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The polygenic risk score (PRS) could be used to stratify individuals with high risk of
diseases and predict complex trait of individual in a population. Previous studies
developed a PRS-based prediction model using linear regression and evaluated
the predictive performance of the model using the R2 value. One of the key
assumptions of linear regression is that the variance of the residual should be
constant at each level of the predictor variables, called homoscedasticity.
However, some studies show that PRS models exhibit heteroscedasticity
between PRS and traits. This study analyzes whether heteroscedasticity exists
in PRSmodels of diverse disease-related traits and, if any, it affects the accuracy of
PRS-based prediction in 354,761 Europeans from the UK Biobank. We constructed
PRSs for 15 quantitative traits using LDpred2 and estimated the existence of
heteroscedasticity between PRSs and 15 traits using three different tests of the
Breusch-Pagan (BP) test, score test, and F test. Thirteen out of fifteen traits show
significant heteroscedasticity. Further replication using new PRSs from the PGS
catalog and independent samples (N = 23,620) from the UK Biobank confirmed
the heteroscedasticity in ten traits. As a result, ten out of fifteen quantitative traits
show statistically significant heteroscedasticity between the PRS and each trait.
There was a greater variance of residuals as PRS increased, and the prediction
accuracy at each level of PRS tended to decrease as the variance of residuals
increased. In conclusion, heteroscedasticity was frequently observed in the PRS-
based prediction models of quantitative traits, and the accuracy of the predictive
model may differ according to PRS values. Therefore, prediction models using the
PRS should be constructed by considering heteroscedasticity.
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Introduction

Genome-wide association studies (GWAS) have identified numerous genetic variants
associated with various complex traits (MacArthur et al., 2017). This has enhanced our
understanding of the biological pathways and treatment methods for diseases (Visscher et al.,
2012; Tam et al., 2019). However, the small effect size of each genetic variant only explained a
fraction of the phenotypic variation (Yang et al., 2011). Polygenic risk scores (PRSs) were
proposed to apply these genetic variants in the clinical or prevention fields (Lewis and
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Vassos, 2020). They were constructed by aggregating all the effects of
the genetic variants identified by GWASs (Choi et al., 2020). This
could potentially be used as a powerful tool to provide personalized
medicine (Polderman et al., 2015). The PRS performance has been
improved owing to recent large-scale GWAS (Inouye et al., 2018;
Duncan et al., 2019) and the development of advanced PRS
construction methods (Vilhjalmsson et al., 2015; Prive et al.,
2020; Ruan et al., 2022).

Previous studies showed the possibility of PRS to stratify
individuals and predict complex traits in large populations
(Khera et al., 2019; Ruan et al., 2022; Tanigawa et al., 2022). An
estimation of the PRSs for five common diseases showed that the
proportion of the population that was at a three-fold increased risk
was 8.0% for coronary artery disease (CAD), 6.1% for atrial
fibrillation (AF), 3.5% for type 2 diabetes (T2D), 3.2% for
inflammatory bowel disease (IBD), and 1.5% for breast cancer
(BC) (Khera et al., 2018). Moreover, significant differences were
found in the prevalence of obesity [body mass index (BMI) ≥ 30 kg/
m2] across deciles of PRS for BMI (Khera et al., 2019).
Determination of PRSs for over 1,500 traits (including disease
outcomes and quantitative traits) in the UK Biobank led to the
systemic construction of PRS models and their predictive
performance was evaluated: the predictive performance was
significantly increased in the 813 PRS models compared to the
covariate-only model including age, sex, types of genotyping arrays,
and the principal component of genotypes (Tanigawa et al., 2022).

The predictive performance of various PRS models was
evaluated by R2 (the proportion of variance explained by PRS)
for the linear regression model (Vilhjalmsson et al., 2015; Khera
et al., 2019; Prive et al., 2020; Ruan et al., 2022; Tanigawa et al., 2022).
However, one of the key assumptions of linear regression is that the
variance of the residual should be constant at each level of the
predictor variables (homoscedasticity) (Hayes and Cai, 2007).
Heteroscedasticity (the complementary notion of
homoscedasticity) occurs when the residuals at each level of the
predictor variable(s) have unequal variances (White, 1980; Andy,
2009). The R2 for homoscedasticity was equally estimated at each
level of predictor variable(s). However, the R2 may not be equally
estimated at each level of predictor variables if there is a non-
constant variance of residuals (such as heteroscedasticity). The
predictive performance for previous PRS models was evaluated
without considering whether they are homoscedastic or
heteroscedastic (Vilhjalmsson et al., 2015; Khera et al., 2019;
Prive et al., 2020; Ruan et al., 2022; Tanigawa et al., 2022). Other
studies suggest that PRS models show heteroscedasticity for obesity-
related traits (Sulc et al., 2020; Baek et al., 2022). Therefore, PRS
models for other traits may also show heteroscedasticity, and it is
necessary to test heteroscedasticity in PRS models for various traits.

This study analyzed whether heteroscedasticity exists in PRS
models for 15 quantitative traits and whether heteroscedasticity
affects the accuracy of PRS-based prediction models using
simulation and real data from the UK Biobank. First, we tested
whether the difference in the variance of the residuals affects the
difference in prediction accuracy under the condition of
heteroscedasticity using simulation data. Second, PRSs were
constructed for 15 quantitative traits using actual data from the
UK Biobank. Heteroscedasticity of the PRS-based prediction models
was investigated using three statistical methods: Breusch-Pagan (BP)

test, score test, and F test. We then investigated whether
heteroscedasticity affected the accuracy of the PRS-based
prediction models.

Materials and methods

Simulation study

Homoscedasticity describes a situation in which the error
variance is constant across all levels of predictor variable(s) in a
linear regression model. In other words, the variability of the errors
is the same across all values of the independent variable(s) (Hayes
and Cai, 2007; Andy, 2009; Astivia and Zumbo, 2019). In contrast,
heteroscedasticity describes a situation in which the error variance is
not constant across all levels of the predictor variable(s) in linear
regression model. In this case, the variability of the errors is different
across all values of the independent variable(s).

