, with four clusters
containing non-malignant derived proximal tubule epithelial cells as
control. Heatmap illustrating the top 10 DEGs in each group was
generated. Kaplan-Meier analysis ofMALAT1was performed using the
online tool GEPIA to evaluate the prognostic value of highly expressed
genes and detect the role of these genes in ccRCC progression.

2.4 Functional enrichment analysis

DEGs among cell clusters were identified using the
FindAllMarkers function in Seurat, with cut-off threshold values
of |log2(Fold Change)| > 0.25 and adjusted p < 0.05. Kyoto
Encyclopedia of Genes and Genomes (KEGG) and gene ontology
(GO) enrichment analyses of DEGs were performed using the
DAVID (version 6.8) online tool (https://david.ncifcrf.gov/). Gene
set variation analysis (GSVA) was conducted with the GSVA
package. Metabolic gene sets obtained from a previously
published study (Gaude and Frezza, 2016) was tested using the R
limma package. Pathways with adjusted p < 0.05 were considered
significantly enriched.

2.5 Statistical analysis

A paired t-test was performed to determine differences in the
expression of CD4+ or CD8+ lymphocytes between tumor tissues
and paired para-tumor tissues. Data were considered statistically
significant at p < 0.05.

3 Results

3.1 Single-cell sequencing and cell typing of
ccRCC and paired para-tumor tissues

A cohort of 12 samples, encompassing seven renal cancer tissues
and five paired para-tumor tissues, was collected from seven patients
who underwent radical nephrectomy as part of this study. Rigorous
quality control measures were implemented, including the removal of
batch effects (Supplementary Figure S1). Subsequently, a total of
51,780 cells were identified including 18,682 normal tissue-derived
cells and 33,098 tumor (ccRCC)-derived cells. A total of 20,531 genes
from scRNA-seq validation data were analyzed. The 51,780 cells were
classified into 30 clusters according to known cluster-specific genes
described in previous literature, and the 30 clusters were typed into
11 cell lineages based on cell type-specific genes (Lambrechts et al., 2018;
Chen et al., 2020; Hu et al., 2020). The identified cell lineages included
proximal renal tubular cells (GPX3 and ALDOB), distal renal tubular
cells (DEFB1, CKB, and EPCAM), collecting duct cells (KRT7,
SLC26A4, and KRT18), cancer cells (NDUFA4L2 and NNMT), ECs
(CLDN5, PECAM1, and KDR), myeloid cell (LST1, LYZ, and C1QB),
smooth muscle cells (TAGLN and ACTA2), fibroblasts (COL1A1,
COL3A1, PDGFRB, and DCN), T-cells (CD3D, CD3E, and NKG7);

B cells (MS4A1 and CD79B), and mast cells (TPSB2 and CPA3)
(Figures 1A–C). The overall distribution of these cell lineages across
different patients and tissues is shown in Figure 1D, and was consistent
with previous findings in kidney diseases (Muto et al., 2021; Xu et al.,
2022a; Schreibing and Kramann, 2022). Specifically, tumor tissues
exhibited a higher proportion of inflammatory cells, ECs, and
fibroblasts compared to para-tumor tissues, indicating inter-tumor
heterogeneity in the composition of stromal cells. Cancer cells,
myeloid cells, T cells, fibroblasts, and ECs were re-clustered to
analyze their roles in the occurrence and development of ccRCC.
B cells, mast cells, and smooth muscle cells (SMC) were excluded
from the re-clustering analysis due to their limited representation in the
tumor samples, ensuring a more unbiased approach.

3.2 High CNV heterogeneity was observed in
tumor cells

The cancer and proximal tubular cells (Figure 1B) were re-clustered
into 13 groups (Figure 2A), and the proportion of each cluster in the
respective sample is depicted in Figure 2B. A total of 20,020 cells were
reanalyzed, including 13,761 cells from para-tumor tissues and
6,259 cells from tumor tissues. This analysis was performed using
specificmarker genes: GPX3 andALDOB for proximal tubular cells and
VIM, KRT18, NDUFA4L2, and NNMT for tumor cells. Based on the
expression of the annotated gene, clusters 0/1/3/7 were defined as
normal tubular cells, while the remaining clusters were classified as
tumor cells (Figures 2A, C). CNV analysis was performed using clusters
0/1/3/7 as the control group, and re-clustered cells were scored.
Compared with normal tubular cells, there were more CNVs in
tumor cells (Figures 2D, E). Moreover, the CNV scores exhibited
considerable high heterogeneity within tumor cells. Therefore, the
re-clustered cells were divided into three subgroups based on CNVs:
high-CNV (cluster 2/4/12), low-CNV (cluster 5/6/8/9/10/11), and
normal proximal tubular cell (control) groups. Consistent with the
CNV score, the three groups of cells were classified in the UMAP plot
(Figures 2E, F). Remarkably, amplifications of chromosomes 2, 7, and
12 and deletions of chromosomes X and 19 were detected in the high
CNV group. Notably, deletion of chromosomes 3, 9, and 16 and
amplification of chromosome 6 was observed in both the high and
low CNV groups, indicating some level of CNV homogeneity in tumor
cells (Figures 2E, F). The diverse metabolism and progression of ccRCC
may be attributed to different chromosomal CNVs. Additionally,
distinct CNVs were observed between tumor and non-tumor cells,
further highlighting the significant CNV heterogeneity in tumor cells.
Moreover, the CNV analysis of the scRNA-seq validation dataset
confirmed the presence of CNV heterogeneity in tumor cells, as
evidenced by amplification of multiple chromosomes (Borcherding
et al., 2021; Borcherding et al., 2021; Obradovic et al., 2021; Ljungberg
et al., 2022) and deletions of multiple chromosomes (Bray et al., 2018;
Chen et al., 2020; Mortezaee and Majidpoor, 2022; Mortezaee and
Majidpoor, 2022) (Supplementary Figure S2A).

Differential expression analysis was performed using the Limma
package to identify DEGs within the three cell subgroups. A
heatmap displaying the top 10 DEGs in each group was
presented in Figure 2G. Significant variations in the expression
levels of the top 10 genes were observed between normal tubular
cells and tumor cells, whereas such differences were not statistically
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significant between the high and low CNV groups. Notably,
MALAT1 emerged as one of the top 10 DEGs in both the high
and low CNV groups. In ccRCC, MALAT1 has been implicated in
various metabolic processes. It has been shown to interact with SCD,
an enzyme involved in fatty acid biosynthesis, to participate in the
regulation of lipid metabolism (Zhou et al., 2022) and lipid uptake
and insulin resistance through multiple pathways (Yan et al., 2016;
Zhao et al., 2021). In the TCGA-KIRC cohort, compared to normal
tissues, tumor tissues exhibit higher levels of MALAT1
(Supplementary Figure S2B), and elevated MALAT1 expression
was significantly positively associated with poor prognosis
(Figure 2I).

GSVA revealed notable enrichments in specific biological
pathways across different CNV groups. The high CNV group
exhibited significant enrichment in Myc targets, DNA repair,
mTOR signaling, and E2F targets compared to the control
group. Conversely, the low CNV group showed pronounced
enrichment in epithelial mesenchymal transition (EMT), Wnt/β-
catenin signaling, and Notch signaling compared to the control
group (Figure 2H). Moreover, TGF-β signaling, PI3K/AKT/mTOR
signaling, G2/M checkpoint, and interferon gamma response were
enriched in both CNV groups.

