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Current practice in agriculture applies genomic prediction to assist crop breeding
in the analysis of genetic marker data. Genomic selection methods typically use
linear mixedmodels, but usingmachine-learningmay provide further potential for
improved selection accuracy, or may provide additional information. Here we
describe SelectML, an automated pipeline for testing and comparing the
performance of a range of linear mixed model and machine-learning-based
genomic selection methods. We demonstrate the use of SelectML on an in
silico-generated marker dataset which simulated a randomly-sampled (mixed)
and an unevenly-sampled (unbalanced) population, comparing the relative
performance of various methods included in SelectML on the two datasets.
Although machine-learning based methods performed similarly overall to linear
mixed models, they performed worse on the mixed dataset and marginally better
on the unbalanced dataset, being more affected than linear mixed models by the
imposed sampling bias. SelectML can assist in the training, comparison, and
selection of genomic selection models, and is available from https://github.
com/darcyabjones/selectml.
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Introduction

Machine learning (ML) is rapidly growing in the breadth of potential applications across
the agricultural sector, which may include its integration with: real time perimeter
surveillance for pest invasion, monitoring crop yield/health via on-farm and remote
sensing, precision agriculture using smart farm equipment, supply chain optimisation
and traceability, risk and profit forecasting, and pesticide and fungicide management. An
area that appears to be less developed than these mostly hardware-centric technologies—but
with equal potential for impact—is the application of ML to genomic prediction (GP). GP is
the analysis of genetic marker data to enable genetic gain in crop breeding, which can predict
desirable traits based on genetic markers, predict high-performing genetic backgrounds and
guide selective breeding in a process called genomic selection (GS) (Desta and Ortiz, 2014).
Several stages of crop breeding have potential GP applications, including: decision-support
in the crossing of wild and elite lines (Prohens et al., 2017), back-crossing (Varshney and
Dubey, 2009), or selfing (Frederickson and Kronstad, 1985); and prediction of genetic
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gain/loss (Voss-Fels et al., 2019). Marker-assisted selection (MAS) is
a well-established method used for introducing traits of interest into
a breeding population based on association between genotyped
markers and specific phenotypes (Ribaut and Hoisington, 1998).
Conceptually GP is an extension of MAS, in which numerous
markers of unknown phenotypic influence are used to train
statistical models on phenotyped plants, and then predict genetic
gain/loss for groups of non-phenotyped plants (Whittaker et al.,
2000). This can significantly accelerate crop breeding, as phenotypes
can be rapidly predicted directly from seed or seedlings, enabling
early screening of high/low-performing seed stocks (Crossa et al.,
2016).

Linear mixed models (LMMs) (Meuwissen et al., 2001) are
commonly used for GP, can handle dependence between samples
(e.g., genetic relatedness or environmental similarity), and allow
assertion of prior expectations over data distributions. Trait
phenotypes are governed by genetic and environmental components,
which influences LMMGP model structure. Sources of environmental
variation in models may need to be excluded to obtain accurate
predictions of genetic gain, or identify high-performing genotypes.
An example of building an initial LMM model, then using the
BLUPs of genotypic effects as traits for subsequent prediction, is
described below. Environmental sources of variation (e.g., resources,
stress) can be measured indirectly as blocking factors (e.g., location,
season) and modelled as random intercepts, sometimes with
autoregressive covariance structures to account for spatial or
temporal variation. Direct measurements (e.g., temperature,
humidity) can also be used as direct covariates (fixed effects) in the
model. Genetic effects can be further divided into additive (simple linear
independent), dominance (non-linearity in heterozygote), and epistatic
(interactions between combinations of additive and dominant marker
contributions) components. As plants respond to variable
environmental conditions, genetic components influencing traits can
vary, referred to as the genotype-by-environment (GxE) component.
Although LMMs can fit complex models with careful consideration of
which parameters and interaction terms are included, fully
incorporating epistatic and GxE effects may be impractical or
impossible to solve. ML-based GP (MLGP) is an alternative to
LMMGP for modelling dominance, epistasis and other interaction
terms with less explicit specification of interactions and non-
linearities. Although not yet fully realised, there is potential with
MLGP models to include all parameters and terms and let the
model decide which data is important, although this would be
unsuitable for smaller datasets. While there is considerable overlap
between methods, they are broadly distinguished by their objectives.
Statistical models aim to give an explainable model with a direct
relationship to biological knowledge and model coefficients (or
BLUPs) are estimates of interest. In contrast, ML models apply
heuristic methods to obtain a highly accurate prediction without
imposing structure upon the coefficients. As a consequence, ML
interpretability may be a secondary concern and is often only useful
as a qualitative indication of what the model has learnt. In some cases
there may be overlap between our definitions of ML and statistical
models (e.g., RR-BLUP and GBLUP), however within this study we
have considered comparisons between four statistical linear mixed
models (LMMs): Bayesian ridge regression (BRR); BayesA, BayesC,
and Bayesian LASSO (BL); with six ML methods: Support Vector
Regression; k-nearest neighbours (Knn); random forest; Extra trees;

