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Introduction: The availability of large-scale biobanks linking genetic data, rich
phenotypes, and biological measures is a powerful opportunity for scientific
discovery. However, real-world collections frequently have extensive missingness.
While missing data prediction is possible, performance is significantly impaired by
block-wise missingness inherent to many biobanks.

Methods: To address this, we developed Missingness Adapted Group-wise
Informed Clustered (MAGIC)-LASSO which performs hierarchical clustering of
variables based on missingness followed by sequential Group LASSO within
clusters. Variables are pre-filtered for missingness and balance between
training and target sets with final models built using stepwise inclusion of
features ranked by completeness. This research has been conducted using
the UK Biobank (n > 500 k) to predict unmeasured Alcohol Use Disorders
Identification Test (AUDIT) scores.

Results: The phenotypic correlation betweenmeasured and predicted total score
was 0.67 while genetic correlations between independent subjects was
high >0.86.

Discussion: Phenotypic and genetic correlations in real data application, as well as
simulations, demonstrate the method has significant accuracy and utility for
increasing power for genetic loci discovery.
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1 Introduction

Biobanks are large-scale, high-dimensional collections of
biomedical information offering significant opportunities for
scientific discovery, with many collections containing thousands
of data points on tens of thousands of individuals. Many biobanks
also collect biospecimens and perform genome-wide assessments of
genetic variation and increasingly other omic measures such as gene
expression, epigenetic modifications, and proteomics which allow
comprehensive agnostic investigations of the relationships between
complex human diseases and traits with genetic and environmental
influences. These powerful resources are increasingly accessible to
the larger scientific community, facilitating novel investigations and
discovery. The breadth of phenotypes in biobanks represents an
opportunity for machine learning (ML) approaches to further
discover unexpected relationships complementing directed a
priori hypothesis testing. However, the scale of biobanks also
presents challenges including significant missing data, much of
which may occur in a block-wise fashion or be non-random.

There is a growing list of available biobanks for genetic discovery
including the UK Biobank (Sudlow et al., 2015) (UKB) which has
enrolled over half a million UK residents, all of whom provided
biological samples for genotyping. Volunteers in the UKB also
provided access to their electronic health records, hospitalization
records, biological samples, and answers to survey questions
regarding diet, lifestyle habits, and mental health; phenotypic
measures available to link with genetic measures totaling in the
thousands. In the US, the National Institutes of Health is funding the
All of Us (The All of Us Research Program Investigators, 2019)
biobank effort, which as of September 2022 has enrolled 372,380 of

its goal of one million participants who will provide biological
samples, genotypic data, electronic health records, and answers to
several series of survey questions. Similarly, BioBank Japan (Nagai
et al., 2017) has sampled over 200,000 participants with one of
47 common diseases and collected genetic information along with
health records and other phenotypic information. Many additional
biobanks are currently available to researchers and construction of
new biobanks continues, motivated in part by the necessity of
collecting large sample sizes to advance the understanding of the
genetics of complex traits.

Structural characteristics of biobanks present challenges for data
analysis. Many biobanks do not administer every test or survey to
each participant, as budget considerations, for example, often dictate
how many participants receive more costly testing, such as imaging.
In order to mitigate dropout and participant fatigue, a subset of
questionnaires may be sent to each participant; requests for
participation in a particular survey may have been sent to a
portion of subjects and only a subset of those were returned.
Similarly, subsets of subjects may be chosen to participate in
additional surveys according to previous responses, where the
decision logic for these selections may not be clear or available to
researchers. These practices, while pragmatic for cost and volunteer
retention, may result in widespread, block-wise missingness across
the full biobank, in which large subsets of the full sample have
completely missing values for a portion of question categories. This
missingness may be non-random across the full set of available
measures in the biobank such that no subset of subjects with
complete information exists in the sample. For example, Figure 1
illustrates the pairwise correlation between missingness patterns
across over 1,000 UKB variables that had the highest observation

FIGURE 1
Heatmap of pairwise correlation between missingness patterns
across over 1000 UKB variables with highest observation counts.
White space indicates no correlation, while darker shades on red and
green indicate increasing levels of positive or negative
correlation, respectively.

FIGURE 2
Heatmap of pairwise complete observation count across the
same UKB variables shown in Figure 1, with blue indicating zero
subjects with a given pair of variables observed and colors ranging
from purple, to white, to red, indicating increasing counts of
subjects with a given pair of variables present.
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counts. Similarly, Figure 2 illustrates the pairwise complete
observation count across the same UKB variables, demonstrating
that there is significant missing data and that these patterns of
missingness are correlated across the dataset.

Missingness patterns can severely limit power for
epidemiological and genetic analyses of any single trait.
Traditionally, data missingness can be addressed through
imputation where a missing-at-random (MAR) structure can be
reasonably assumed. Some commonly used approaches include k
nearest neighbors (Troyanskaya et al., 2001) or Multivariate
Imputation by Chained Equations (van Buuren and Groothuis-
Oudshoorn, 2011) (MICE). These methods borrow information
across the available data to infer missing points, but because
biobank missingness is generally pervasive across all predictors
and often occurring in patterns which cannot be assumed to be
MAR, these traditional imputation methods are not appropriate for
estimating the missing values. Where imputation is inappropriate,
row-wise deletion is sometimes employed to drop subjects who have
missing observations. However, with even moderate levels of
random and block-wise missingness, this sort of deletion can
render the dataset many orders of magnitude smaller.