Tumor cells and control cells underwent re-annotated using cell
cycle-related genes, and the results were visualized in a UMAP plot

FIGURE 1
Overview of single cells derived from ccRCC and para-tumor samples. (A, B) UMAP plot of all the single cells derived from ccRCC and para-tumor
samples, with each color coded for (A) 30 clusters of cells, and (B) 11 major cell types. (C) The cell-marker genes of 11 major cell types identified in this
study. (D) The 11 cell types identified in this study (from top to bottom): The fraction of cells that originated from the five para-tumor and seven tumor
samples, and the fraction of cells from sample origin type.
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FIGURE 2
Copy number variation (CNV) heterogeneity was observed in tumor cells. (A–C) Re-clustering of tumor cells and proximal tubular cells. (A) UMAP
plot of tumor cells and proximal tubular cells from Figure 1B. (B) For 13 cell clusters: fraction of cells that originated from the five para-tumor and seven
tumor samples. (C) The marker genes for the 13 cell clusters. (D–F) Estimation of CNVs in cancer cells. (D) CNV analysis of each cluster of cells that
originated from the five para-tumor (upper) and seven tumor samples (lower). (E) Box diagram of CNV score of each cluster of cells derived from the
tumor samples. (F) UMAP plot of tumor cells and proximal tubular cells, colored according CNV level. (G) Heatmap of the top 10 differentially expressed
genes (DEGs) between normal group, high CNV group, and low CNV group. (H) Differences in 50 hallmark pathway activities between the three groups
were determined using GSVA package. Shown are t values calculated using a linear model. (I) Kaplan-Meier survival curve showing high level of MALAT1,
which indicated poor prognosis in TCGA KIRC cohort. Log-rank p < 0.05 was considered as statistically significant.
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FIGURE 3
Myeloid cells have a negative immunoregulatory function in ccRCC. (A)UMAP plot of myeloid cells derived from ccRCC and para-tumor samples, colored
according to clusters. (B) The proportion of 14 clusters of cells that originated from five para-tumor and seven tumor samples. (C) The cell-marker genes of three
myeloid cell types identified in this study. (D–E) Violin plots of functional genes for (D) monocytes or (E) macrophages. Tumor tissues were colored red, while
normal tissues were colored green. (F) Bubble chart showing the expression level of the top 10 differentially expressed genes (DEGs) in tumor-associated
macrophages (TAMs). (G) Volcano plot of DEGs between TAMs and normal para-tumormacrophages. Upregulated genes [log2 (Fold Change) > 1] were indicated
with red color, while downregulated genes [log2 (Fold Change) < −1] were indicated with blue. The top five upregulated and downregulated genes were
annotated. (H)Gene ontology annotation of upregulated and downregulated DEGs. DEGs with FDR < 0.05 were considered significantly enriched. (I) Violin plots
of functional genes for dendritic cells. Red represents tumor tissues while green represents normal tissues.
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(Supplementary Figures S2A–C). Tumor cells predominantly
occupied the G2/M phase, indicating a high level of cell
proliferation, which was consistent with the enrichment of E2F
targets and G2/M checkpoint. These findings supported the notion
that ccRCC was characterized by distinct metabolic alterations, as
evidenced by the enrichment of multiple enriched metabolic
pathways (Figure 2H). Therefore, a detailed analysis of the
metabolic pathways in the three groups was performed.
Compared with the control group, lipid anabolism, drug
metabolism, O-glycan synthesis, and N-glycan synthesis pathways
were significantly enriched in the high and low CNV groups. In
contrast, oxidative phosphorylation and the tricarboxylic acid cycle
had low enrichment levels in the CNV groups (Supplementary
Figure S3). These observations shed light on the metabolic
landscape of ccRCC and highlight the distinctive metabolic
features associated with chromosomal copy number variations.

3.3 Re-clustered myeloid cells had a
negative immunoregulatory function in
ccRCC

3.3.1 Myeloid cells were classified into three cell
types for analysis

The myeloid cells in Figure 1B were re-clustered into
14 groups (Figure 3A; Supplementary Figure S4), and the
proportion of these clusters in each sample is shown in
Figure 3B. Subsequently, the 14 clusters of myeloid cells were
classified into three major subgroups based on the expression of
specific marker genes: monocytes (cluster 4/7/9/10),
macrophages (cluster 0/1/3/5/6/11), and dendritic cells (DCs)
(cluster 2/8/12/13) (Figure 3C).

3.3.2 Tumor-infiltrating monocytes express genes
that inhibit both immune and inflammatory
responses in the TME

Differential expression analysis was performed on monocytes
belonging to clusters 4/7/9/10, and the top 10 DEGs are shown in
the heatmap, indicating that these four clusters may have latent
heterogeneity in function (Supplementary Figure S4B). The
expression levels of some immunoregulatory factors in
monocytes were determined. VCAN, THBS1, and CCL20 were
highly expressed in the Mono_2 cluster, which was derived from
tumor tissue (Figure 3D), indicating the potential of this specific
monocyte cluster to exert a critical immunosuppressive effect
(Shearer et al., 2016; Xiao et al., 2018; Zhang et al., 2021b; Chen
et al., 2021; Kellar et al., 2021; Wang et al., 2022a). Unexpectedly,
CD14, IL1B, and SERPINB1 were detected in the Mono_2 cluster.
The proteins encoded by these genes are involved in innate
immune and inflammatory responses, indicating that these
monocyte clusters have potential anti-tumor effects.

3.3.3 Macrophages mainly exhibit M2 polarization
in the TME of ccRCC

The single-cell transcriptome data revealed a highly
heterogeneous expression pattern among macrophages in
ccRCC, primarily indicating the prevalence of M2 phenotypes
with a minor presence of M1 phenotypes. The top 10 DEGs in