To understand heteroscedasticity and homoscedasticity, we
generated twelve sets of simulation data: 1) homoscedastic data
(HS0) with a R2 value of 0.9, 2) HS0 with a R2 value of 0.5, 3)
HS0 with a R2 value of 0.1, 4) mildly heteroscedastic data (HS1) with
a R2 value of 0.9, 5) HS1 with a R2 value of 0.5, 6) HS1 with a R2 value
of 0.1, 7) moderately heteroscedastic data (HS2) with a R2 value of
0.9, 8) HS2 with a R2 value of 0.5, 9) HS2 with a R2 value of 0.1, 10)
severely heteroscedastic data (HS3) with a R2 value of 0.9, 11)
HS3 with a R2 value of 0.5, 12) HS3 with a R2 value of 0.1.

HS0 is generated using a linear regression formula, which is
represented as:

Y � 0.5 + 0.5Xi + ei for observation i( ), where ei ~ N 0, σ2ε( ).

Here, Xi is an independent variable for observation i, ranging from
1 to 2,000; the intercept and slope coefficients of Xi are both 0.5. The
residual term, ei, represents the residual of observation i on
dependent variables such as Y, and follows a normal distribution
with a mean of 0 and variance of σε

2. The value of σε
2 represents the

variance of the random error term (ei) for the ith observation. The
variability of the errors is constant for different values of Xi.
Consequently, Y is dependent on observation i and is calculated
using the equation 0.5 + 0.5Xi + ei. In addition, for HS0, each R2

value of 0.9, 0.5, and 0.1 satisfies the following equation:

Y � 0.5 + 0.5Xi + ei for observation i( ), where ei ~ N 0, 552( );
Y � 0.5 + 0.5Xi + ei for observation i( ), where ei ~ N 0, 2852( );
Y � 0.5 + 0.5Xi + ei for observation i( ), where ei ~ N 0, 8002( ).

HS1 is generated using a linear regression formula, which is
represented as:

Y � 0.5 + 0.5Xi + ei for observation i( ), where ei ~ N 0, σ2εi( ).

Here,Xi is independent variable for observation i, ranging from 1 to
2,000; the intercept and slope coefficients of Xi are both 0.5. The
residual term, ei, represents the residual of observation i on
dependent variables such as Y, and follows a normal distribution
with a mean of 0 and variance of σεi

2. The value of σε
2 represents the

variance of the random error term (ei) for the ith observation. The
variance of the error term (ei) for the ith observation, denoted by σεi

2,
indicates that the variability of the errors differs for various values of
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Xi. For HS1, each R2 value of 0.9, 0.5, and 0.1 satisfies the following
equation:

Y � 0.5 + 0.5Xi

+ ei for observation i( ), where ei ~ N 0, 0.04Xi + 60( )2( );

Y � 0.5 + 0.5Xi

+ ei for observation i( ), where ei ~ N 0, 0.09Xi + 190( )2( );

Y � 0.5 + 0.5Xi

+ ei for observation i( ), where ei ~ N 0, 0.3Xi + 500( )2( ).

HS2 is generated using a linear regression formula, which is
represented as:

Y � 0.5 + 0.5Xi + ei for observation i( ), where ei ~ N 0, σ2εi( ).

Here,Xi is the independent variable for observation i, ranging from 1 to
2,000; the intercept and slope coefficients ofXi are both 0.5. The residual
term, ei, represents the residual of observation i on dependent variables
such as Y, and follows a normal distribution with a mean of 0 and
variance of σεi

2. The value of σε
2 represents the variance of the random

error term (ei) for the ith observation. The variance of the error term (ei)
for the ith observation, denoted by σεi

2, indicates that the variability of
the errors differs for various values of Xi. For HS2, each R2 value of 0.9,
0.5, and 0.1 satisfies the following equation:

Y � 0.5 + 0.5Xi

+ ei for observation i( ), where ei ~ N 0, 0.05Xi + 40( )2( );

Y � 0.5 + 0.5Xi

+ ei for observation i( ), where ei ~ N 0, 0.15Xi + 130( )2( );

Y � 0.5 + 0.5Xi

+ ei for observation i( ), where ei ~ N 0, 0.5Xi + 300( )2( ).

HS3 is generated using a linear regression formula, which is
represented as:

Y � 0.5 + 0.5Xi + ei for observation i( ), where ei ~ N 0, σ2ε( ).

Here,Xi is the independent variable for observation i, ranging from 1 to
2,000; the intercept and slope coefficients ofXi are both 0.5. The residual
term, ei, represents the residual of observation i on dependent variables
such as Y, and follows a normal distribution with a mean of 0 and
variance of σεi

2. The value of σε
2 represents the variance of the random

error term (ei) for the ith observation. The variance of the error term (ei)
for the ith observation, denoted by σεi

2, indicates that the variability of
the errors differs for various values of Xi. For HS3, each R2 value of 0.9,
0.5, and 0.1 satisfies the following equation:

Y � 0.5 + 0.5Xi

+ ei for observation i( ), where ei ~ N 0, 0.08Xi( )2( );

Y � 0.5 + 0.5Xi

+ ei for observation i( ), where ei ~ N 0, 0.25Xi( )2( );
Y � 0.5 + 0.5Xi

+ei for observation i( ), where ei ~ N 0, 0.8Xi( )2( ).

All simulation processes were performed using R stats packages
version 4.0.5 (www.r-project.org). In addition, linear regression (the
LM function in R stats package version 4.0.5) was used to estimate
the effect size and R2 between X and Y.

Study population and design

We used the UK Biobank resource, a large-scale population-
based dataset that recruited over 487,409 individuals aged
40–69 years during 2006–2010 (Collins, 2012). Quality control of
the samples was performed using the following filter parameters
from the Neale lab (http://github.com/Nealelab/UK_Biobank_
GWAS): principal component (PC) analysis calculation filter for
selecting unrelated samples; sex chromosome filter for removing
aneuploidy; filtering of PCs for European sample selection to
determine British ancestry; and filters for selecting self-reported
“white-British,” “Irish,” and “white.” The total number of unrelated
white British participants amounted to 364,761.