Given the phenotypic depth of biobanks, when traditional
imputation may not be employed, there is an opportunity to
apply ML methods to leverage the existing data to predict
missing values. Utilization of ML, or “data mining,” as it is often
called, has continued to rise across many applications, including
genetics. For example, the PsychENCODE project (Wang et al.,
2018) employed deep learning techniques to predict functional
effects in the brain of genome-wide association study (GWAS)
hits associated with psychiatric disorders. Advances in technology
and cloud resources continue to ease the computational burden of
applying ML methods to high-dimensional genomic data and offer
the opportunity for rapid and novel investigations. While these
advances have sparked wide-spread interest, many ML methods
themselves are not novel, but rather are based in statistical
techniques long established theoretically and proven empirically
(Hastie et al., 2009).

Many ML procedures may be useful for predicting missingness
in an outcome where there is only moderate and random
missingness across the full set of predictors. When missingness is
pervasive and presumably non-random, as observed in many
biobanks, traditional implementation of most data mining
techniques also resorts to row-wise deletion of subjects with any
missing predictor values. A subset of ML approaches have been
adapted to account for some level of predictor missingness and
applied to missing variable imputation. MI-LASSO (Chen and
Wang, 2013), for example, integrates Multiple Imputation (MI)
of missing predictors with the Least Absolute Shrinkage and
Selection Operator (LASSO) for a hybrid approach applicable
where missingness may be assumed to be random. PhenIMP
(Hormozdiari et al., 2016) and extensions (Chen et al., 2018) use
related phenotypes to impute a difficult to collect phenotype in order
to boost power. While PhenIMP can impute using only summary
information from other phenotypes, it relies on distributional
assumptions which make the approach impractical where many
phenotypes are categorical and do not conform to such assumptions.
Similarly, the PHENIX (Dahl et al., 2016) method was designed to
impute missing variables in a Bayesian framework in the presence of

other informative data but also requires distributional assumptions
and does not drop non-informative input measures, thereby
prohibiting variable selection. Other approaches developed by
Yuan et al. (2012) and expanded upon by Xiang et al. (2014)
specifically address block-wise missingness structures with a focus
on imputing entire blocks of missing data, specifically where
neuroimaging data is present. Similarly, Xue and Qu (2021)
proposed a method for imputing data missing in a block-wise
fashion, however, while effective and flexible to accommodate a
large number of predictors, these approaches are also only suited to
cases where the block structure is well-defined. Neither method is
applicable to the structure of large-scale data wherein the block-wise
missingness patterns are highly inconsistent across subjects and the
number of blocks is large, as is observed in UKB.

Given the variety of available ML approaches and characteristics
of biobanks, there is significant need for an ML solution for
imputing missing variables which collectively 1) is capable of
including categorical and/or non-normally distributed predictors,
2) produces interpretable models, 3) incorporates penalization or
variable selection such that it could be generalizable, and most
importantly, 4) is applicable and robust in the presence of block-wise
missingness, potentially occurring in a non-MAR fashion. While
many traditional ML methods could satisfy the first three interests,
most are intolerant to missingness in the predictors, precluding
“out-of-the-box” application of available methods.

Through missing data simulations, we demonstrate the rate at
which missing-at-random and block-wise missing data reduce the
number of complete cases in a dataset to zero, thereby motivating
the necessity of novel ML implementations to handle missing data in
biobank scale collections. We further simulate datasets with a variety
of random and block-wise missingness structures and apply our
proposed ML innovation to test its performance empirically. As a
proof of principle, we selected the UKB to serve as a real-world
example application of our proposedML innovation. The data freeze
(UKB Application 30,782, approval date 3 September 2018, using
data baskets created 28 September 2019 and 20May 2019) contained
9,613 phenotypes on 502,536 subjects. We chose the Alcohol Use
Disorders Identification Test (AUDIT) survey from UKB as our
target outcome; it was ascertained as part of the mental health
battery of questionnaires and was directly measured in 157,162
(31.2%) participants. The AUDIT is a ten-item, self-administered
screening instrument for alcohol problems containing three
questions surveying consumption and seven items surveying
problems related to alcohol which comprise the AUDIT-C and
-P subscales (Saunders et al., 1993; Higgins-Biddle et al., 2001). Here,
we describe an innovative ML approach and demonstrate its
usefulness in leveraging thousands of measured variables in order
to predict an unmeasured variable, validate its performance using
genetic correlation analyses, and show how this predicted outcome
boosts power for subsequent analyses including GWAS, cross-trait
genetic correlation, and other genetic studies. Importantly, our
approach represents a tool for leveraging genetic data for
discovery on subjects with missing outcomes, whose genetic data
would otherwise not be utilized for analysis. In this way, our
proposed methods improves responsible maximization of
participant altruism, as well as public and private funding, by
thoroughly examining all available data to the limits of statistical
possibility and biological plausibility.
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2 Methods

2.1 Data: UK biobank

The UK Biobank is a large-scale biomedical database and
research resource containing genetic, lifestyle, and health
information from half a million UK participants. UKB’s database,
which includes blood samples, heart and brain scans and genetic
data of the volunteer participants, is globally accessible to approved
researchers who are undertaking health-related research that is in
the public interest. Participants were aged between 40 and 69 years
and recruited in 2006–2010 from across the UK. This research has
been conducted using the UK Biobank Resource application number
30782.