the selected clusters are shown in the bubble chart (Figure 3F).
Several genes involved in cytokine pathways, including CCL3,
CCL4, CXCL2, CXCL3, CXCL8, CCL3L3, and CCL4L2, were
overexpressed in the Mac_1 cluster. Cluster Mac_2 showed
elevated expression of genes related to MHC class II molecules
(HLA-DRB1, HLA-DRB5, HLA-DQB1, HLA-DPA1, HLA-DRA,
HLA-DQA1, and HLA-DQA2), suggesting a potential role in
antigen presentation. The Mac_3 cluster displayed a high
expression of GALS1, APOE, and APOC1, indicating
involvement in anti-inflammatory functions (Abebayehu et al.,
2017; Zheng et al., 2018; Chen et al., 2019; Lemos et al., 2019; Di
Gregoli et al., 2020; Obradovic et al., 2021; Sherman, 2021; Suzuki
et al., 2021; Chalise et al., 2022; Kang et al., 2022; Wen et al., 2022).
The Mac_4 cluster demonstrated significant expression of MT1-
related genes (MT1E, MT1F, MT1G, MT1H, and MT1X), which
metallothioneins involved in immune regulation and the
promotion of tolerogenic DCs with immunosuppressive
functions (Subramanian Vignesh and Deepe, 2017; Wolf et al.,
2020). Additionally, TIMP3, SPARC, IGFBP3, and IGFBP7 were
highly expressed in the Mac_5 cluster, and these genes were
involved in immunosuppression, tumor cell proliferation, and
angiogenesis (Kielczewski et al., 2009; Pianta et al., 2015; Min
et al., 2016; Talior-Volodarsky et al., 2017; Wang et al., 2021a; Rao
et al., 2022). CCL20, GPX1, and BCL2A1 were highly expressed in
the Mac_6 cluster. Compared with macrophages in the control
group, MRC1, CD163, and TREM2 were highly expressed in
TAMs, especially in Mac_4, 5, and 6 clusters, indicating a
tendency of TAMs to polarize toward the M2 phenotype
(Figure 3E). Furthermore, NR4A subfamily genes (NR4A1 and
NR4A2) and Kruppel-like factor family genes (KLF2 and KLF4)
were highly expressed in clusters Mac_4, 5, and 6 (Supplementary
Figure S4C). Generally, heat shock protein family genes (HSPD1,
HSPA1B, HSP90AB1, and HSPH1) enhance tumor growth and
invasion through complex intracellular signaling networks.
However, TAMs had similar or lower expression levels of these
genes, especially HSPD1 and HSPH1, compared with the control
clusters. Only the expression level of HSP90AB1 in the cluster
Mac_6 was higher than that in the control cluster, suggesting
potential pro-tumorigenic functions associated with EMT, tumor
progression, metastasis (Wang et al., 2019; Jia et al., 2021), and
immunotherapy resistance (Kosinsky et al., 2019). Additionally,
interferon regulatory genes (ISG15, IFI6, and IFI27), the classical
complement pathway (C1QA, C1QB, and C1QC), and cathepsin
genes (CTSA, CTSB, and CTSD) were highly expressed in TAMs
(Figures 3E, G). Studies have shown that these genes are associated
with tumor-promoting properties, including tumor invasion,
angiogenesis, inflammation inhibition, and metastasis (Vasiljeva
et al., 2006; Bengsch et al., 2014; Akkari et al., 2016; Szekely et al.,
2018; Roumenina et al., 2019; Park et al., 2020; Xu et al., 2021a;
Wang et al., 2021b; Obradovic et al., 2021; Revel et al., 2022; Skopál
et al., 2022). Based on functional gene expression, it was confirmed
that these clusters had the function of the M2 phenotype. GO
enrichment analysis showed that DEGs in the clusters were
enriched in neutrophil degranulation, antigen presentation,
inflammatory response, and negative regulation of the immune
system process (Figure 3C. These findings collectively indicated
that TAMs played a role in negatively regulating immune
responses in the context of ccRCC.
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3.3.4 The function of dendritic cells was complex
and heterogeneous

DCs are the major antigen-presenting cells in the TME. Re-
clustering analysis followed by differential expression analysis of the
clustered cells identified a population of heterogeneous DCs, with
either antitumor or pro-tumor potential, among myeloid cells
(Figure 3C). The expression of some genes was visualized using
violin plots (Figure 3I, Supplementary Figure S4D), and their
expression profiles showed marked heterogeneity across the four
clusters of DC subpopulations. Genes involved in MHC II-restricted
antigen presentation (HLA-DRB1, HLA-DPB1, HLA-DRA, HLA-
DQA1, HLA-DQB1, HLA-DRB5, and HLA-DPA1) were highly
expressed in clusters DC_3 and DC_4 compared to other DCs
clusters in the TME. BATF3, CLEC9A, and IRF8 were highly
expressed among MHC-II gene-expressing cells, especially in
cluster DC_3, implying that this cluster was a type I
conventional DCs (CD40, BATF3, CLEC9A, IRF8, and AREG),
which may be involved in activating antitumor T cell inflammatory
immune responses (Seillet et al., 2013; Pires et al., 2019; Rojahn et al.,
2020; Tullett et al., 2020; Xu et al., 2021b; Zhang et al., 2021c; Gou
et al., 2021; Hongo et al., 2021; Kim et al., 2021; Anderson et al.,
2022).

The correlation between the abundance of DCs and T cells in
tumor samples from the TCGA-KIRC database was determined
using the MCPcounter algorithm. The abundance of DCs was
significantly positively correlated with the abundance of T cells
and cytotoxic lymphocytes in tumor tissues (Supplementary Figures
S5A, B), partly validating the findings of the scRNA sequencing data
analysis. The subpopulation of cells with high expression of
BIRC3 was involved in tumor suppressive regulatory role
(Andersen et al., 2017; Nakamizo et al., 2021), while
IRF7 recruited activated inflammatory cells producing interferons
(Tomasello et al., 2018; Zhang et al., 2021d; Somebang et al., 2021).
Paradoxically, MAT2A and SOX4 were highly expressed in this
cluster. MAT2A acted as a tumor-protective factor, protecting
tumor cells from ferroptosis and promoting growth (Liu et al.,
2021a; Villa et al., 2021; Ma et al., 2022). SOX4 was associated
with myeloid cell development, apoptosis, and tumorigenesis (Das
et al., 2017; Renosi et al., 2021), indicating that tumor-associated
DCs were functionally heterogeneous.

The top 10 DEGs between the tumor-associated DCs and
control DCs are illustrated using bubble plots (Supplementary
Figure S4E). Highly expressed ribosomal protein-encoding genes
in cluster DC_4 exhibited tumor-promoting or tumor-suppressing
effects. Tumor-suppressing gene sets (RPL4, RPLP1, RPL18A,
RPL32, RPL13, RPL39, RPL37, RPS2, and RPS27) suppressed
tumor protein synthesis, enforced p53 signaling, induced tumor
cell senescence, reduced tumor cell viability and proliferation, and
inhibited tumor development (Xiong et al., 2011; Kardos et al., 2014;
Cho et al., 2020). In contrast, tumor-promoting gene sets (RPS23,
RPS11, RPS8, RPS3A, RPSA, and RPS15A) could promote tumor
progression by suppressing the expression levels of inflammatory
and tumor necrosis factors, alleviating immune infiltration and
TME inflammatory responses, and activating oncogenic signaling
pathways (Zhou et al., 2020a; Zhou et al., 2020b; Sun et al., 2020; Liu
et al., 2021b; Liu et al., 2022).

Overall, these results indicated that cluster DC_4 exerted
opposite effects in different TMEs. Similarly, highly expressed

genes (CD40, BATF3, CLEC9A, IRF8, and AREG) among cluster
DC_3 cells exhibiting type I conventional DC phenotype were
functionally and diametrically opposite (Supplementary Figure
S4E). Although the cells exhibited an antitumor phenotype, they
expressed pro-tumorigenic factors (TXN and S100A10). TXN
mediates the elimination of reactive oxygen species, protects the
cell membrane structure, and induces radiotherapy resistance in
malignant cells (Yu et al., 2022). S100A10 is involved in macrophage
infiltration into tumor tissues, development of drug resistance by
tumor cells during clinical chemotherapy (Li et al., 2021a), and
invasion and metastasis of malignant tumors (Li et al., 2021a). In
contrast, SNX3 and LGALS2 are antitumor factors that inhibit
tumor cell growth and metastasis (Li et al., 2021b; Yu et al.,
2022), which is consistent with the phenotype of type I
conventional DCs. Cluster DC_1 and cluster DC_2, representing
the other two cell subgroups, showed no distinct tumor immune
functions, possibly indicating a quiescent or suppressive state within
the TME.