Among the 364,761 unrelated white British samples, we
extracted 10,000 samples for the calculation of the linkage
disequilibrium (LD) matrix. The remaining 354,761 samples were
divided into two subsets: the GWAS set (N = 177,380) and the PRS
set (N = 177,381). The GWAS set was used for GWAS and consisted
of unrelated white British Europeans (N = 177,380) and their
phenotypic information was collected during the initial
assessment period (2006–2010; instance = 0). The individual PRS
for 15 traits was estimated using LDpred2 in the PRS set (N =
177,381), whose phenotypic information was also collected during
the initial assessment period (2006–2010; instance = 0). Next, we
randomly selected 80% of the individuals in the PRS set as the
modeling set (N = 141,905), in which linear regression models
between PRS and traits were generated and evaluated for
heteroscedasticity. The remaining 20% of individuals in the PRS
set (N = 35,476) were designated as the validation set, which was
used to investigate the prediction accuracy of the PRS model
(Supplementary Figure S1).

For the replication analysis, we extracted the unrelated white
British samples from the UK Biobank resource, which satisfied the
following data filed criteria: 1) coded as “Yes” in the UK Biobank
PRS release testing subgroup (field ID: 26200); 2) coded as “No
kinship found” in the “genetic kinship to other participants” field;
and 3) identified as having a white British, Irish, or White
background (field ID: 21000). Lastly, we excluded the
364,761 samples used in the initial analysis, and the remaining
23,620 unrelated white British samples were used for the replication
analysis.

Ethics approval and consent to participate

All participants provided signed consent to participate in the UK
Biobank (Biobank, 2007). The UK Biobank was granted ethical
approval to collect participant data by the North West Multicenter
Research Ethics Committee, covering the United Kingdom; the
National Information Governance Board for Health and Social
Care, covering England and Wales; and the Community Health
Index Advisory Group, covering Scotland. The UK Biobank
possesses generic Research Tissue Bank approval granted by the
National Research Ethics Service (http://www.hra.nhs.uk/). This
allows applicants to conduct research on UK Biobank data
without obtaining separate ethical approvals. Access to the UK
Biobank data was granted under application no. 83990: “Genetic
and environmental analysis for disease prediction models.”
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Phenotype data

Fifteen quantitative traits were selected based on 1) over 5%
heritability of traits (Pulit et al., 2019; Watanabe et al., 2020), 2) over
250,000 sample size in unrelated white-British European samples
(https://biobank.ndph.ox.ac.uk/showcase/). The following
15 quantitative traits were selected: alanine aminotransferase
(ALT) (field ID:30620), alkaline phosphatase (ALP) (field ID:
30610), aspartate aminotransferase (AST) (field ID:30650), body
mass index (BMI) (field ID:21001), cholesterol (field ID:30690),
creatinine (field ID:30700), cystatin C (field ID:30720), forced
expiratory volume in one second (FEV1), and forced vital
capacity (FVC) ratio (FFR) (field ID:20258), height (field ID:50),
phosphate (field ID:30810), platelet count (field ID:30080), red
blood cell count (RBC) (field ID:30010), total protein (TP) (field
ID:30860), triglycerides (TG) (field ID:30870), and waist-to-hip
ratio adjusted for BMI (WHRadjBMI) calculated by waist
circumference (field ID:48), hip circumference (field ID:49), and
BMI (Pulit et al., 2019). Among the 15 quantitative traits, the FFR
value is the only value in which a decreasing value indicates the
occurrence of lung-related disease.

Individuals known to be on lipid-lowering medications (Field
ID: 6153, 6177) were excluded from the TG and cholesterol analyses
(Willer et al., 2013) to minimize the treatment bias.

To prevent the bias of prediction accuracy from extreme trait
outliers, we excluded the samples showing extreme trait outlier
satisfaction (Iida et al., 2020): Y <Q1 − 3IQR or Y >Q3 + 3IQR [Q1:
25th percentile, Q3: 75th percentile, IQR: interquartile range (Q3 −
Q1)] (Supplementary Figure S1).

Genotype data

The 487,409 UK Biobank (UKB) participants were genotyped
using the UKB Axiom Array and the United Kingdom BiLEVE
Axiom Array from Affymetrix (Sudlow et al., 2015; Bycroft et al.,
2018). Genotypes were imputed using the Haplotype Reference
Consortium (HRC) and UK10K haplotype resource (McCarthy
et al., 2016). Next, we performed quality control of SNPs using
PLINK v.1.90 (Purcell et al., 2007) based on the following exclusion
criteria: SNPs with missing genotype call rates >0.05, minor allele
frequency <0.01, Hardy-Weinberg equilibrium p-value < 1.00 ×
10−6, insertion-deletion 780000. Finally, 1,149,057 SNPs were
extracted for further analyses after referring to HapMap 3 SNPs
and strand-ambiguous SNPs (that is, SNPs with the allele A/T or
C/G) (International HapMap Consortium, 2003; International
HapMap Consortium, 2005; Agrawal et al., 2022).

Estimation of genome-wide polygenic risk
score

We estimated the PRS using LDpred2 version 1.4.7, a developed
algorithm that uses a Bayesian approach to polygenic risk scoring.
LDpred2 considers the LD relationship between SNPs and reweights
the effect size of SNPs estimated by GWAS (Prive et al., 2020). First,
we calculated the LD correlation matrix among 1,149,057 SNPs
(HapMap 3 variant) using 10,000 unrelated white British samples,

which was randomly extracted from 364,761 unrelated White-
British samples. Second, we reweighted the effect size of SNPs
estimated by GWAS (Vilhjalmsson et al., 2015; Prive et al.,
2020). Each SNP was assigned a weight based on the LD-
adjusted effect size using an infinitesimal model of LDpred2,
which assumes that all genetic variants are causal. Finally, we
constructed individual PRSs as the sum of the weighted risk
effect size of SNPs in the PRS set. The PRS of an individual j, as
a weighted sum of SNP allele counts (Ni et al., 2021; Maj et al., 2022)
was formulated as:

P̂RSj � ∑
m

i�1b̂ixij,

wherem is the number of SNPs included, b̂i is the estimated reweight
for the effect size of SNP i, xij is the number (0, 1, or 2) of trait-
associated alleles of SNP i in individual j.