All methods were carried out in accordance with relevant
guidelines and regulations. All experiments were performed in
accordance with the UK Biobank Ethics and Governance
Framework (EGF), as approved by the UK Biobank Ethics and
Governance Council (EGC), established by the UK Biobank
funders, the Wellcome Trust, and the Medical Research
Council. The UK Biobank Ethics Advisory Committee
continues to monitor the use of the UK Biobank resource,
provide guidance on relevant ethical issues, and update ethical
policies as necessary. Informed consent was obtained from all UKB
participants in accordance with the UK Biobank Ethics and
Governance Framework.

2.2 Missing data simulations

To demonstrate the relationship between complete case count
and both random and block-wise missingness, we simulated an
indicator matrix with 200 variables on 10,000 subjects and imposed
random missingness from 1% to 50% of the data and block-wise
missingness in 0, 5, 10, 15, and 20 blocks ranging in size from
5–15 columns and 100–500 (in increments of 5) rows. This
missingness was randomly imposed over 100 iterations so that
median complete case count could be calculated across the
missingness parameters.

2.3 MAGIC-LASSO

We developed an adaptation of the Group Least Absolute
Shrinkage and Selection Operator (Yuan and Lin, 2006)
(Group-LASSO) machine learning method for penalized
regression to address the shortcomings of existing, software-
implemented ML methods for predicting variables in the
presence of non-random, block-wise missingness named the
Missingness Adapted Group Informed Clustered (MAGIC)-
LASSO. The MAGIC-LASSO represents an innovative
implementation of established ML methods and is therefore
intended to serve as a new application of existing algorithms.
While other choices of ML approach may have been appropriate,
for this first proof of principle project, we chose to extend and
adapt the Group LASSO because it employs a straightforward and
easily interpretable regression-based solution and it is particularly

suited for penalization of categorical predictors, of which there are
many in the UKB.

Details regarding the theory, formula, and derivation of the
LASSO (Tibshirani, 1996) and one of its extensions, the Group-
LASSO(Yuan and Lin, 2006) are published elsewhere and are
summarized in Supplementary Section S1. Our MAGIC-LASSO
approach utilizes the conventional Group-LASSO fitting algorithm,
but applies it in an innovative, iterative manner in order to overcome
the challenges of the block-wise missingness design and increase
power for genetic discovery.

2.3.1 MAGIC-LASSO overview
In brief, the MAGIC-LASSO procedure involves 1)

characterizing missingness, 2) filtering variables for general
missingness and for balance across training and target sets, 3)
variable clustering based on missingness, 4) iterative Group-
LASSO and variable selection within clusters, and 5) cross-
cluster model building with variables prioritized by
informativeness. Figure 3 describes the flow logic of the
MAGIC-LASSO.

2.3.2 Characterizing missingness and general
filtering

This first step is to create a subset of variables suitable for
downstream investigation. This includes removing potential
predictor variables that are a) excessively sparse ( > 80%
missingness), b) categorical with excess, sparse levels such as
ICD codes in a collapsed matrix format, c) unstructured where
the format is inappropriate for modeling, such as free text, date

FIGURE 3
Flow logic of the MAGIC-LASSO procedure. The MAGIC-LASSO
procedure begins with filtering, followed by clustering, then iterative
Group-LASSO application until parsimony is achieved. Figure created
with BioRender.com.

Frontiers in Genetics frontiersin.org04

Gentry et al. 10.3389/fgene.2023.1162690

http://BioRender.com
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1162690


values, or array variables, or d) invariant. After initial filtering, we
identify and remove variables for which missingness patterns were
highly skewed between prediction and training sets for the
outcome of interest. Due to block-wise missingness, there may
be variables which pass the first filtering step but are not
informative in the target dataset. In other words, where data
completeness is highly correlated with the variable of interest.
This is not to be confused with correlation among the phenotypic
measures themselves, which is generally not of concern since the
LASSO procedure is more capable of handling many measures
with varying degrees of collinearity than traditional linear
regression (Hastie et al., 2009).

2.3.3 General background on ML training and test
sets

This filtering step relies on the identification of a so-called
measured set, also referred to here as a training set, the subset of
subjects with the primary outcome measured, and an unmeasured
set, or a prediction set, the remaining subjects for whom the
outcome of interest was unmeasured and for whom the ML
procedure will predict the missing variable. Figure 4 illustrates an
example of how a dataset may be subdivided into these measured
and unmeasured sets.

2.3.4 Balancing
When training an ML model to predict unmeasured variables,

the learning occurs on the subset of data for which complete
observations are available, i.e., the measured, or training set and
is then implemented in the unmeasured, or the prediction set. The
algorithm learns how to predict unobserved data by modeling
patterns that exist in observed data. Where certain variables are
largely measured in conjunction with the primary outcome of
interest in the training set but are largely unmeasured in the

prediction set, an ML algorithm which relies on these variables
for prediction will perform poorly, since the inputs will be largely
missing.

For a given experiment, partition the total number of
observations into those in the measured and unmeasured sets
Nmeasured +Nunmeasured � Ntotal and for each additional variable
k, quantify nk,measured and nk,unmeasured the number of
observations present in Nmeasured and Nunmeasured, respectively.
Then calculate a filtering parameter:

τk �
nk,measured

Nmeasured
nk,unmeasured

Nunmeasured

,

where τk represents the ratio of the proportion of observations
present in the measured set to the proportion of observations
present in the unmeasured set, for variable k. Plotting is helpful
to empirically determine a useful cutoff for τ � t.