3.4 CD8+ T-cells were involved in
heterogeneous immune functions in the
ccRCC TME

T cells in the tumor and para-tumor tissues were re-clustered
into four subgroups based on specific marker genes (Figures 4A, B).
The proportion of each subgroup of cells in the different samples is
shown in Figure 4C. CD4_1 and CD4_5 cell clusters were
significantly enriched in tumor tissues, suggesting their potential
involvement in antitumor cytotoxicity (Oh et al., 2020; Sacher et al.,
2020). However, there was no significant difference in the expression
of CD4+ T cells and CD8+ T cells between the tumor and para-tumor
tissues. The proportion of CD4+ T cells displayed an increasing
trend, while the proportion of CD8+ T cells showed a decreasing
trend in tumor samples (Figure 4D). GO functional enrichment
analysis revealed that highly expressed genes in CD8+ T cells derived
from ccRCC were enriched in cell response to stimulation and
regulation of the adaptive immune response (Figure 4E). Using bulk
RNA-sequencing data from the public database, we also found that
CD8+ T cells were associated with immune regulation in renal cancer
samples. GSVA of the sequencing data from TCGA-KIRC database
showed that the abundance of CD8+T cells was positively correlated
with regulation of adaptive immune response and regulation of
T-cell costimulation (Supplementary Figures S5C, D). Additionally,
the expression levels of some immune factors in the cells are shown
in Figure 4F. Furthermore, CTLA4 and LAG3 were negatively
expressed in tumor-infiltrating lymphocytes, while CD96 and
HAVCR2 were highly expressed in cluster CD8_1, indicating
functional exhaustion of cells in this cluster within TME.
Additionally, the low expression of PRF1 (a class of cytotoxic T
molecules) and GZMH in cluster CD8_1 cells also confirmed this
phenotype. Compared with para-tumor-derived CD8+ T cells,
immune checkpoint genes (LAG3, CTLA4, CD96, and HAVCR2)
were under-expressed in tumor-derived CD8+ T cells, while
cytotoxic effector molecules (GZMH and GZMA) and pro-
inflammatory cytokines (IL32 and CCL5) were highly expressed,
indicating that these cells in cluster CD8_3 were tumor-associated
cytotoxic T lymphocytes. Low expression of immune checkpoint
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molecules in cluster CD8_3 of CD8+ T cells in the TMEmay result in
low risk of early disease progression and non-aggressive histological
properties in ccRCC (Ballesteros et al., 2021).

3.5 Two functionally distinct cancer-
associated fibroblasts lineages in ccRCC

Cancer-associated fibroblasts (CAFs) in Figure 1B were re-
clustered into six subpopulations. The expression of the three

marker genes in CAFs is shown in Figure 5A. PDGFRA serves as
a marker for inflammatory-associated fibroblasts (iCAFs), while
RGS5 is associated with the development of myofibroblasts
(mCAFs). Cluster Fib_4, with a small cell population, likely
represents iCAFs, while the majority of CAFs may possess
mCAFs potential (Figure 5A). ENG expression in fibroblasts has
been linked to two distinct fibroblast lineages with contrasting
functions. ENGhigh

fibroblasts promote tumor cell growth,
whereas ENGlow

fibroblasts have a strong tumor inhibition effect
(Hutton et al., 2021). Therefore, we investigated the role of CAFs in

FIGURE 4
The immune function of CD8+ T-cells in the ccRCC tumor microenvironment is heterogeneous. (A) UMAP plot of T lymphocytes derived from
ccRCC and the para-tumor samples, colored according to cluster and cell type. (B) The cell-marker genes of the lymphocyte types identified in this study.
(C) The fraction of 10 clusters of T lymphocytes that originated from the five para-tumor and seven tumor samples. (D) The proportion of CD4+ (left) or
CD8+ (right) cells to total T lymphocytes was measured. Paired t-test was performed using GraphPad Prism 5. p < 0.05 was considered statistically
significant. (E)Gene ontology analysis of differentially expressed genes (DEGs) in CD8+ T cells between ccRCC and para-tumor samples. DEGswith FDR <
0.05 were considered significantly enriched. (F) Violin plots of functional genes for CD8+ T cells. Red represents tumor tissues while green represents
normal tissues.
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the tumor stroma based on ENG expression. Differential expression
analysis was performed between ENGhigh CAFs (clusters Fib_3 and
4) and ENGlow CAFs (cluster Fib_1/2/5/6), and the top 10 DEGs are
shown in a bubble chart (Supplementary Figure S6A). Cluster Fib_
5 prominently expressed MHC-II genes (HLA-DQA1, HLA-DQA2,
HLA-DQB1, HLA-DRB5, HLA-DRB1, HLA-DRA, HLA-DPA1,
and HLA-DPB1), indicating their role as antigen-presenting cells
with tumor-suppressing effects. Gene signatures (VIM, SPARCL1,
COL1A1, and FN1) and canonical fibroblast markers confirmed
their fibroblast identity (Figure 5D; Supplementary Figure S6A).
Cluster Fib_6 cells exhibited high expression of MT1-related genes
(MT1E and MT1X) that activate tumor-suppressing immune cells
(Supplementary Figure S6A). GSVA analysis showed substantial
variation in multiple Hallmark pathways among fibroblast subgroup
(Supplementary Figure S6B).

Notably, these findings have been partially verified in ccRCC
samples. GSVA of the sequencing data from TCGA-KIRC database
showed that the abundance of fibroblasts was positively correlated with
INFLAMMATORY_RESPONSE, RESPONSE_TO_ROS, APICAL_
JUNCTION_ASSEMBLY, REGULATION_OF_SPROUTING_ANGI
OGENESIS, REGULATION_OF_CELL_CYCLE_CHECKPOINT,
and REGULATION_OF_DNA_REPAIR (Supplementary Figure S7).
Subsequently, comparison of GSVA scores between ENGhigh and
ENGlow CAFs revealed enrichment of cancer-promoting signaling
pathways in ENGhigh cells, including TGFβ, DNA repair, PI3K/AKT/
mTOR, andWnt/β-catenin, while cancer-suppressive pathways, such as
hypoxia, IL6/JAK/STAT3, TNF-α, and inflammatory response, were
enriched in ENGlow cells (Figure 5C). These findings confirm the
significant role of ENG in classifying CAFs as tumor-promoting or
tumor-suppressing. Notably, cluster Fib_4 cells exhibited tumor-

FIGURE 5
Two functionally distinct cancer-associated fibroblasts lineages in ccRCC. (A) UMAP plot of the cancer-associated fibroblasts derived from the
ccRCC samples, colored according to cluster and subgroup markers (ENG, PDGFRA, and RGS5). (B) Violin plots of marker genes for six clusters of CAFs.
(C) GSVA scores between ENGhigh and ENGlow CAFs were quantified based on t value and visualized using histogram. t < −1 was considered significantly
enriched in the ENGlow CAFs, and t > 1 as significantly enriched in the ENGhigh CAFs. (D) Violin plots of marker genes and MHC-II molecular genes in
six clusters of CAFs.
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promoting potential as they overexpressed CXCL12, MMP2, and
MMP12. CXCL12 is an inhibitory factor associated with reduced
macrophage activation, inhibition of CD25 expression, and T-cell
proliferation (Walterskirchen et al., 2022). MMP2 and
MMP12 increase tumor malignancy and promote tumor metastasis
and progression. SRGN,COL1A1, andACTA2were the three fibroblast
markers (Figure 5B). Overall, ENGhigh CAFs exhibited tumor-beneficial
effects (Figure 5C).