As described above, increasing FFR values indicate improved
health. Therefore, we observed only a decrease in the FFR values as
the PRS values increased. To unify the direction of effect size, we
substituted the reference alleles with alternative alleles for the effect
allele of SNPs on the FFR value. As a result, all 15 quantitative trait
values increased as the PRS values increased.

Heteroscedasticity test

We used the Breusch-Pagan (BP), Score, and F tests in the
ordinary least squares (OLS) R package version 0.5.3 to evaluate the
heteroscedasticity of a trait across the PRS (Breusch and Pagan,
1979; Cook and Weisberg, 1983). The BP, Score, and F tests are
commonly used statistical tests to assess heteroscedasticity in a
regression model.

The BP test determines whether the variance of the residuals is
constant across all independent variables by assessing the
association between the squared residuals and the independent
variables. A significant result suggests the presence of
heteroscedasticity. The resulting test statistic follows a chi-
squared distribution with degrees of freedom equal to the
number of independent variables, and the resulting p-value is
used to determine whether to reject the null hypothesis of
homoscedasticity in favor of the alternative hypothesis of
heteroscedasticity.

The Score test uses the likelihood ratio test to compare the fit
of the original regression model to a modified model that includes
an additional term to account for heteroscedasticity. The
resulting test statistic follows a chi-squared distribution with
degrees of freedom equal to the number of parameters in the
additional term, and its significance is interpreted similarly to
that of the BP test.

Similarly, the F test assesses the overall model fit and can also be
used to test for heteroscedasticity. It compares the fit of the original
regression model to a modified model that includes an additional
term to account for heteroscedasticity, with the resulting test statistic
following an F distribution with degrees of freedom equal to the
difference in the number of parameters between the two models.

The amount of heteroscedasticity was quantified by determining
the ratio of the mean of the absolute residuals for the largest
10 percent PRS (G10) and the smallest 10 percent PRS (G1).
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Polygenic score (PGS) catalog

The PGS catalog is an extensive online database that gathers and
curates published PRSs from various studies (Lambert et al., 2021).
We utilized the PGS catalog database to obtain large-scale GWAS
summary statistics for 15 quantitative traits, using the following PGS
scores: PGS002158 for ALT, PGS002157 for ALP, PGS002159 for
AST, PGS002162 for BMI, PGS002108 for cholesterol,
PGS002163 for creatinine, PGS002165 for cystatin C,
PGS002146 for height, PGS002216 for phosphate, PGS002191 for
platelet count, PGS002123 for RBC, PGS002219 for TP,
PGS002197 for TG (Prive et al., 2022), PGS001801 for FFR (Moll
et al., 2020), and PGS000299 for WHRadjBMI (Xie et al., 2020). The
PGS catalog database included the reweighted effect size, reference
allele of SNPs, and list of SNPs. We utilized the information to
estimate the individual PRSs using PLINK v.1.90.

Statistical analysis

We performed GWAS on 15 quantitative traits in the GWAS set
using the linear regression model by PLINK v.2.00 (Purcell et al.,
2007). The following linear regression formula was used:

Trait = β1 genotype + β2 age + β3 sex + β4 genotyping array + β5
PC1 + β6 PC2 + β7 PC3 + β8 PC4 + β9 PC5 + β10 PC6 + β11 PC7 + β12
PC8 + β13 PC9 + β14 PC10, where, β1 denotes the effect size of
genotype (coded as 0, 1 or 2), β2 denotes the effect size of age at
recruitment (ranging from 40 to 69), β3 denotes the effect size of sex
(coded as 0 or 1 for female or male, respectively), β4 denotes the
effect size of genotyping array (coded as 0 or 1 for the UKB Axiom
Array and the UK BiLEVE Axiom Array) (Sudlow et al., 2015), β5 ~
β14 denote the effect size of PC1 ~ PC10, which accounts for any
population stratification or ancestry differences between individuals
in the study.

Correlation was tested between heritability and the R2 of PRS-
based prediction model using the Pearson correlation method in R
stats packages version 4.1.0. To investigate the relationship between
the X and Y variables in the simulation, as well as between each of
the 15 PRS and trait values in both the PRS and replication sets, a
linear regression model was performed using the R package
version 4.1.0.

We depicted the scatter plot, line plot, histogram, and bar plot
using ggplot2 version 3.3.6 in R. Heteroscedasticity for linear
regression models was detected using the Breusch-Pagan (BP),
score, and F test in ordinary least squares (OLS) R packages
version 0.5.3 provided in R (Breusch and Pagan, 1979; Cook and
Weisberg, 1983).

In the modeling set (N = 141,905), we obtained the effect size
(β1) of the PRS on each trait using linear regression model in R
package version 4.1.0. Additionally, we estimated the intercept
values (β0) of the linear regression model between the PRS and
trait values. Next, in the validation set (N = 35,476), we estimated the
predicted trait values using the following formula:

Ŷ ij � β0 + β1PRSij.

Here, Ŷij represents the predicted value of trait j for in dividual i. β0 is
the intercept value that was estimated through linear regression

between the PRS and trait j in the modeling set. β1 is the effect size of
the PRS that was calculated through linear regression between the
PRS and trait j in the modeling set. PRSij refers to the individual PRS
on each trait (j).

In addition, we estimated the individual error of PRS models as
follows:

Error � Yij − Ŷ ij

Here, Ŷij represents the predicted value of trait j for individual i
based on the linear regression model using the PRS, Yij represents
the actual value of trait j for the individual i.

The error rate outside 1 SD of errors in each decile group of PRS
is designated as follows: 1) calculate the individual error of the PRS
model, 2) find an error more than ±1 SD error value from the mean
of the error value, 3) compute the proportion of errors found in 2) by
PRS groups.