2.3.5 Clustering
The Group-LASSO, like many ML procedures, cannot

accommodate missing data and relies on row-wise deletion of
observations where one or more variables are missing. One
strategy to mitigate reduction in sample size from requiring
complete information across all covariates is to segregate the
variables into blocks according to patterns of missingness and
apply the ML procedure within that subset of measures. In the
MAGIC clustering step, variables are grouped to minimize
missingness while maximizing sample sizes in order to optimize
downstream within-cluster prediction performance. First, pairwise
observation counts for every pair of phenotypic variables are
calculated. Using this pairwise count matrix, we calculated the
Euclidean distance of these measures to feed into an average-
linkage agglomerative hierarchical clustering procedure to
discover the inherent groupings of variables based on
missingness. This clustering procedure begins with each variable
in its own cluster and proceeds by combining two clusters for each
step until all variables reside in a single cluster. The clustered tree
may be cut at some point to obtain the clustering assignments. Exact
height for cutting is determined empirically by examining mean
observation count per variable in the cluster, number of variables in
the cluster, and the number of complete cases for that subset of
measures.

2.3.6 Iterative Group-LASSO
The cut tree provides groups of variables within which the

complete data observation count is maximized. Limiting each
cluster to only the complete data therefore, the Group-LASSO is
applied to each cluster individually. Eachmodel utilizes k-fold cross-
validation to choose the penalty term with minimal prediction error
and variables in each model were retained if they achieved non-zero
effect estimates, where k is chosen to be small and approaching n,
with consideration of computation resources. After applying the
Group-LASSO to each cluster, variables retained by each model are
aggregated across clusters, as illustrated in Supplementary Figure S1.
The set of aggregated, retained variables is then re-clustered using
the same hierarchical clustering procedure and the Group-LASSO
applied to each cluster. With each successive iteration of the

FIGURE 4
Conceptualization of how a dataset may be subdivided into a
measured and unmeasured set. Where N represents the full sample
size, NUnmeasured and NMeasured represent the subsets of subjects on
whom the outcome of interest is either missing or measured,
respectively. Then the amount of overlap in observation may be
quantified for each of p additional variables. Figure created with
BioRender.com.
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clustering and Group-LASSO application, the predictor space
shrinks as the measures most predictive of the outcome are
retained across iterations and the less-informative measures are
dropped.

Figure 3 illustrates the flow of the algorithm, which continues
until moderate parsimony is achieved. We recommend stopping
when 1) repeated iterations no longer shrink the predictor space or
2) the data set with the retained predictors has a reasonable number
of complete cases. The number of complete cases needed to fit a final
iteration of the model will vary depending on the total number of
predictors, the total sample size, and the variation in the data, but the
Group-LASSO is capable of effectively fitting a model even where p,
the number of variables, is larger than n, the number of samples.

2.3.7 Cross cluster model building
Once the iterative procedure is halted, with p remaining

variables, the data is split into independent training and test sets
and the Group- LASSO is fit up to (p − 1) times using a stepwise
procedure which orders the variables according to missingness.
Beginning with the variable with least missingness and adding an
additional variable each round, the Group- LASSOmodel is fit to the
training set complete data on those variables and k-fold cross-
validation is used to determine the phenotypic correlation
between the observed and predicted outcome. With each step, an
additional variable is added and the Group-Lasso fit, and the
procedure continues until every set has been fit, or there are no
longer any complete cases in the successive set. The set of variables
producing the most predictive model in the hold-out test set is
chosen as the final model.

2.3.8 Algorithm
The steps of the MAGIC-LASSO are summarized here.

a. Filter variables for excessive missingness
b. Set τ � t and filter for balance
1. Cluster the variables according to missingness
2. Fit the Group-LASSO to each cluster, setting λ according to the

model with lowest k-fold cross-validation error
3. Aggregate the variables with non-zero estimates across all

clusters
4. Repeat steps 1-3 until parsimony is achieved
5. Split the data on the p remaining variables into a test and

training set
6. Fit the Group-LASSO in the training set up to (p − 1) times in a

stepwise fashion
The final model is chosen as the one which minimizes the test set
error.

2.4 Test and training sets

Although each iteration of the Group- LASSO application is fit
using k-fold cross-validation, it is optimal to further utilize a hold-
out test set during the construction of the final Group-LASSOmodel
in order to rigorously assess performance. The proportion of the
data assigned to the hold-out test set depends on the size of the data
set itself, although a hold-out set containing 10%–30% of the data is

typical (Hastie et al., 2009). Phenotypic predictive performance is
assessed by plotting observed versus predicted observations in the
test set and reporting the correlation between the observed and
predicted sets.

2.5 MAGIC-LASSO simulations

To test the prediction performance of the MAGIC-LASSO
approach empirically, we applied the modeling procedure to data
simulated according to the following steps.

1. Beginning with 354 UKB variables selected and filtered for the
AUDIT application as described above, calculated σ0, the 354 x
354 variance/covariance matrix and μ, the vector of means.