3.6 Single-cell atlas of endothelial cell
phenotypes in ccRCC and adjacent tissues

The ECs in Figure 1B were further analyzed and re-clustered
into 11 subgroups (cluster 0–10) (Figure 6A). The proportion of
each EC cluster in each tissue sample varied considerably
(Figure 6B). Differential expression analysis of ECs between
tumor and adjacent normal tissues, revealed the top 20 DEGs for

FIGURE 6
Single-cell atlas of endothelial cell phenotypes in ccRCC and adjacent tissues. (A)UMAP plot of the endothelial cells derived from cancer tissues and
para-cancer tissues, colored according to cluster. (B) The fraction of 11 clusters of endothelial cells that originated from five para-tumor and seven tumor
samples. (C) Heatmap showing differentially expressed EC-enriched genes between ECs in tumor and para-tumor tissues. (D) The expression levels of
selected marker genes (ribosomal genes, cytoskeleton, angiogenesis and tip cell markers, BM remodeling) of 11 clusters of ECs are illustrated in a
heatmap. (E) The expression levels of selectedmarker genes (MHC-I, MHC-II, inflammation and cytokines, immune cell recruitment) of 11 clusters of ECs
are displayed in a heatmap. (F) Violin plots of functional genes of ECs the ccRCC tissues. (G) Significantly enrichedGO term byDEGs in 11 clusters of ECs in
ccRCC tissues.
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each cluster, visualized in a heatmap (Figure 6C). The heatmap
specifically indicated important marker genes of the EC clusters.

Cluster 0 ECs may be involved in immune response and
angiogenesis in the TME. Single-cell transcriptome data of this
cluster reflected the high expression levels of RGCC, a gene
associated with complement activation and apoptosis (Voigt
et al., 2019), and PLVAP, a gene associated with angiogenesis
(Wang et al., 2021c). The role of ECs in cluster 0 was verified
(Figure 6D), as evidenced by the high expression of angiogenic
sprouting genes (KDR, INSR, ANGPT2, NOX4, PTP4A3, and FLT4)
in cluster 0 ECs (Figure 6E). The inflammatory regulatory genes
MT1G, GPX3, and IL1B were highly expressed in cluster 1 ECs
(Figures 6C, E), indicating that these cells may participate in the
regulation of immune responses in the TME. Cluster 2 ECs may be
involved in extracellular matrix (ECM) remodeling in ccRCC, as
evidenced by the high expression of ECM protein-coding genes
(COL4A1, COL4A2, HSPG2, and ITGA6) in this subgroup
(Figure 6C). Angiogenesis-related genes (FLT1, KDR, SPARC,
INSR, ANGPT2, and FLT4) and MHC-I molecules (HLA-A,
HLA-B, HLA-C, HLA-E, and HLA-F) were highly expressed in
cluster 3 ECs, indicating that the cells may function as antigen-
presenting cells and promote tumor parenchymal angiogenesis
(Figures 6C, E). Additionally, the cytokine marker gene
CXCL2 was also significantly upregulated in cluster 3 ECs,
indicating that the cells may also be involved in tumor-related
inflammation. MHC-II molecules (HLA-DRB1, HLA-DRA, HLA-
DPA1, HLA-DPB1, HAL-DQA1, HAL-DQA2, HAL-DQB1, and
HLA-DRB5) were highly expressed in cluster 4 ECs, indicating that
the cells may be involved in antigen presentation (Figure 6E).
Additionally, HSPA1A, a marker of endothelial cell activation
(Liu et al., 2008), was overexpressed in cluster 4 ECs, indicating
that cells are a class of activated ECs (Figure 6C). Sequencing data
showed that endothelial-mesenchymal transition genes (FN1 and
POSTN), MHC-II antigen-presenting molecule genes (HLA-DRB1,
HLA-DRA, HLA-DPA1, HLA-DPB1, HAL-DQA1, HAL-DQA2,
HAL-DQB1, HAL-DRB5, and CD74), and immune response
activation-related genes (IL1E1, ACKR1, SELE, SELP, and
VACM1) were significantly upregulated in cluster 5 ECs,
indicating that the cells have varied and complex functions.
Moreover, these gene sets were closely associated with
inflammatory responses and immune cell recruitment (Figures
6C, E). The upregulation of these signature genes indicated that
cluster 5 ECs are the primary effector cells of anti-tumor immunity
in the TME.

Cluster 6 ECs may be involved in mediating tumor vascular
growth and basement membrane (BM) remodeling, as evidenced by
the upregulation of BM remodeling genes (COL4A1, COL4A2,
LAMB1, LAMC1, LAMA4, HSPG2, PXDN, PLOD1, and
MMP2), angiogenesis-related genes (PGF, APLN, and SPARC),
and cytoskeletal genes (TMSB4X, ACTB, ACTG1, TMSB10,
CFLS, and VIM) in cluster 6 ECs (Figures 6C, D). CXCR4 was
highly expressed in cluster 7 ECs (Figure 6C), and this chemokine
receptor binds to CXCL12-expressing TAMs and promotes tumor
metastasis and progression (Mota et al., 2016), indicating the pro-
cancer properties of this cell cluster. Vascular wall marker molecules
(PDGFRB and NOTCH3) were significantly expressed in cluster
8 ECs, suggesting that this cluster may belong to a group of vascular
wall ECs (Figure 6C). Additionally, ribosomal protein-encoding

genes (RPLP1, RPLP2, RPS2, RPL39, RPS24, and RPL41),
cytoskeleton-related genes (TMSB4X, ACTB, ACTG1, TMSB10,
CFL, and VIM), and some angiogenesis-related genes were
upregulated in cluster 8 ECs (Figure 6D), indicating that the cells
may be involved in promoting tumor growth and protein synthesis.
Moreover, PECAM1+ cells (ECs) in cluster 8 ECS (COL1A1,
COL1A2, COL3A1, PDGFRB, and ACTA2) showed an
endothelial-mesenchymal transformation phenotype (Figure 6F),
which contributed to tumor progression. Interestingly, this
population of cells may also be involved in tumor antigen
presentation, since genes for MHC-I molecules (HLA-A, HLA-B,
HLA-C, HLA-E, and HLA-F) were highly expressed in this cluster
(Figure 6E). TMSB10 was highly upregulated in cluster 9 ECs, and is
involved in facilitating the expression of VEGF signaling factors
(Zhang et al., 2018), indicating that cluster 9 ECs may be related to
the promotion of cytoskeleton formation and tumor angiogenesis in
tumor tissues. ANXA2 was upregulated in cluster 10 ECs, and is
involved in increasing the permeability between ECs by reducing the
expression of inter-endothelial binding proteins (Li et al., 2019),
which is conducive to tumor metastasis. These findings provide
detailed insights into the functional characteristics of EC subgroups
within TME and enhance our understanding of the complex
interplay between ECs and tumor biology, highlighting potential
targets for therapeutic intervention.

GO enrichment analysis of DEGs in each EC cluster between
tumor and control tissues was performed to elucidate the function of
each group of ECs. Cell migration pathways were highly enriched in
clusters 0/2/3/6/8/9 cells, and antigen presentation function was
mainly enriched in clusters 0/3/7 (Figure 6G). Energy metabolism-
related pathways (oxidative phosphorylation, ATP metabolic
process, and electron transport chain) were mainly enriched in
clusters 1 and 4. Protein synthesis pathways (ribosomal subunit
biosynthesis, cytoplasmic translation, and ribosomal assembly) were
enriched in clusters 1/2/5, 6/7/8, and 10. These findings shed light on
the diverse functional characteristics of EC clusters in the tumor
microenvironment.