Results

Understanding heteroscedasticity using
simulation data

Heteroscedasticity is defined as a model with unequal variance
of residuals for each level of the predictor variable(s) fitted to the
linear regression model (Andy, 2009). Simulation data for twelve
sets was generated to better understand diverse heteroscedasticities
using common simulation conditions: a predictor (independent)
variable, X, was statistically associated with the criterion
(dependent) variable, Y. Twelve sets were generated under these
conditions according to the following scenarios: 1) three simulation
datasets for homoscedasticity (HS0) with respective R2 values of 0.9,
0.5, and 0.1 (Figures 1A–C); 2) three simulation datasets for mild
heteroscedasticity (HS1) with respective R2 values of 0.9, 0.5, and 0.1
(Figures 1D–F); 3) three simulation datasets for moderate
heteroscedasticity (HS2) with respective R2 values of 0.9, 0.5, and
0.1 (Figures 1G–I); and 4) three simulation datasets for severe
heteroscedasticity (HS3) with respective R2 values 0.9, 0.5, and
0.1 (Figures 1J–L).

Statistical tests of heteroscedasticity and association were
performed including constructing linear prediction models and
validating their performance for each simulation dataset. Each
simulation dataset (HS0, HS1, HS2, and HS3) was randomly
divided into two subsets: modeling set (50%) and validation set
(50%) to perform all tests using independent datasets. An
association analysis using a linear regression model was
performed between X and Y in the modeling set (Table 1). For
each of the four heteroscedasticity levels (HS0, HS1, HS2, and
HS3), three models demonstrated significant positive associations
between variables X and Y, with effect sizes ranging from 0.47 to
0.55 and p-values < 2.00E-16. The R2 values varied between
models and heteroscedasticity levels, ranging from 0.10 to 0.91
(Table 1). Formal statistical tests (BP test, score test, and F-test)
were performed to determine the presence of heteroscedasticity in
each modeling set (Table 2) (Breusch and Pagan, 1979; Cook and
Weisberg, 1983). HS0 did not show statistical significance for
heteroscedasticity in any of the three tests. However, HS1, HS2,
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and HS3 were statistically significant for these three
heteroscedasticity tests (Table 2). Additionally, no differences

were found across all decile groups for HS0 after plotting the
variance of residuals for each decile group of X using a line graph

FIGURE 1
Scatter plots of 12 simulation data. Homoscedasticity (HS0) is (A–C). Mild heteroscedasticity (HS1) is (D–F). Moderate heteroscedasticity (HS2) is
(G–I). Severe heteroscedasticity is (HS3) is (J–L). The R2 value of (A, D, G, J) is 0.9. The R2 value of (B, E, H, K) is 0.5. The R2 value of (C, F, I, L) is 0.1.
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TABLE 1 Association results of 12 simulation data.

Dataset Effect sizea Standard error p-value R2

HS0 (Homoscedasticity) 0.50 0.01 <2.00E-16 0.90

0.49 0.02 <2.00E-16 0.50

0.47 0.04 <2.00E-16 0.10

HS1 (Heteroscedasticity) 0.51 0.01 <2.00E-16 0.90

0.49 0.02 <2.00E-16 0.50

0.49 0.05 <2.00E-16 0.10

HS2 (Heteroscedasticity) 0.50 0.01 <2.00E-16 0.90

0.51 0.02 <2.00E-16 0.51

0.49 0.05 <2.00E-16 0.10

HS3 (Heteroscedasticity) 0.50 0.01 <2.00E-16 0.91

0.50 0.02 <2.00E-16 0.50

0.55 0.05 <2.00E-16 0.10

aMagnitude of the relationship between X-values and Y-values.
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(Supplementary Figures S2A–C). However, the graphs for HS1,
HS2, and HS3 show that the variance of residuals gradually
increased from the 1st group decile of X (G1) to the 10th
group decile of X (G10) (Supplementary Figures S2D–L).
Heteroscedasticity was quantified using the ratio of the mean
absolute residuals between G1 and G10 (Gelfand, 2015). For HS0,
the ratio of the mean absolute residual was 0.95 (R2 = 0.90), 0.99
(R2 = 0.50), and 0.90 (R2 = 0.10). For HS1, the ratio of the mean
absolute residual was 1.99 (R2 = 0.90), 1.83 (R2 = 0.50), and 2.29
(R2 = 0.10). For HS2, the ratio of the mean absolute residual was
3.10 (R2 = 0.90), 3.59 (R2 = 0.51), and 3.19 (R2 = 0.10). For HS3,
the ratio of the mean absolute residual was 17.82 (R2 = 0.91),
17.73 (R2 = 0.50), and 20.61 (R2 = 0.10) (Supplementary Table S1;
Supplementary Figure S3). The ratio of the mean absolute
residual between G1 and G10 is close to 1 under the
assumption of homoscedasticity. However, the ratio of the
mean absolute residual was greater than 1 under the
assumption of heteroscedasticity, and this value gradually
increased as heteroscedasticity changed from mild to severe.

A consequence of heteroscedasticity in regression analysis is
that coefficient estimates remain unbiased and consistent, but are
no longer efficient or less accurate (Andy, 2009). This is because
the regression model weighs equally for all samples, such as the
values of X in our simulation data, even though the difference in
variance of the residuals may occur. Therefore, we investigated
whether heteroscedasticity affects the prediction accuracy at each
level of the predictor variable(s) (or group) fitted to the model.
We predicted the values of Y by applying the regression model
generated for each modeling set using the validation set. The
error in each sample by the prediction model was estimated as
follows: error = Yi - Ŷi. Also the error rate was defined as the ratio
of samples outside 1 standard deviation (SD) of error values. The
Supplementary Table S2 summarized the range of error rates
calculated for each decile group of X, providing an indicator of
prediction accuracy (Supplementary Figure S4). This indicates
that the error rate was similar in each group under
homoscedasticity, but tended to increase according to the
decile group under heteroscedasticity.

TABLE 2 Heteroscedasticity tests of 12 simulation data.