2. Filtered measures with excessive variation, resulting in
299 remaining measures.

3. Applied the nearPD() from the Matrix R package to find the
closest positive-definite variance/covariance matrix, σ.

4. Generated multivariate normal data from σ and μ.

Data was generated using sample sizes ofN = 10,000 or 50,000 and
P = 200 or 250 phenotypes. Half of the predictors were selected to be
categorical with either 4 or 6 categories and these predictors were
converted from continuous to categorical by dividing according to
4 or 6 quantiles, respectively. The outcome measure was generated
via a linear regression equation using either 5 or 10 phenotypes, beta
coefficient values, and error following aN(0,2) distribution. We utilized
tree cut points of either (6, 7, 8, 9, 10) or (3, 4, 5, 6, 7, 8, 9, 10, 11, 12). In
order to fully capture the complex, correlated nature of the blockwise
missingness structure inherent to biobank data, we further imposed on
the simulated data set themissingness structure observed from a random
subset of the true data, in to imposing various levels of random
missingness of either (500, 1,000, 1,500) or (2,500, 5,000, 7,500)
observations. Additionally, we conducted supplemental simulations
under some conditions using error distributions N(0,1) and N(0,3).
Performance was evaluated by comparing the correlation and mean
squared error (MSE) between the observed and predicted outcomes for
both the set of missing outcomes and for the full set of outcomes. Table 1
outlines the simulation parameters and further details of the simulated
data are given in the Supplementary Section S2.

2.6 GWAS

For our real-world data application, to assess how well the
predicted AUDIT outcome captures the underlying genetic
factors influencing AUDIT, we calculate the heritability of
observed and predicted AUDIT as well as the genetic correlations
(rg) between the observed and predicted outcomes. To this end, we
conducted GWAS [bgenie (Bycroft et al., 2018) version 1.3] of the
AUDIT-Total, AUDIT-C, and AUDIT-P scores in the measured
and the combined measured-plus-unmeasured sets. We utilized
common procedures for pre-GWAS filtering, including excluding
markers with MAF < 0.5%, INFO < 0.8, and HWE p-value < 10−6.
All association analyses included age, sex, and the first 20 ancestry
principal components as covariates. The independent European
subjects sample size for the GWAS was 359,980 with
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117,559 and 242,421 subjects in the AUDIT measured and
unmeasured sets, respectively.

2.7 Heritability and genetic correlation

GCTA (Yang et al., 2013) (version 1.93.2) was used to calculate
heritabilities and the rg between observed and predicted AUDIT,
but only within the set of participants on whom AUDIT was directly
measured since the GCTA only allows rg to be calculated across the
same set of observations. We also utilized LDSC (Bulik-Sullivan

et al., 2015; Schizophrenia Working Group of the Psychiatric
Genomics Consortium et al., 2015) (version 1.0.1) to estimate
heritabilities and rg between observed and predicted scores, both
within the measured set and between the measured and unmeasured
sets. Using LDSC, rg can be estimated in either independent or
overlapping samples by leveraging a reference set of genetic
correlations (linkage disequilibrium) and GWAS summary level
test statistics.

2.8 Software

Data management and application of the MAGIC-LASSO was
conducted in R (R Core Team, 2020) (v3.5.2) using packagesMatrix
(Bates and Maechler, 2019) (v1.2.17), fastDummies (Kaplan, 2020)
(v1.5.0), and grpreg (Breheny and Huang, 2015; Breheny and Zeng,
2022) (v3.2.1). Clustering was conducted using hclust UPGMA
method in base R and the Group-LASSO was fit using the
cv.grpreg function in the grpreg package. R scripts describing the
MAGIC-LASSO implementation are available at github.com/
AEGentry/MAGIC_LASSO.

3 Results

3.1 Simulation results

The results of the missingness simulations indicated that
regardless of the level of block-wise missingness, once random
missingness across the dataset reached 5%, the median number
of complete cases fell to 0. In fact, the number of missingness blocks
affected the complete case count less than the overall proportion of
randommissingness, as illustrated in Figure 5. The full table of these
simulation results are given in Supplementary Table S1.

The full results of the MAGIC-LASSO simulations are shown in
Supplementary Tables S2–S13. In summary, for models with some
complete cases present, the MAGIC-LASSO performed better than
the regular Group-LASSO, achieving overall lower MSE and higher

TABLE 1 MAGIC-LASSO simulation parameters.

Set N P Cat
Lev

Beta Inc Prop
Comp

Int N
Beta

Betas Cuts

1 10000 200 4 (1, −4, 3) 0.1 −10 10 (0.5, 2, −2, 5, 5, −5, 7, 7, 7, −7) (6, 7, 8, 9, 10, 11, 12)

2 50000 250 6 (1, −4, 3, 0.5, −2) 0.005 −10 10 (0.5, 2, −2, 5, 5, −5, 7, 7, 7, −7) (3, 4, 5, 6, 7, 8, 9, 10,
11, 12)

3 50000 250 6 (1, −4, 3, 0.5, −2) 0.005 −10 10 (0.5, 0.5, −0.5, −0.5, 0.75, −0.75, 1, 1, −1, −1) (3, 4, 5, 6, 7, 8, 9, 10,
11, 12)

4 50000 250 6 (1, −4, 3, 0.5, −2) 0.005 −10 5 (0.5, −0.5, 0.75, 1, −1) (3, 4, 5, 6, 7, 8, 9, 10,
11, 12)

5 50000 250 6 (1, −4, 3, 0.5, −2) 0.005 −10 20 (0.5, 0.5, 0.5, −0.5, −0.5, 0.75, −0.75, 0.05, 0.1,
0.15, 1, 1, −1, −1, −1, 2, −2, 3, 3, −3)

(3, 4, 5, 6, 7, 8, 9, 10,
11, 12)

6 50000 250 6 (1.25, −2,
2, −1.25, 0.25)

0.005 -10 10 (0.5, 0.5, −0.5, −0.5, 0.75, −0.75, 1, 1, −1, −1) (3, 4, 5, 6, 7, 8, 9, 10,
11, 12)

Legend: Set, Simulation set; N, sample size; P, number of predictors; Cat Lev, Number of categories for categorical predictors; Beta Inc., Increments of increase/decrease for each level of

categorical variables from the reference level; used for assigning beta values to dummy-coded categorical variables; Prop Comp, Proportion of the data with complete cases; Int, Intercept; N Beta,

Number of true betas; Betas, True beta values; Cuts, Cutpoints for the hierarchical clustering trees.