4 Discussion

The immune microenvironment of ccRCC is highly complex
and characterized by significant immune infiltration, making it
challenging to fully characterize the heterogeneity within the
tumor (Hu et al., 2020; Krishna et al., 2021). The application of
multi-omics techniques to explore the heterogeneity of components
within the ccRCC microenvironment is a common and effective
approach in current tumor research. Utilizing multidimensional
information at the single-cell level to address ccRCC heterogeneity
offers new insights into tumor regulatory mechanisms and
identification of potential therapeutic targets. Methods for
studying tumor heterogeneity include single-nucleus RNA
sequencing (snRNA-seq), single-cell assay for transposase-
accessible chromatin using sequencing (scATAC-seq), single-cell
sequencing, and T-cell receptor (TCR) sequencing, among others,
enabling the analysis of intratumoral heterogeneity at the single-cell
level.

Tumor cells constitute only a small fraction (7.2%) of all cells in
ccRCC tissue, and traditional bulk epigenetic sequencing methods
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may fail to identify tumor cell-specific regulatory elements and their
networks (Young et al., 2018). ScATAC-seq, facilitated by
Tn5 transposase-mediated labeling, identifies accessible
chromatin regions and captures active DNA regulatory elements
at single-cell resolution (Buenrostro et al., 2015). Long et al. applied
scRNA-seq and scATAC-seq to generate transcriptional and
epigenomic landscapes of ccRCC, revealing genetic instability and
increased methylation as adverse prognostic markers that exhibit
heterogeneity across renal cancer samples (Long et al., 2022). This
method captures diverse types of gene regulatory information. The
combination of these two methods allows the identification of
genome-wide cis-regulatory elements and inference of
transcription factor (TF) binding and activity at the single-cell
level (Chiou et al., 2021). By conducting multi-omics analysis of
primary tumor tissues from ccRCC, key transcriptional molecules
that mediate tumor development and manipulate immune cell
function can be identified, facilitating the exploration of
upstream regulatory targets (Young et al., 2018; Muto et al.,
2021; Long et al., 2022). In addition, the combination of scRNA-
seq and TCR sequencing enables the exploration of transcriptional
heterogeneity in tumor tissues and immune cells in the blood of
cancer patients. Studies have shown that CD8+ T cells and
macrophages in tumor-infiltrating immune cells are overall
increased compared to normal renal tissue, and these tumor-
infiltrating immune cells exhibit distinct cellular transcriptional
states and activation statuses. This provides an advantage over
traditional methods that rely on targeting known immune cell
components, such as flow cytometry and immunohistochemistry,
allowing the identification and characterization of new immune cell
subpopulations. The transcriptional landscape of T lymphocytes,
combined with TCR sequencing, provides unprecedented depth in
measuring the clonal T-cell response to cancer (Borcherding et al.,
2021). The integration of scATAC-seq, scRNA-seq, and whole-
exome sequencing can be used to understand heterogeneity
between individuals and construct single-cell transcriptomic and
chromatin accessibility maps of ccRCC, thereby revealing the
regulatory features of different tumor cell subtypes (Yu et al., 2023).

However, most methods for assessing intratumoral
heterogeneity are also limited by two-dimensional ex vivo tissue
analysis. Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) can assess the spatial landscape of the entire tumor
within its in vivo environment. When combined with vertically
integrated radiogenomic co-localization methods, it can be used for
multi-region tissue collection and analysis, determining the
radiographic differences in tumor sections that exhibit
transcriptional heterogeneity. This approach helps integrate RNA
sequencing data from multi-region tumor samples with DCE-MRI
enhancement information in tumor spatially co-localized regions
and can be utilized to assess the clinical applicability of anti-tumor
targeted therapy in metastatic RCC patients (Udayakumar et al.,
2021). Deep multi-region whole-exome and transcriptome
sequencing of patients before and after treatment, combined with
monitoring of T-cell repertoires in tissue and peripheral blood, can
analyze the temporal and spatial variations in genomic and immune
phenotypic features of ccRCC patients, revealing the underlying
reasons for differential responses following immune checkpoint
inhibitor (ICI) treatment. Studies have shown that increased
intratumoral heterogeneity (ITH) is associated with a range of

genomic features, such as CDKN2A/B loss, and
microenvironmental features, including elevated myeloid lineage
expression, decreased peripheral TCR diversity, and neoantigen
depletion. ITH further impacts patients’ response to ICI and
targeted therapies. This contributes to the development of
clinically meaningful biomarkers and highlights important
features of tumor evolution under ICI treatment (Golkaram
et al., 2022).

Currently, there is no effective treatment for RCC, especially for
metastatic RCC. Although PD-1 blockade combined with AKI
inhibitors is currently the focus of immunotherapy for renal cancer,
the overall response rate ranges from 37%–58% (Grimm et al., 2019;
Kotecha et al., 2019; Hu et al., 2020). Therefore, studies are necessary to
identify therapeutic targets for renal cancer treatment to prolong the
survival time of patients. In the present study, we performed
bioinformatic analysis of single-cell sequencing dataset (GSE156632)
to elucidate the intratumoral heterogeneity in the ccRCC TME. A total
of 11 different cell types were identified; however, we focused on five cell
types: tumor cells (proximal tubule cells), myeloid cells, T lymphocytes,
fibroblasts, and ECs. Additionally, an independent single-cell
sequencing dataset and bulk RNA-sequencing data from TCGA
database were used to partially verify the results.

CNV analysis and CNV scoring were performed on renal
carcinoma cells and normal proximal tubule cells, revealing a
higher occurrence of CNVs in tumor cells compared to normal
tubule cells (Figures 2D, E). The CNVs were considered to have
potential biological significance. For instance, the gain or deletion of
copy numbers in chromosomes can affect the biological behavior
and metabolism of tumor cells. Loss of chromosome 3p results in
upregulation of hypoxia signaling, downregulation of glycolysis and
oxidative phosphorylation (OXPHOS), and changes in the cell cycle,
and is associated with fatty acid metabolism and the TCA cycle
(Adashek et al., 2020; Jonasch et al., 2021). Gain of chromosome 5q
results in the upregulation of mTORC1 and MYC signals (Li et al.,
2013; Benstead-Hume et al., 2019). Additionally, deletion of
chromosome 3p and gain of 5q are thought to be early changes
in ccRCC development (Yoshikawa et al., 2022). Moreover, the gain
of 6p is associated with higher tumor grades, advanced tumor stages,
and upregulation of the TFEB protein (Williamson et al., 2017).
Gain of 7p has been reported to promote protein translation and
EMT. VGEFR and IGBP3 are also located on chromosome 7p,
which contributes to the aggressive phenotype of cancer cells
(Pezzolo et al., 2009; Cimino et al., 2018; Fernandes et al., 2021).
Several studies have shown that loss of 9p can lead to the deletion of
the tumor suppressor CDKN2A, which is related to the upregulation
of translation initiation, mTOR, and MYC signals (Baietti et al.,
2021; Yi et al., 2022; Yoshikawa et al., 2022). Moreover, loss of 14q
induced the upregulation of MYC signaling, N-glycosylation, and
the IFN-γ signaling pathway in tumor cells, and was identified in
75% of CIMP+ tumors. CIMP+ tumors have increased malignancy,
including enhanced MYC signaling and protein translation, and
unique characteristics associated with increased OXPHOS and
reduced adhesion plaques (Park et al., 2019). Furthermore, CNV
analysis on the scRNA-seq validation dataset further supported the
heterogeneous nature of CNVs observed in the scRNA-seq data. The
CNVs in tumor cells are closely related to the pathogenesis of ccRCC
and may be a potential source of new diagnostic, prognostic, and
therapeutic biomarkers (Fernandes et al., 2021).
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Based on the CNV score of renal carcinoma cells, the tumor cells
were classified into high and low CNV groups. Differential
expression analysis showed that MALAT1 was upregulated in
both groups (Figure 2G). MALAT1, a long non-coding RNA, was
found to activate AMPK signaling, promoting cancer cell
proliferation (Wang et al., 2021d). Moreover,
MALAT1 upregulated the expression of CD36 and liposynthases
(PPARγ, PGC1α, SREBP-1C, FAS, and ACC), enhancing
unsaturated fatty acid synthesis and uptake, thereby promoting
tumor cell progression (Huangfu et al., 2018; Ebrahimi et al.,
2020; Wang et al., 2021d). TCGA data showed that high
MALAT1 expression was associated with poor prognosis in RCC
patients (Figure 2I). Subsequently, GSVA revealed high
heterogeneity in the expression of signaling pathways in both the
high and low CNV groups of renal carcinoma cells. Epithelial-
mesenchymal transition, angiogenesis pathway, Notch signaling
pathway, and inflammatory response were upregulated in the low
CNV group, but downregulated in the high CNV group. Conversely,
mTORC signaling, interferon-alpha response, the reactive oxygen
species pathway, E2F targets, DNA repair, and the p53 pathway were
upregulated in the high CNV group, but downregulated in the low
CNV group (Figure 2H). Overall, these results confirmed that renal
cancer cells are highly heterogeneous in terms of gene expression
and biological behavior, which could contribute drug resistance in
neoadjuvant therapy (Hu et al., 2020).