Dataset R2 Statistical index Breusch-Pagan Score F

HS0 (Homoscedasticity) 0.90 χ2 0.21 0.23 0.23

p-value 6.46E-01 6.29E-01 6.29E-01

0.50 χ2 0.01 0.01 0.01

p-value 9.06E-01 9.03E-01 9.03E-01

0.10 χ2 3.86 3.73 3.74

p-value 4.94E-02 5.35E-02 5.35E-02

HS1 (Heteroscedasticity) 0.90 χ2 74.60 63.36 67.51

p-value 5.76E-18 1.72E-15 6.47E-16

0.50 χ2 89.53 71.82 77.22

p-value 3.02E-21 2.36E-17 6.56E-18

0.10 χ2 84.39 59.91 63.60

p-value 4.06E-20 9.94E-15 4.16E-15

HS2 (Heteroscedasticity) 0.90 χ2 170.76 102.92 114.5

p-value 5.06E-39 3.48E-24 2.26E-25

0.51 χ2 187.78 118.99 134.79

p-value 9.72E-43 1.05E-27 2.55E-29

0.10 χ2 213.25 150.63 176.99

p-value 2.68E-48 1.26E-34 2.69E-37

HS3 (Heteroscedasticity) 0.91 χ2 356.08 190.89 235.46

p-value 2.01E-79 2.03E-43 7.17E-48

0.50 χ2 344.52 161.59 192.34

p-value 6.61E-77 5.09E-37 3.99E-40

0.10 χ2 381.92 196.67 244.33

p-value 4.76E-85 1.11E-44 1.97E-49

χ2: chi-square value.
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FIGURE 2
Scatter plots of 15 quantitative traits in the PRS set. The X-axis is the standardized PRS. The Y-axis is the phenotype value. (A) Alanine
aminotransferase, (B) Alkaline phosphatase, (C) Aspartate aminotransferase, (D) Body mass index, (E) Cholesterol, (F) Creatinine, (G) Cystatin C, (H) FEV1/
FVC ratio, (I)Height, (J) Phosphate, (K) Platelet count, (L) Red blood cell count, (M) Total protein, (N) Triglycerides, (O)Waist-to-hip ratio adjusted for BMI.
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Basic characteristics of 15 quantitative traits

We applied these analysis schemes from the simulation results to
real data from the UK Biobank to test for heteroscedasticity between
the PRSs and traits (Supplementary Figure S1). The basic
characteristics of the 15 quantitative traits in each dataset
(GWAS and PRS sets) are summarized in Supplementary Table S3.

We selected 15 quantitative traits based on heritability (h2)
explained by common variants (Pulit et al., 2019; Watanabe
et al., 2019) and performed GWAS for 15 quantitative traits in

the GWAS set using linear regression analysis adjusted for age, sex,
array, and PC1 ~ 10. We estimated the h2 and intercept representing
the genomic inflation using linkage disequilibrium score regression
(LDSC) based on GWAS summaries for 15 quantitative traits
(Supplementary Table S4) (Vilhjalmsson et al., 2015). The
highest h2 was observed in the height (0.43), and the lowest h2

was observed in aspartate aminotransferase (AST) (0.06).
Next, we calculated PRSs of individuals included in the PRS

set. The effect sizes of each genetic variant were reweighted based
on its effect size and statistical significance from 15 GWAS

TABLE 3 Heteroscedasticity tests of 15 quantitative traits in the modeling set.