FIGURE 5
Number of complete cases as a function of number of
missingness blocks and overall random missingness across the
dataset.
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correlation between observed and predicted outcomes in the
complete model in all scenarios, with exception of scenario 1,
where performance between Group-LASSO and MAGIC-LASSO
were similar. In cases with zero complete cases present, performance
between the regular Group-LASSO and MAGIC-LASSO could not
be compared because the Group-LASSO is incompatible with
missing data in the predictors. In the zero complete cases
scenarios, correlation between observed and predicted outcomes

ranged between 0.667 and 0.760. In the supplemental simulations
for the zero complete case scenarios with additional error structures,
performance varied as expected, with improved accuracy where
error variance was lower. While prediction performance was good
across scenarios, we observed higher overall correlations and
correspondingly lower MSE for scenarios 1, 3, 4, and 6, in which
the true beta values were smaller in magnitude than those in
scenarios 2 and 5. The choice of optimal cut point for the

FIGURE 6
Densities curves showing observed and predicted outcomes and prediction residuals. (Left) Density curves of the observed and predicted scores;
outcomes in the observed and predicted in the measured and unmeasured sets plotted for (A) AUDIT-Total, (B) AUDIT-C, and (C) AUDIT-C. (Right)
Residual densities for AUDIT prediction; density curves with means noted showing the distribution of the prediction residuals for (D) AUDIT-Total, (E)
AUDIT-Consumption, and (F) AUDIT-Problems.
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clustering trees varied across scenarios, indicating that no one cut
point is objectively optimal in all scenarios. Furthermore, in most
scenarios, predictive performance between cut points did not vary
widely.

3.2 Application to real world biobank data

As a proof of principle, we applied MAGIC-LASSO to
predict AUDIT in the UKB. We predicted the subscales

TABLE 2 LDSC estimated heritabilities and genetic correlations.

Set (a) (b)

Outcome h2 (SE) p-value Comparison rg (SE) p-value

AUDIT-total

Measured Observed 0.0811 (0.006) 1.25E-41 Unmeasured Predicted 0.9746 (0.0354) 5.40E-167

Unmeasured Predicted 0.0727 (0.0036) 1.10E-90 Measured Predicted 0.9746 (0.0333) 2.30E-188

Measured Predicted 0.08433 (0.0056) 3.02E-51 Measured Observed 0.9191 (0.0181) <1.0E-200

AUDIT-Consumption

Measured Observed 0.0869 (0.0061) 4.75E-46 Unmeasured Predicted 0.8695 (0.0353) 3.30E-134

Unmeasured Predicted 0.0759 (0.0042) 5.35E-73 Measured Predicted 0.9712 (0.0349) 1.40E-170

Measured Predicted 0.0816 (0.0056) 4.27E-48 Measured Observed 0.858 (0.0222) <1.0E-200

AUDIT-Problems

Measured Observed 0.0468 (0.0049) 1.28E-21 Unmeasured Predicted 0.9126 (0.0583) 2.90E-55

Unmeasured Predicted 0.0647 (0.0034) 9.73E-81 Measured Predicted 0.9627 (0.0381) 5.30E-141

Measured Predicted 0.0769 (0.0056) 6.52E-43 Measured Observed 0.7915 (0.0387) 5.0E-93

Block (a), heritabilities (h2) for observed and predicted AUDIT; p-values estimated from z-scores calculated using h2 and se estimates. Block (b), genetic correlations (rg) between the observed

and unobserved AUDIT in the measured and unmeasured sets.

FIGURE 7
(A) LDSC estimated heritabilities. SNP-based heritability estimates for the observed (green) and predicted in the measured (purple) and unmeasured
(orange) sets for the AUDIT outcomes. (B) LDSC estimated genetic correlations. Genetic correlation estimated between the observed data and predicted
scores in themeasured sets (green) the observed data and the predicted scores in the unmeasured sets (orange) and the predicted scores in themeasured
and unmeasured sets (purple).
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(AUDIT-P and AUDIT-C) individually, as well as the total
AUDIT, calculated as the sum of the two subscales. The median
total AUDIT score was 4 while the median for the consumption
(AUDIT-C) and problem (AUDIT-P) subscales was 4 and 0,
respectively.

To construct a set of variables to be used in the predictive
algorithm, we filtered the full set of 9,603 available variables (not
including the AUDIT measures) to remove measures a) with fewer
than 100,000 observations, b) which were ICD codes, c) which were
unstructured, d) which were invariant, or e) which were repeated
and measured at later longitudinal timepoints, such that only
baseline measures were retained. Supplementary Figure S2 shows
the sample sizes remaining after each filtering step. After these
filtering steps, 631 curated, so-called top-level (i.e., baseline)
variables remained. Further filtering for balance between the
measured and unmeasured sets removed 277 more variables for
which missingness patterns were highly skewed between prediction
and training sets. Measures with a ratio of missingness in the
predicted versus the training set of t≤ 0.7 were filtered out,
leaving 354 variables.