Natural Gradient Boosting (NGB); and eXtreme Gradient
Boosting (XGB).

Genetic information in breeding programs can be modelled
relatively well using simple regularised models, so complex LMMGP
and MLGP models may currently not be inherently suited to
improving predictive performance. However increasingly larger
sample sizes, improved marker selection (i.e., higher proportions
of perfect/causal markers), and improved phenotyping may favour
complex models and lead to future improvements. Both MLGP and
LMMGP can vary from simple and fast to complex and
computationally-intensive. MLGP may be more efficient in terms
of memory usage, but may have additional hardware requirements
(e.g., GPU). Both have issues as datasets increase in scale, however
ML methods such as neural networks (NN) using stochastic
sampling (e.g., mini-batching) have an advantage with increasing
numbers of samples as only sub-samples have to be stored in
memory. Reduced phenotypic variance can improve modelling of
environmental factors and covariates, allowing removal of sources of
variance and significantly improving LMMGP accuracy (Hu et al.,
2023), however this has yet to be properly tested with MLGP. LMMs
require specification of data combinations the model should use
(e.g., epistatic or GxE relationship matrices), whereas ML models
may be run without specifying prior assumptions at the cost of
reduced interpretability. However, the use of complex MLGP
methods under varying levels of epistasis, and dominance is not
yet well investigated.

A particular challenge of GP is that the majority of genetic
markers are not associated with phenotypes of interest, while
most associated markers are only indirectly associated due to
close genomic distance to causal loci (syn. linkage disequilibrium,
LD). As recombination occurs over generations, markers used to
train a GP model become unlinked with causal loci thus GP
models lose accuracy (Wientjes et al., 2013). This reliance on LD
severely limits the transferability of GP models across
populations or successive generations. In ML applications
across many other disciplines, the model is typically trained
once and may be re-used many times. However for crop-
breeding applications, the training population can be
constantly increasing as successfully bred genotypes
accumulate new phenotype data and models may be retrained
as new data becomes available (e.g., at least annually with
successive harvests) or if LD becomes lost over time. This
restricts current methods to predicting phenotypes within
similar populations as to which they were trained. MLGP is
typically applied to single environment studies with de-
regressed data or uses phenotypes excluding residual
environmental factors from the modelling (Crossa et al., 2016;
Capblancq et al., 2020). ML has been used to enhance reusability
of genomic data (Lung et al., 2020), but there does not yet appear
to be ways to improve model transferability. For plant researchers
allied with crop-breeding, training of experimental dataset-
specific models has very limited applicability for commercial
breeding. Therefore, in addition to the identification of perfect
causally-linked markers, there are several areas of GP that can be
improved. This study explores the potential application of MLGP
as an alternative to LMMGP and the use of automated methods
for training new MLGP models, with benchmarking relative to
commonly-used LMMGP models.
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Methods

To compare relative performance of MLGP and LMMGP, we
generated two distinct simulated datasets: a “mixed” dataset with
random crosses from 40 parents, and an “unbalanced” dataset
unevenly sampled from 5 bi-parental crosses. Artificial marker data
was generated with AlphaSimR version 1.1.2 (Gaynor et al., 2020) to
simulate two datasets with contrasting population structures: a “mixed”
dataset with random crosses from 40 parents; and an “unbalanced”
dataset with 5 bi-parental populations with uneven sampling.