Field ID Trait Statistical index Breusch-Pagan Score F

30620 Alanine aminotransferase χ2 1370.68 711.99 715.81

p-value 4.94E-300 7.40E-157 2.85E-157

30610 Alkaline phosphatase χ2 1072.93 696.53 700.14

p-value 2.53E-235 1.70E-153 6.93E-154

30650 Aspartate aminotransferase χ2 398.63 216.88 217.24

p-value 1.09E-88 4.33E-49 3.97E-49

21001 Body mass index χ2 2950.86 1909.06 1935.14

p-value <1.00E-300 <1.00E-300 <1.00E-300

30690 Cholesterol χ2 273.76 228.77 229.34

p-value 1.72E-61 1.10E-51 9.58E-52

30700 Creatinine χ2 208.71 156.24 156.42

p-value 2.63E-47 7.51E-36 7.19E-36

30720 Cystatin C χ2 543.84 336.74 337.58

p-value 2.76E-120 3.27E-75 2.65E-75

20258 FEV1/FVC ratio χ2 98.11 59.03 59.06

p-value 3.97E-23 1.55E-14 1.54E-14

50 Height χ2 115.76 165.80 165.99

p-value 5.36E-27 6.13E-38 5.85E-38

30810 Phosphate χ2 6.80 6.26 6.26

p-value 9.13E-03 1.23E-02 1.23E-02

30080 Platelet count χ2 1084.69 713.67 717.38

p-value 7.01E-238 3.19E-157 1.26E-157

30010 Red blood cell count χ2 96.34 87.43 87.48

p-value 9.69E-23 8.74E-21 8.62E-21

30860 Total protein χ2 37.21 30.18 30.19

p-value 1.06E-09 3.93E-08 3.93E-08

30870 Triglycerides χ2 1762.06 936.01 945.75

p-value <1.00E-300 1.46E-205 1.29E-206

Preprocessing Waist-to-hip ratio adjusted for BMI χ2 0.05 0.04 0.04

p-value 8.20E-01 8.40E-01 8.40E-01

χ2: chi-square value, BMI, body mass index; FEV1, Forced expiratory volume in one second, FVC, Forced vital capacity.
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FIGURE 3
Variance of residuals in the PRS model of 15 quantitative traits. The X-axis is the decile group of PRS: G1-G10 from left to right on the X-axis. The
Y-axis is the variance of residuals on each decile group of PRS estimated by the PRS model. (A) Alanine aminotransferase, (B) Alkaline phosphatase, (C)
Aspartate aminotransferase, (D) Body mass index, (E) Cholesterol, (F) Creatinine, (G) Cystatin C, (H) FEV1/FVC ratio, (I) Height, (J) Phosphate, (K) Platelet
count, (L) Red blood cell count, (M) Total protein, (N) Triglycerides, (O) Waist-to-hip ratio adjusted for BMI.
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FIGURE 4
The error rate in each decile group of PRS for 15 quantitative traits. The X-axis is the decile group of PRS: G1-G10 from left to right on the X-axis. The
Y-axis is the error rate of the PRSmodel for each decile group. (A) Alanine aminotransferase, (B) Alkaline phosphatase, (C) Aspartate aminotransferase, (D)
Body mass index, (E) Cholesterol, (F) Creatinine, (G) Cystatin C, (H) FEV1/FVC ratio, (I) Height, (J) Phosphate, (K) Platelet count, (L) Red blood cell count,
(M) Total protein, (N) Triglycerides, (O) Waist-to-hip ratio adjusted for BMI.
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summary statistics using LDpred2 (Prive et al., 2020). The PRSs
of individuals were calculated using these reweighted summary
statistics. All the PRSs were normally distributed (Supplementary
Figure S5) and the value of each trait increased as standardized
PRS increased (Figure 2; Supplementary Figure S6). The results of
the association analysis between each PRS and trait indicated that
the effect sizes (or beta coefficients) of the PRSs was between
0.01 and 19.52, and the R2 representing the goodness-of-fit
measure for the regression model was between 0.02 and 0.13
(Supplementary Table S5). Height showed the highest R2 value,
and ALT and AST showed the lowest R2 value (Supplementary
Table S5). The R2 value was statistically correlated with
heritability (Pearson’s correlation coefficient r = 0.87, and
p-value = 2.31E-05).

Identification of heteroscedasticity and its
influence on prediction accuracy using UK
Biobank data

The BP test, score test, and F tests were performed using the
modeling set to detect the heteroscedasticity of PRS models in
15 quantitative traits. Thirteen out of fifteen PRS models
exhibited significant heteroscedasticity based on the
Bonferroni corrected P-threshold of 3.33E-03 (= 0.05/
15 quantitative traits) (Table 3). However, heteroscedasticity
was not confirmed in the two PRS models for phosphate and
waist-to-hip ratio adjusted for BMI (WHRadjBMI). The variance
of residuals for each decile group of PRS from G1 to G10 showed
that the variances of residuals in these 13 PRS models tended to
increase as PRS increased (Figure 3). Heteroscedasticity was
quantified using the ratio of mean absolute residuals between
G1 and G10 (Gelfand, 2015): 1.53 for triglycerides (TG), 1.47 for
BMI, 1.38 for alanine aminotransferase (ALT), 1.30 for alkaline
phosphatase (ALP), 1.24 for platelet count, 1.21 for cystatin C,
1.18 for AST, 1.14 for cholesterol, 1.11 for creatinine, 1.09 for
forced expiratory volume in one second and forced vital capacity
ratio (FFR), 1.07 for red blood cell count (RBC), 1.07 for height,
and 1.06 for total protein (TP) (Supplementary Figure S7;
Supplementary Table S6).

We investigated whether heteroscedasticity affects prediction
accuracy at each level of PRS. PRS models developed from the
modeling set were applied to the validation set, and the values of
each individual trait were predicted (Supplementary Figure S1).
The error in each sample by the prediction model was estimated
as follows: error = Yij - Ŷij (Materials and methods). The error rate
was defined as the ratio of samples outside 1 SD of error values.
The error was calculated in each decile group of the PRS as an
indicator of prediction accuracy. The error rate tended to
increase as PRS increased from G1 to G10 for the 13 traits
showing statistical significance for heteroscedasticity (Figure 4;
Supplementary Table S7). For example, the error rates of G1 and
G10 in TG were 0.11 and 0.39, respectively. This indicates that
the PRS model for TG is 3.55 times more precise in the low PRS
group than in the high PRS group (Supplementary Figure S8).
These results were similar to the ratios of the mean absolute
residuals between G1 and G10 (Supplementary Table S6;
Supplementary Figure S7).

Replication analysis

We conducted a replication analysis to verify the presence of
heteroscedasticity in the quantitative traits using a large-scale
GWASs in the replication set, independent samples composed of
23,620 European samples from the UK Biobank (Materials and
methods). We calculated the PRSs of individuals using PGS catalog
data base, which resulted in an average R2 increase of 0.06–0.13 across
15 quantitative traits in the modeling of the replication set
(Supplementary Tables S5, S8). Among the 15 quantitative traits,
10 quantitative traits (ALT, ALP, AST, BMI, cholesterol, creatinine,
cystatin C, platelet count, RBC, and TG) showed significant
heteroscedasticity in both the prior and replication analyses (p-value
threshold: 3.33E-03) (Supplementary Table S9).

We quantified heteroscedasticity using the ratio of mean
absolute residuals between each decile group of the PRS from
G1 to G10 and found that the variance tended to increase as the
PRS increased for these 10 PRS models: 1.60 for TG, 1.42 for ALT,
1.34 for BMI, 1.32 for cholesterol, 1.23 for platelet count, 1.22 for
ALP, 1.20 for AST, 1.16 for cystatin C, 1.09 for creatinine, and
1.07 for RBC (Supplementary Table S10).

We also investigated whether heteroscedasticity affects
prediction accuracy at each level of the PRS. PRS models
developed from the modeling of the replication set were applied
to the validation of replication set, and the values of each individual
trait were predicted (Supplementary Table S11). The error in each
sample by the prediction model was estimated as follows: error =
Yij − Ŷij (Materials and methods). The error rate was defined as the
ratio of samples outside 1 SD of error values. The error was
calculated in each decile group of PRS as an indicator of
prediction accuracy. We found that the error rate tended to
increase as PRS increased from G1 to G10 for the 10 traits
showing statistical significance for heteroscedasticity. For
example, the error rates of G1 to G10 in TG were 0.14 and 0.44,
respectively, indicating that the PRS model for TG was 3.14 times
more precise in the low PRS group than in the high PRS group
(Supplementary Table S11). These results were consistent with the
ratios of the mean absolute residuals between G1 and G10.

Discussion

This study estimated the existence of heteroscedasticity between
PRSs and 15 quantitative traits using 354,761 Europeans from the
UK Biobank. In addition, to validate the presence of
heteroscedasticity using an improved PRS performance, we
calculated the additional PRSs from the PGS catalog database in
23,620 Europeans from the UK Biobank and evaluated them for
heteroscedasticity. As a result, ten out of fifteen quantitative traits
showed statistically significant heteroscedasticity between the PRS
and each trait. In addition, the prediction accuracy at each level of
the of the PRS tended to decrease as the variance of the residuals
increased under the condition of heteroscedasticity.