Clustering the post filtered variable set resulted in an initial
12 clusters (Supplementary Table S14). One cluster of 5 variables
was dropped because there were no complete cases in the cluster.
Using 5-fold cross-validation, the first application of the Group-
LASSO resulted in an aggregated total of 99, 106, and 123 variables
retained across all clusters for the AUDIT-Total, AUDIT-C, and
AUDIT-P, respectively. In the second iteration, variables were
grouped in 5, 6, and 4 clusters for AUDIT-Total, AUDIT-C, and
AUDIT-P respectively and applying the Group-LASSO to each
cluster resulted in an aggregate of 65, 80, and 54 variables
retained across the clusters for AUDIT-Total, AUDIT-C, and
AUDIT-P, respectively.

Having reduced the phenotypic space by nearly a quarter for
each score, the iterative Group-LASSO process halted. We then
ordered the variables in each set according to missingness and
applied the Group-LASSO procedure to the set of variables
constructed in a forward stepwise manner, beginning with the
variable with least missingness. Supplementary Table S15 shows
the number of subjects with complete data, with the addition of each
variable, including the breakdown of complete cases in the measured
and unmeasured sets, as well as the correlation from a predictive
model constructed using each successive set of variables. The
phenotypic correlations and the ratio of proportion of complete
cases from the measured and unmeasured sets are shown for each
outcome in Supplementary Figure S3. The stepwise procedure
showed final models with 30, 18, and 20 input variables resulted
in the best prediction for AUDIT Total, Consumption, and
Problems, respectively. The final models resulted in 27, 18, and
14 non-zero coefficient estimates and test-set phenotypic
correlations of 0.64, 0.71, and 0.48 for Total, Consumption, and
Problems respectively.

Using the full measured sets for which both observed and
predicted AUDIT scores were available, the phenotypic
correlations were 0.65, 0.70, and 0.46 for Total, Consumption,
and Problems, respectively. These estimates are very similar to
those from the final models using only the test set which
demonstrates the approach produces generalizable estimates.
Figure 6 shows the density curves of observed and predicted

(both measured and unmeasured) for all three scores as well as
the density curves of the prediction residuals.

One significant advantage to evaluating ML methods including
MAGIC-LASSO in biobanks such as UKB is the availability of
genetic information on all subjects and methods to estimate
SNP-based heritabilities (h2) and genetic correlations (rg). To
explore the accuracy of the predicted phenotypes and evaluate
their utility in downstream genetic studies, we estimated h2 in
each set and rg between a) observed and predicted in the
subjects with measured AUDIT and b) predicted AUDIT in
subjects with and without direct measurement. We note that the
last sets are completely independent with no information being
shared in the model building step except for missingness balance.

3.2.1 Validation of phenotype prediction via
heritability and genetic correlation analysis

Within-subject GCTA based h2 for AUDIT-T in men and
women showed similar estimates when directly measured as
when predicted by MAGIC-LASSO (range 0.089–0.139)
(Supplementary Table S16) and was similar to LDSC based
estimates (range 0.047–0.087) [Table 2 (a)] derived from GWAS
summary statistics. Of note, the estimated heritabilities of the
predicted score are close to those of the observed score in both
the measured and unmeasured sets.

Using LDSC, we estimated heritabilities for men and women
combined across the three outcome sets. As shown in Table 2 (a);
Figure 7A, these heritabilities ranged from 0.0468–0.0869 in the
measured sets to 0.0769–0.0843 in the predicted sets and the
estimates in the measured sets are similar to those previously
reported for measured AUDIT in the UKB (Sanchez-Roige et al.,
2019). The LDSC estimates are slightly lower than the GCTA
estimates which is expected since GCTA estimates the genetic
relationship matrix (GRM) directly from individual level
genotypes while LDSC estimates the GRM from GWAS summary
statistics and an LD reference panel resulting in less precision.
Heritability in observed and predicted AUDIT-Total and
AUDIT-C while moderate (0.0811–0.0843 and 0.0869–0.0816,
respectively) are similar and highly significant, while the point
estimate for observed AUDIT-P (0.0468) is lower than that in
predicted AUDIT-P (0.0769).

3.2.1.1 Genetic correlations
Using GCTA and only subjects with measured AUDIT, the rg

between the observed and predicted AUDIT-T was 0.863 (se 0.040)
in men and 0.884 (se 0.032) in women. The LDSC-estimated rg
(Table 2 (b); Figure 7B) between observed and predicted AUDIT in
the measured set provides an indicator of prediction performance,
with rg between these sets of 0.919 (AUDIT-Total), 0.858 (AUDIT-
C), and 0.792 (AUDIT-P.) These h2 and rg estimates offer insight
into the overall performance and utility of the MAGIC-LASSO
approach.

4 Discussion

The results of our simulation study demonstrated how even
moderate levels of random and block-wise missingness rapidly
diminish the number of complete cases available in a dataset and
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the necessity of an innovative approach for prediction analyses in
the presence of such missingness. The goal of this methodological
work was to extend an ML procedure which could predict missing
variables 1) accurately, 2) in an interpretable manner, and 3) in a
generalizable framework, 4) using existing software, and 5) for
application in biobank-scale datasets with block-wise missing
data structures. Our MAGIC-LASSO approach achieves these
goals, as demonstrated through the prediction of the AUDIT
measures in the UK Biobank study. The consistently high
phenotypic and genetic correlations across the observed and
predicted sets indicates that the ML procedure is capable of
predicting the missing variable with high accuracy and in a
manner which faithfully reflects the underlying genetic
contribution to the phenotype. Estimated heritabilities in the
predicted AUDIT sets were consistent with those in the
measured sets and with those previously published. It is further
noteworthy to mention that in ML practice, predictive performance
in the full set often overestimates the real-life potential of the
algorithm to predict missing values. However, our predictive
performance in the full set was nearly identical to that in the
hold-out test set in the UKB AUDIT application, with a
difference in phenotypic correlation of no more than
0.02 between the full and hold-out sets in all three AUDITmeasures.