Additionally, analysis of myeloid cells indicated three cell types:
Monocytes, macrophages, and DCs, and each cell type consisted of
several clusters with different functions. Among the monocyte
clusters, Mono_2 cluster derived from the tumor tissue (VCAN,
THBS1, and CCL20) was found to play an important
immunosuppressive role (Figure 3D). For instance, VCAN can
inhibit the recruitment of monocytes and neutrophils to tumor
tissues, thereby reducing the anti-tumor inflammatory response
(Kellar et al., 2021). The proteins encoded by CD14, IL1B, and
SERPINB1 participate in the innate immune and inflammatory
responses, indicating that this monocyte cluster have potential
antitumor effects (Gong et al., 2011; Burgener et al., 2019; Kim
et al., 2022; Kowalska et al., 2022). On the whole, monocytes exhibit
a prevailing immunosuppressive phenotype, aligning with previous
investigations. In concurrence, Kim et al. identified a propensity of
monocytes to undergo a phenotypic shift towards an anti-
inflammatory state in the context of metastatic lung
adenocarcinoma, thereby facilitating the establishment of an
inhibitory immune microenvironment (Kim et al., 2020).
Similarly, Xu et al. observed impaired monocyte differentiation
within the tumor microenvironment of gastric cancer, whereby
these cells engage in intercellular communication with tumor
stromal cells or neoplastic cells, promoting tumor progression
(Xu W. et al., 2022). Therefore, the activation of monocytes via
immunotherapy could be a promising treatment strategy.

Macrophage clusters were comprehensively analyzed, revealing
their distinct phenotypic profiles. Macrophages exhibit polarization
towards either M1 or M2 phenotypes in response to inflammatory
cues. Apart from the Mac_1 cluster, the remaining macrophage
clusters predominantly display M2-like functions. Studies have
associated intratumoral infiltration of M2-polarized TAMs with
unfavorable clinical outcomes and depleted T-lymphocyte
infiltration (Dannenmann et al., 2013; Giraldo et al., 2015). Our

investigation identified a subset of CD163+ and TREM2+ TAMs,
indicative of their inclination towards the M2 phenotype.
Remarkably, these TAMs exhibited high expression of interferon
regulatory genes (ISG15, IFI6, and IFI27) and cathepsin genes
(CTSA, CTSB, and CTSD), known to contribute to pro-tumor
properties such as invasion, angiogenesis, immune suppression,
and metastasis (Vasiljeva et al., 2006; Bengsch et al., 2014; Akkari
et al., 2016; Szekely et al., 2018; Roumenina et al., 2019; Park et al.,
2020; Xu et al., 2021b; Wang et al., 2021b; Obradovic et al., 2021;
Revel et al., 2022; Skopál et al., 2022). The Mac_6 cluster displayed
elevated expression of NR4A subfamily genes (NR4A1 and NR4A2),
Kruppel-like factor family genes (KLF2 and KLF4), and heat shock
protein family genes (HSPD1, HSPA1B, and HSP90AB1), signifying
their crucial role as M2-like macrophages. NR4A1 influences tumor
cell proliferation (Guo et al., 2021), while NR4A2 promotes
M2 polarization (Mahajan et al., 2015; Miao et al., 2022).
KLF2 and KLF4 possess anti-inflammatory effects but also
impact macrophage proliferation, differentiation, activation, and
tumor growth inhibition, demonstrating their dual nature in
tumor immunity (Zappasodi et al., 2015; Tian et al., 2021).
Additionally, the heat shock protein family genes (HSPD1,
HSPA1B, and HSP90AB1) facilitate tumor growth and invasion
via intricate intracellular signaling networks (Roberts et al., 2017;
Wang et al., 2021e). Previous research has linked these genes to
tumor-promoting traits, including tumor invasion, angiogenesis,
inflammation suppression, and metastasis. The functional gene
expression patterns confirm the M2 phenotype features of these
clusters. Consistent with previous single-cell studies, tumors are
typically enriched with both M1 and M2-like macrophages, with a
predominance of M2-polarized macrophages and an imbalance
between pro-inflammatory M1-like and anti-inflammatory M2-
like macrophages associated with disease progression (Hu et al.,
2020; Braun et al., 2021; Dinh et al., 2021; Wang et al., 2022b).
Similar to Wang et al. 2022b findings in thyroid cancer, our study
reveals that besides expressing typical M2 markers, TAMs also
exhibit elevated levels of several cathepsin proteases (CTSD,
CTSL, and CTSB), further underscoring the potential association
of these M2-like macrophages with tumor invasion, migration, and
their relevance to targeted therapies. Collectively, these findings
confirm the promotion of EMT, attenuation of interstitial
inflammatory responses, tumor progression, metastasis (Wang
et al., 2019; Jia et al., 2021), and induction of immunotherapy
resistance (Kosinsky et al., 2019) by M2 macrophages through
activation of proto-oncogenic signaling pathways in ccRCC.
Furthermore, gene ontology enrichment analysis underscores the
vital role of tumor-infiltrating macrophages in regulating immune
responses and sustaining tumor cell survival. This study contributes
to a comprehensive understanding of macrophage heterogeneity
and M2 polarization in ccRCC, shedding light on potential
therapeutic targets.

DCs play a pivotal role as major antigen-presenting cells within
the TME. Our investigations have shed light on the heterogeneous
nature of DCs in TME, highlighting the existence of distinct
subpopulations with both anti-tumor and pro-tumor potentials.
Gene expression analyses have revealed significant heterogeneity
among different DC subgroups, particularly a group of type I
conventional DCs (CD40, BATF3, CLEC9A, IRF8, and AREG)
had a high expression of MHC-II molecules and tumor
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suppressors, indicating that these cells may be involved in activating
adaptive immune response and inhibiting neoplasm. Furthermore,
the abundance of DCs in tumor samples positively correlates with
the presence of T cells and cytotoxic lymphocytes. While specific DC
subgroups exhibit tumor-inhibitory regulatory functions, others
may be involved in tumor promotion. Notably, a subset of DCs
in a particular subgroup exhibits high expression of ribosomal
protein genes, partitioned into gene sets associated with either
pro-tumor or anti-tumor activities. Collectively, these findings
underscore the heterogeneity of DCs in the TME and their
distinct roles in tumor immunity. In the context of ccRCC, DCs
demonstrate evident diversification. Similar observations have been
made by Dinh et al. (2021) in the context of esophageal squamous
cell carcinoma, wherein DCs exhibit multiple subtypes, with a
majority presenting classical DC markers and a minority
exhibiting immature markers. The presence of heterogeneous
DCs in the TME has also been identified in hepatocellular
carcinoma, where a considerable proportion of DCs expressing
antigen-presenting genes has been observed (Sun et al., 2021).
These results collectively indicate the heterogeneity of DCs in the
TME and their potential for exerting anti-tumor effects.