The linear regressionmodel assumes that the variance of the residual
is constant for predictor variables (Hayes and Cai, 2007). Most previous
studies developed a PRS-based prediction model using a linear
regression model and evaluated the predictive performance of the
model using the R2 value (Khera et al., 2019; Ruan et al., 2022;

Frontiers in Genetics frontiersin.org13

Jung et al. 10.3389/fgene.2023.1150889

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1150889


Tanigawa et al., 2022). However, we found that the prediction accuracy
(R2) was different for each level of the PRS in the PRS models with
heteroscedasticity. These differences in the prediction performance were
caused by the disparity in variance of the residuals according to the PRS
(Figure 3). Recently, PRS-based prediction models were constructed and
assessed for various traits (Khera et al., 2018; Khera et al., 2019; Tanigawa
et al., 2022). However, few studies have examined heteroscedasticity of
the PRS model (Sulc et al., 2020; Baek et al., 2022). This study developed
a PRS-based prediction model for 15 quantitative traits and investigated
whether heteroscedasticity commonly exists in the PRS model. Ten out
of fifteen (67%) PRS models showed heteroscedasticity based on three
conventional statistical methods: BP, score, and F test. This suggests that
PRS models of quantitative traits frequently have heteroscedasticity.
Particularly, the variance of residuals increased with higher PRS in the
PRS models (Figure 3). For example, the average absolute residuals for
the top 10% of PRS in TG was 1.53 times higher than that of the bottom
10% of PRS (Supplementary Table S6).

A key public health need is to identify individuals at high risk of the
disease to enable enhanced disease screening or preventive therapies
(Khera et al., 2018). Therefore, it is important to assess the performance
of the PRS-based predictionmodel for use as a clinical indicator. The R2

value is commonly used as a predictive performance indicator for PRS-
based prediction models (Vilhjalmsson et al., 2015; Khera et al., 2019;
Prive et al., 2020; Ruan et al., 2022; Tanigawa et al., 2022). However,
even though two prediction models showed similar R2 values, the
prediction accuracies may differ according to the distribution for the
variance of the residuals across the predictor variable in each model.
Our simulation results showed that different error rates were found in
the 12 simulation models with the same R2 values but the different
distributions for the variance of the residuals (Supplementary Table S2).
The error rates of the homoscedastic model (HS0 with an R2 of 0.10)
were similar across all levels of the predictor variable X, ranging from
23% to 39%. Meanwhile, the error rates of the heteroscedastic models
(HS1, HS2, and HS3 with R2 values of 0.10) differed according to the
predictor variable X, and the difference of the error rates among the
three heteroscedastic models depended on the severity of
heteroscedasticity; ranges of the error rate were 25%–36% in
HS1 with an R2 value of 0.10, 1%–48% in HS2 with an R2 value of
0.10, and 0%–53% inHS3with anR2 value of 0.10. The error rates in the
HS3 model with a R2 value of 0.10 indicate that all individuals with
G1 group (the lowest PRS decile) were precisely predicted, whereas
more than half of the individuals with G10 group (the highest PRS
decile) were incorrectly predicted. These results were confirmed in the
PRS-based prediction models using the real data from the UK Biobank.
The prediction models for phosphate, creatinine and ALT had similar
prediction performance (R2) as follows; 0.03 for phosphate, 0.03 for
creatinine, and 0.02 for ALT (Supplementary Table S5). However,
heteroscedasticity was significant only in the creatinine and ALT
models, and the ALT model showed more severe heteroscedasticity
than that of creatinine (Supplementary Table S6). The ranges of the
error rate were 30%–33% in phosphate, 29%–34% in creatinine, and
17%–35% in ALT (Supplementary Table S7) and the ratios of error
rates between the G1 and G10 group were 0.99, 1.20, and 2.07 for
phosphate, creatinine andALT, respectively (Supplementary Figure S8).
Asmentioned, we estimated the level of heteroscedasticity with the ratio
of mean absolute residuals for the G1 and G10. These two indicators of
error rates and level of heteroscedasticity were highly correlated with
each other (Pearson’s correlation coefficient, r = 0.89), suggesting the

necessity to consider heteroscedasticity to accurately assess the
performance of the PRS-based prediction model.

Recently, PRSs were used as predictive biomarkers to identify
high-risk disease groups (Khera et al., 2018; Konuma and Okada,
2021; Riveros-Mckay et al., 2021). Khera et al. (2019) found that
83% of the high-risk group of PRSBMI were obese and overweight,
while the remaining 17% had a normal BMI range or were
underweight. Chen et al. (2021) constructed PRS for ALT,
PRSALT and found that the disease risks (or ORs) between the
groups of the bottom 10% and the top 10% of PRSALT were 1.88 for
cirrhosis, and 1.67 for hepatic steatosis. However, differences in
prediction accuracy according to PRS groups may occur if
heteroscedasticity occurs in PRS models because of differences
in residuals for individuals. Accordingly, our results showed that
traits exhibiting heteroscedasticity in the PRS model have a larger
variance of residuals in the genetically high-risk group based on
PRS; this consequently leads to a higher error value. Therefore, it is
necessary to test the heteroscedasticity of PRS models to utilize the
PRS for the stratification of high-risk disease groups.

Our study had several limitations. First, heteroscedasticity was
only analyzed using European participants. Therefore,
heteroscedasticity should be evaluated across various ethnic
groups. Second, we focused on detecting and understanding
heteroscedasticity in the PRS-based prediction models, but did
not investigate the causes of heteroscedasticity. It is important to
find factors causing the heteroscedasticity in order to improve
prediction models more precise.

In conclusion, we identified 10 quantitative traits out of 15 that
showed statistical significance for heteroscedasticity using BP, score,
and F-test. In these 10 PRSmodels, we observed that the variances of
residuals differed among the PRS groups, and the error rates tended
to increase with increasing PRS. This indicates that the accuracy of
the predictive model may differ according to PRS values. Therefore,
prediction models using PRS for such quantitative traits should
consider heteroscedasticity.
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