Prediction was less accurate, as measured both by phenotypic
correlation and by rg, in the AUDIT-P outcome as compared to
AUDIT-Total and AUDIT-C. This demonstrates two
considerations, first, that the distribution of the outcome can
affect its prediction. Where observations are highly skewed and
less evenly distributed across the potential range, prediction is
rendered more difficult. Second, prediction performance varies
based on the phenotype and the dataset, as observed with the
AUDIT measures. The available phenotypes in UKB, in
aggregate, lend better information to the prediction of AUDIT-
Total and AUDIT-C than of AUDIT-P, although expansion of the
variables entering the MAGIC-LASSO model may improve the
prediction of AUDIT-P. Furthermore, Supplementary Figure S3
demonstrates the differing architecture of the predicted scores in
Total and Consumption versus Problems, where the first few
variables comprise the bulk of the prediction for AUDIT-T and
AUDIT-C, while the prediction of AUDIT-P is composed of more
variables of small effect. From an epidemiological perspective, it is
also noteworthy to consider that problematic alcohol use, as
measured across multiple behaviors, is a more complex, and
therefore more difficult to predict phenotype than quantity of
alcohol consumed, which may explain why the genetic
correlation between the observed and predicted AUDIT-P was
lower than seen in AUDIT-Total and AUDIT-C.

Strengths of the MAGIC-LASSO include, first, it can be applied
using existing publicly available packages in the R software
environment. Second, the prediction process is straightforward
and transparent. The MAGIC-LASSO is built on the foundation
of the Group-LASSO, a statistically rigorous framework with well-
established properties which allow the user access to the regression
structure of the prediction. Third, it is applicable to large biobank-
scale environments where missing-at-random structures cannot be
assumed. The application of the MAGIC-LASSO for variable
imputation can confer great power gains for genetic analyses, as
demonstrated using AUDIT in UKB. AUDIT and genotypic data

were directly measured in 117,559 European ancestry individuals in
the UKB sample. Predicting AUDIT in the unmeasured subjects
added 242,421 independent samples for downstream GWAS,
representing a 56% increase in effective sample size. Of note,
predicting AUDIT in these unmeasured subjects represents
genotypes on 242,421 subjects which otherwise could not have
been utilized in genetic studies of alcohol use and problems,
highlighting the usefulness of this approach for maximizing
discovery potential in genetic data, a resource both difficult and
expensive to collect and of which expanding samples sizes are
needed to study complex traits. Finally, the MAGIC-LASSO is a
flexible framework allowing for straightforward adaptations for
application to datasets of various structures and outcomes of
different characteristics.

Limitations of the MAGIC-LASSO framework include the
limitations of the Group-LASSO procedure to account for
interaction effects of covariates. The current demonstrated
implementation of the approach is also limited to the linear
regression framework. As a novel application, rather than a novel
algorithm, the approach is intended to serve as a tool which may be
readily modified to varying applications, such as a prediction of
binary or multi-category outcomes. In fact, the Group-LASSO
function employed (grpreg) is applicable to many other types of
outcomes. Predicting missing outcomes in the presence of missing
predictors, using the final Group-LASSO iteration of the MAGIC-
LASSO introduces some bias to the predictors, given that these
predictors must be dropped from the regression equation. In the
presence of large sample sizes, such as those typically collected in
biobanks however, this bias and associated loss of prediction
accuracy is somewhat mitigated. Both simulation and the UKB
application examples demonstrate that the predicted outcomes were
overall robust to this missingness. Furthermore, the application of
the MAGIC-LASSO also requires some degree of statistical
judgment to be rendered during model-fitting, including the
selection of the cutpoint during the clustering step and the
stopping criteria for desired model parsimony. In this way, the
approach is decidedly non “black box” in nature and requires the
researcher to interact with the modeling process. Future directions
in our research aim to implement missingness adaptation
approaches into additional ML paradigms, such as boosting and
random forests.

Finally, we note that our simulation scenarios are not
exhaustive and therefore recommend future research
investigating the performance of the paradigm under different
data structures, database sizes, and distributions. While we
demonstrated the utility of the MAGIC-LASSO using both
simulated data and real biobank data, the particular robustness
of our predictions for the AUDIT phenotype specifically have not
be validated in an external dataset. Future work aims to expand the
application of our approach to additional phenotypes in additional
biomedical datasets.

Despite these limitations, themethod demonstrated strong predictive
performance, both in simulations and in the real data application in UKB
and represents an innovative contribution to the field of epidemiological
research in biobanks. The method is accessible through open-source
software and transparent in nature, allowing the user to assess
performance and understand the full regression procedure
constructing the predicted outcomes. The MAGIC-LASSO is an
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additional tool now available to researchers to further harness the
discovery potential inherent in large data collections and maximize
the return on the financial and altruistic participant time and effort
contributions invested in the assembly and management of biobank
resources.
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