SelectML automatically performed feature selection, feature
transformation, and hyperparameter optimisation strategies using a
scikit-learn (Pedregosa et al., 2011)-compatible API. SelectML used
biallelic markers encoded as 0, 1, and 2 (with the heterozygote as 1)
as the genetic input, and can optionally use one-hot encoded blocking
factors and continuous covariates. SelectML cannot performmultivariate
modelling, but can be applied to MET or (standardised) multitrait
problems using one-hot encoding with grouping factors. SelectML
supports regression, classification, and ranking/ordinal prediction
tasks. For regression tasks, target variables may be Z-transformed to
fit a standard normal distribution, or quantile scaled to a standard normal
or uniform [0, 1] distribution. For ranking tasks we considered all
regression target transformations, a cumulative distribution classifier
(Burges et al., 2005), and for gradient boosted trees and neural
networks we also considered a pairwise ranking scheme where the
model is trained to classify whether each sample should be ranked
higher than others as described in RankNet (Burges et al., 2005).
Feature selection was applied to markers only, using performed using
the GWAS programGEMMAversion 0.98.3 (Zhou and Stephens, 2012),
a minibatched implementation of MultiSURF (Urbanowicz et al., 2018),
and byminor allele frequency. TheGEMMAmodel was run in two stages
with a kinshipmatrix calculated in thefirst stage, and blocking factors and
the first three principal components were provided as covariates to the
model. The top k markers were selected from the GWAS by lowest
p-value, from MultiSURF by the highest feature relevance scores, and
from MAF by the highest minor allele frequency (i.e., closest to 0.5).
Markers were transformed either using one-hot encoding, the minor
allele scalingmethod used before distancematrix calculation described by
Van Raden (VanRaden, 2008), a similar minor allele scaling method
using the additive NOIA scheme (Álvarez-Castro and Carlborg, 2007),
and thefirst k principal components of the vanRaden scaledmarkers.We
also optionally optimised to include a distance matrix as additional
features, which includes the van Raden matrix, and the van Raden
scaled Manhattan, and Euclidean distance metrics. We also optionally
optimised a set of additional non-linear features using an approximate
(Williams and Seeger, 2000) kernel method on Van Raden pre-scaled
features to provide Laplacian, polynomial (degree = 2), or radial basis
function transformations ofmarkers. Both the distancematrices andnon-
linear features were each scaled to a standard-normal distribution based
on their quantiles, and the k best features from each feature set selected
using the ANOVA f-score for regression or classification depending on
the target task. The model may drop the markers, distance, or non-linear
combinations of features entirely and attempt to use the other sets of
features instead (e.g., distancematrices only).Grouping factors if provided
may be left as one-hot encoded features, or may take the first k principal
components. Covariates are scaled to a zero centred range using a Z-score
transformation, a robust scaler (centred on the median and scaled by the
interquartile range), or using a quantile transformer. Additionally, first,

second, or third degree polynomial combinations of the covariatesmay be
included as additional features.