Further analysis of T lymphocytes indicated the presence of
CD96+HAVCR2+CD8+ T cells, namely, exhausted T lymphocytes,
among CD8+ T cells. These immune cells experience immune
dysfunction due to the activation of immune checkpoint
pathways, which is positively correlated with adverse prognosis in
cancer patients (Drake and Stein, 2018; Ballesteros et al., 2021). To
overcome T-cell dysfunction and restore antitumor activity,
adjuvant therapies targeting the TME and immune checkpoints
are being investigated (Giraldo et al., 2017). Interestingly, not all
CD8+ T-infiltrating lymphocytes were exhausted and dysfunctional.
Cytotoxic effector molecules (GZMB and GZMA) and pro-
inflammatory cytokines (IL32 and CCL5) were highly expressed
in a special class of CD8+ T cells (LAG3-, CTLA4-, CD96−, and
HAVCR2-), indicating that the cells were immune-activated tumor-
infiltrating lymphocytes (TILs) and their abundance is beneficial for
suppressing aggressive neoplasias. Various clusters of CD8+ T cells
in the TME showed distinctive functional phenotypes, suggesting
that the density and phenotype of TILs could predict both patient
prognosis and clinical response to diverse adjuvant therapies
(Giraldo et al., 2015; Becht et al., 2016; Ballesteros et al., 2021).

Among cancer-associated fibroblasts, ENGhigh
fibroblasts,

especially cluster Fib_3, had a significant tumor-promoting
function. GSVA analysis demonstrated that apoptosis signaling,
reactive oxygen species signaling, oxidative phosphorylation,
inflammatory response, p53 pathway, and interferon alpha
signaling pathways were inhibited in ENGhigh CAFs, while WNT/
β-catenin signaling, TGFβ signaling, PI3K/AKT/mTOR signaling,
G2M checkpoint, and E2F TARGET were upregulated. These results
highlighted the critical role of tumor stromal cells in ccRCC
development. However, there was also a significant group of
tumor-suppressive fibroblasts, namely, cluster Fib_5, which were
ENGlow cells with high expression of MHC-II molecules. GSVA
scores showed that inflammatory response was upregulated in these
cells, indicating that ENG expression in CAFs serve as an indicator
of fibroblasts contribution to tumor growth.

Finally, the ECs in the tumor stromal cells were analyzed.
Among tumor-associated ECs, cluster 0/2/3/6/8 ECs were unique

to tumor samples (Figure 6A). These cells were mainly involved in
angiogenesis, cell migration, protein synthesis, and extracellular
matrix remodeling, implying their immunosuppressive functions.
Moreover, cluster 3 and cluster 8 cells were involved in antigen
presentation, which may contribute to tumor immune tolerance by
enhancing antigen-specific regulatory T-cells (Benne et al., 2022;
Casey et al., 2022). Cluster 8 ECs (COL1A1, COL1A2, COL3A1,
PDGFRB, and ACTA2) showed an endothelium-mesenchymal
transformation phenotype (Figure 6F), contributing to tumor
progression and metastasis. Notably, cluster 4 ECs were scarce in
tumor cells but represented an activated EC subset (HSPA1A+) with
MHC II-restricted antigen-presenting function, suggesting potential
antitumor effects. Generally, there were several subpopulations of
ECs in the TME, and different subpopulations play distinct or even
contradictory functions in the TME.

In conclusion, we performed bioinformatic analysis of publicly
available single-cell sequencing data to elucidate the intratumoral
heterogeneity in the ccRCC TME. The results of this study
contribute to the understanding of the TME in human ccRCC,
and provide valuable information for targeted therapy.
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SUPPLEMENTARY FIGURE S1
scRNA-seq profiling of the landscape of ccRCC. (A, B) UMAP plot of single
cells derived from ccRCC and para-tumor samples, with each color coded
for (A) 30 clusters of cells, and (B) tissue sample type, before quality control
and removal of batch effect. (C, D) UMAP plot of all the single cells derived
from ccRCC and para-tumor samples, with each color coded for (C) tissue
sample type, and (D) cluster in the cancer tissues (CT) and the para-cancer
tissues (PCT), after quality control and removal of batch effect.

SUPPLEMENTARY FIGURE S2
CNV analysis for validation and expression of MALAT1 in TCGA-KIRC. (A)CNV
analysis of each cluster of cells that originated from the scRNA-seq profiles
for validation. (B) Expression of MALAT1 in TCGA-KIRC based on tumor
grade.

SUPPLEMENTARY FIGURE S3
The CNV heterogeneity was shown in tumor cells. (A–C) UMAP plot of the
analyzed cells, colored according to (A) origins (normal or tumor), (B)
individual patient, and (C) cell cycle. (D) Metabolic pathway analysis of
normal group, high CNV group, and low CNV group.

SUPPLEMENTARY FIGURE S4
Myeloid cells have a negative immunoregulatory function in ccRCC. (A)
UMAP plot of myeloid cells derived from tumor tissues and the para-tumor
tissues, respectively, colored according to cluster. (B) Bubble chart
showing the expression level of top 10 differentially expressed genes (DEGs)
of monocytes. (C) Violin plots of functional genes for macrophages. Tumor
tissues were colored red, while normal tissues were colored green. (D)
Violin plots of functional genes for dendritic cells. (E) Bubble chart showing
the expression level of top 10 DEGs of dendritic cells.

SUPPLEMENTARY FIGURE S5
Correlation analysis of immune cell abundance and signaling pathways. (A, B)
The abundance of myeloid DC cells was significantly positively correlated
with the abundance of (A) T-cells and (B) cytotoxic lymphocytes. (C, D) The
abundance of CD8+T-cells was positively correlated with (C) REGULATION_
OF_ADAPTIVE_IMMUNE_RESPONSE and (D) REGULATION_OF_T_CELL_
COSTIMULATION.

SUPPLEMENTARY FIGURE S6
Gene and signaling pathway expression profiles of tumor-associated
fibroblasts in different clusters. (A) Bubble chart showing the expression
level of the top 10 differentially expressed genes (DEGs) between ENGhigh
CAFs (cluster fib_3 and 4) and ENGlow CAFs (cluster fib_1/2/5/6). (B)
Differences in 50 hallmark pathway activities scored using the GSVA
package, with t values calculated using a linear model.

SUPPLEMENTARY FIGURE S7
The correlation between the abundance of tumor-associated fibroblasts and
signaling pathways in the TCGA-KIRC database. (A–F) The abundance of
fibroblasts was positively correlated with (A) INFLAMMATORY_RESPONSE,
(B) RESPONSE_TO_ROS, (C) APICAL_JUNCTION_ASSEMBLY, (D)
REGULATION_OF_SPROUTING_ANGIOGENESIS, (E) REGULATION_OF_
CELL_CYCLE_CHECKPOINT, and (F) REGULATION_OF_DNA_REPAIR.
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