The markers, marker distance, marker non-linear, group, and
covariate features were then combined into a single table. Optionally,
non-linear combinations of these combined features may be added as
additional features using the same kernel functions as described in the
non-linear marker interactions, and scaled using a quantile transformer.
Finally, these features were applied to a range of models, including
k-nearest neighbours, random forests, extra trees, support vector
machines (SVM), penalised linear models (i.e., LASSO, ridge, and
ElasticNet) using stochastic gradient descent, LARS and LASSO-
LARS linear models, extreme gradient boosted trees using XGBoost
(Chen and Guestrin, 2016), and bayesian linear genomic prediction
models using BGLR (Pérez and de los Campos, 2014). For all predictors
except BGLR models, all features are combined into a single matrix of
features for each sample. For BGLR models we provided markers, non-
linear features, blocking features, and interactions as separate random
effects, and covariates as fixed effects (i.e., using a uniform prior) to
predict. For tree-based methods we did not consider pre-processing of
scaling, non-linear or interaction features as these methods natively
handle interactions and are unaffected by input range. For support vector
machineswe did not consider non-linear combinations or interactions of
features as the SVM kernels handle this. K-nearest neighbour methods
did not include the distance matrix features. For the BGLR mixed
models, we also considered the NOIA additive and dominant encoding
scheme (Ma et al., 2012) and epistasis similarity matrices are calculated
as theHadamard product ofNOIAmatrices (Vitezica et al., 2017), where
the similarity matrices are specified separately in BGLR with RKHS
priors. Hyperparameters and models were optimised using Optuna. All
code is available at: https://github.com/darcyabjones/selectml.

Results

We developed software called “SelectML” (https://github.com/
darcyabjones/selectml) to automate various steps in MLGP and
LMMGP, including dataset reduction and model optimisation, and
enabling their comparison (Jones et al., 2023). Relative performance,
assessed via Pearson’s test for both simulated datasets, showed LMMGP
methods performed consistently better overall than most of the MLGP
methods included in SelectML (Figure 1). MLGP marginally
outperformed LMMGP methods versus the unbalanced dataset, but
conversely worse performance of MLGP versus the mixed dataset,
suggesting MLGP was more sensitive to sampling biases represented by
the two datasets. Of all MLGP methods tested, Natural Gradient
Boosting performed best against both datasets.

Discussion

There currently appears to be few advantages to using MLGP
over LMMGP, with further improvements needed to deliver step-
change improvements in crop genetic gain. Other studies have
reported similar findings where relative performance of MLGP
and LMMGP has been (disappointingly) similar, highly
susceptible to dataset structure and experimental design, and
generally non-transferrable to new datasets (Aono et al., 2022;
Danilevicz et al., 2022; Gill et al., 2022; Jubair and Domaratzki,
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2023). This initial lack of progress may not yet rule out the
capabilities of MLGP with further development. However,
specialised and multi-disciplinary expertise is needed to innovate
new MLGP methods, and complex models may not yet benefit from
MLGP until marker dataset size significantly increases or additional
complementary data can be integrated. Pre-trainable NN models
may offer opportunities to test integration of complementary data
that LMMGP cannot handle (e.g., environment, images, time-series)
or the integration of predicted genomic features derived from
bioinformatics analyses. Pre-trained models may also enable
integration of large external data sources potentially expanding
the scope of a study to many more samples than would be
available to a single breeding program. With an appropriate

learning objective, pre-trained models can learn compressed
generalised representations of input data that contain
information relevant to the target task. This latent representation
(typically the output of the layer before the final predictor layer in an
NN) can then be used to initialise a model to learn the “real” target
objective (known as finetuning). Leveraging this external data and
latent representations would allow the use of more complex models
with generalised information, while being less prone to overfitting
with fewer samples. Larger datasets may also require complementary
development of memory management methods, e.g., “mini-
batching” or informed dataset reduction.

Recent development in attentional and graphical neural networks
(e.g., transformers) used in natural language processing may offer new

FIGURE 1
Application of multiple linear mixed model (LMM) and machine-learning (ML) genomic prediction (GP) tests via SelectML to two artificially-
generated datasets simulating (A) a “mixed” dataset with random crosses from 40 parents, and (B) an “unbalanced” dataset with uneven sampling of
5 biparental populations. The results generated by SelectML (C) are presented in terms of the mean of Pearson’s tests for LMM-GP methods: Bayesian
ridge regression (BRR), BayesA, BayesC, and Bayesian LASSO (BL); andML-GPmethods: Support Vector Regression (Svr_adupc, Svr_yield), k-nearest
neighbors (Knn), random forest (RF), Extra trees, Natural Gradient Boosting (NGB), and eXtreme Gradient Boosting (XGB).
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MLGP alternatives. Because loci and markers are represented as
embeddings rather than fixed column positions, these new methods
offer possibilities to integrate date frommultiple genotyping experiments
and potential to pre-train large “pan-genome-scale”models. Additionally,
there is a conceptual similarity between restricted attention matrices and
covariance structures used in LMM, and the inclusion of environmental
blocking factors and covariates as embeddings can enable the model to
share information between experiments. Generalisable and memory
efficient neural network architectures, such as Perceiver (Jaegle et al.,
2021), may allow broader applicability across datasets through pre-
training and finetuning, but was not included in SelectML (Jones
et al., 2023) due to its complexity and computational bottlenecks. We
developed an GP implementation of Perceiver (https://github.com/
darcyabjones/gperceiver) which in initial tests performed similarly to
SelectML (Jones et al., 2023). However the potential to integrate
complementary sources of data and pre-train models to predict
numerous complementary tasks, followed by fine tuning the model to
predict target phenotypes, is the primary novelty and benefit of this
model. We have likely not yet tested its full potential for integrating rich
external datasets during pre-training, e.g., genome-based predictions of
functional annotations (Consortium, 2019; Paysan-Lafosse et al., 2023) or
gene expression data. It may also allow for more variability in marker
data, for example, a model could be trained on a set of markers and
subsequent predictions made using a subset or new markers, and could
trivially allow representations of polyploid data, multi-allelicmarkers, and
complex markers (i.e., insertion-deletions).

The power of GP lies in the analysis of large genetic datasets enmasse
to predict phenotypic outcomes at a broad level. This does not require
specific knowledge of the contributing genotypes and their biological
functions and thus bypasses significant research bottlenecks. This
underlying philosophy may be why examples of novel integrations of
GPwith genome-based bioinformatics are relatively rare. Genomics often
employs an opposing philosophy of first determining whole genome
sequences, followed by comparatively laborious prediction and/or
experimentally validation of loci of interest. Perhaps this is why only
recently examples can be found of hybrid methods that leverage the
strengths of genomics to address inherent flaws affecting bothMLGP and
LMMGP. High-throughput genotyping methods (e.g., DArT-seq and
SNP-chips) typically capture imperfect markers with LD-based
phenotypic association, which are themselves a very small subset of
markers in the dataset. Additionally, marker selection based on filter
methods (e.g., ReliefF) or penalised models (e.g., LASSO) are both
strongly affected by multicollinearity, while GWAS-based feature
selection are often conservative and only select markers with an
additive contribution. As imperfect markers become unlinked across
generations and dissimilar populations, GPmodels do not generalise well
and must be trained specifically for a particular dataset. Causal or perfect
markers are highly valuable, being unaffected by feature selection or LD
decay issues. The advantage of replacing conventional markers with
whole-genome sequences, is that the latter should contain all perfect/
causal markers. Despite this, recent attempts to integrate whole-genome
data only slightly improved prediction accuracy (Ros-Freixedes et al.,
2022), presumably as both genomic and marker datasets contain
comparable levels of background noise. Alternatively, bioinformatics
can either guide biologically-informed dataset reduction or assignment
of biological priors before GP is performed. This may incorporate
prediction of gene-based functional annotations [e.g., gene ontologies
(GOs), conserved domains (Consortium, 2019; Paysan-Lafosse et al.,

2023)]. Recent methods incorporating GOs as biological priors show
promising improvements to prediction accuracy (Farooq et al., 2021).
Future development of methods for routine integration of genome
bioinformatics to enable pre-GP dataset reduction and feature
selection may be able to capture a higher proportion of causal marker
candidates from large genome-derived datasets, significantly improving
the outcomes of both MLGP and LMMGP methods.
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