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Background: The association between inflammatory cytokines and osteoarthritis
(OA) has been reported in several observational studies, but the causal relationship
between these two remains unknown. Hence, we performed this two-sample
Mendelian randomization (MR) to confirm the causal relationship between
circulating levels of inflammatory factors and osteoarthritis risk.

Method:We used genetic variants associated with cytokine circulation levels from
a meta-analysis of genome-wide association studies (GWASs) in 8,293 Finns as
instrumental variables and obtained OA data from the United Kingdom Biobank,
including a total of 345,169 subjects of European ancestry (66,031 diagnosed OA
cases and 279,138 controls). Inverse variance weighting (IVW), MR-Egger, Wald
Ratio, weighted median, and MR multiplicity residual sums with outliers (MR-
PRESSO) were used.

Result: We found a causal relationship between circulating levels of macrophage
inflammatory protein-1beta (MIP-1β) and risk of OA (OR = 0.998, 95% CI =
0.996–0.999p = 9.61 × 10−5); tumour necrosis factor beta (TNF-β) was also
causally associated with risk of OA (OR = 0.996,95%CI = 0.994–0.999, p =
0.002); finally we found a suggestive association between C-C motif
chemokine ligand 5(CCL5, also called Rantes) and OA risk (OR = 1.013, 95%
CI = 1.002–1.024,p = 0.016).

Conclusion: Our findings offer promising leads for the development of new
therapeutic targets in the treatment of osteoarthritis. By identifying the role of
inflammatory cytokines in this debilitating condition through a genetic
epidemiological approach, our study contributes to a better understanding of
the underlying disease mechanisms. These insights may ultimately pave the way
for more effective treatments that improve patient outcomes.
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1 Introduction

Osteoarthritis (OA) is a kind of joint, slow-onset, and highly disabling disease in clinical
practice which causes irreversible joint lesions such as bone resorption, bone destruction,
and bone fibrosis, eventually leading to disability (Duncan et al., 2009). In recent years, the
incidence and disability rates of osteoarthritis have continued to rise, making it the second
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most common chronic disease among older patients, after
hypertension, hyperglycemia, and hyperlipidemia. This trend
poses an ongoing threat to public health systems worldwide,
highlighting the urgent need for effective prevention and
treatment strategies to address this growing health concern
(Hawker, 2019). Osteoarthritis of the knee is the primary type of
osteoarthritis, ranking 11th in the world in terms of disability and
posing a substantial economic burden to patients, families, and
society (Losina et al., 2015).

For many years, osteoarthritis was considered a “wear and
tear” disease. However, with the development of clinical medicine,
it has been recognized as a complex, multifaceted disease (Kraus
et al., 2015). According to the International Osteoarthritis
Research Society, osteoarthritis is initially manifested as a
molecular disorder with joint tissue metabolism abnormalities,
then followed by anatomical and/or physiological disturbances
characterized by cartilage degradation, bone remodelling, bone
redundancy formation, joint inflammation, and loss of normal
joint function. There is growing evidence showing that
inflammation plays a vital role in the pathogenesis of OA, and
the link between inflammatory factors and OA risk has been
increasingly reported (Molnar et al., 2021). Previous studies have
shown that OA patients have higher circulating levels of several
inflammatory cytokines than healthy controls. For example, Jiří
Baloun et al. (2020) showed elevated levels of nine inflammatory
mediators (e.g., eosinophil chemokine, monocyte chemotactic
protein 1, interleukin-10(IL-10), and tumour necrosis factor) in
patients with hip osteoarthritis (Baloun et al., 2020). In a meta-
analysis designed for 682 individuals, elevated monocyte
chemotactic protein-1 (MCP-1) concentrations were observed
in patients with OA but not in healthy controls (Ni et al.,
2020). It has also been shown that elevated CCL-5 contributes
to OA progression (Monibi et al., 2015). However, the
relationship between circulating levels of cytokines and the risk
of osteoarthritis is questionable due to the limitations of
observational studies, such as small sample sizes, follow-up
time, and reverse causality, which can mislead the results
(Davey Smith and Ebrahim, 2003).

Mendelian randomization approach is well suited to avoid the
above problems. At this stage, Mendelian randomization (MR) is
one of the most effective methods for making causal inferences. It is
becoming increasingly popular as the results of many genome-wide
association analyses are published and shared (Bowden et al., 2015).
Mendelian randomization methods use genetic information
(primarily single nucleotide polymorphisms (SNPs)) as
instrumental variables for causal inference, and its studies are
based on three hypotheses: 1).

Instrumental variables and exposure factors are strongly
correlated; 2) instrumental variables and confounders are not
correlated; and 3) instrumental variables are not directly
correlated with the outcome, and its effect on the outcome can
only be manifested through exposure (Miao et al., 2021). Therefore,
MR can effectively avoid the confounding bias of traditional
epidemiological studies.

Here, we applied a two-sample MR approach to reveal the causal
impact of inflammatory factors on OA risk using pooled statistics of
inflammatory cytokines and OA from a genome-wide association
study (GWAS) conducted in a large cohort.

2 Materials and methods

2.1 Data resource

The study design is outlined in Figure 1. For the genetic tool of
cytokines, summary statistics were taken from the most
comprehensive and extensive cytokine GWAS; The GWAS
cytokine meta-analysis included 8,293 Finnish individuals from
three separate population-based cohorts: the Young Finns
Cardiovascular Risk Study, FINRISK1997 and
FINRISK2002 studies (Ahola-Olli et al., 2017). The survey was
conducted in Finland, randomly selecting participants between
the ages of 25 and 74 from five different geographical areas. The
levels of cytokines were measured in the participants’ EDTA plasma,
heparin plasma, and serum. Only measurements falling within the
detectable range for each cytokine were included in the analysis, and
any cytokines with more than 90% of their values missing were
excluded (7 out of 48). All participants provided written informed
consent.

Regarding the genetic instrument for OA, genetic data for OA
were obtained from a large meta-analysis of genome-wide
association studies (GWASs) from the United Kingdom Biobank
(UKB) (Zengini et al., 2018); genotype data is consistent with
16.5 million variants from the United Kingdom Biobank
resource, including 345,169 subjects of European ancestry in
total, precisely 66,031 OA cases and 279,138 controls. The
clinical diagnosis of OA was based on ICD-10 codes captured
from the hospital episode statistic (Zengini et al., 2018). Details
of the GWASs included in our study and details of the dataset are
summarized in Supplementary Table S1.

2.2 Cytokine SNP selection

It is well known, as we mentioned in the previous article, that the
MR approach depends on three hypotheses. So, we first selected
5,763 SNPs by genome-wide significance threshold of p < 5 × 10−8

and false discovery rate (FDR) less than 5% (Annis et al., 2021); then
we left 211 SNPs with the lowest p-value as independent instruments
by linkage disequilibrium (The 1,000 Auton et al., 2015) (LD, r2 <
0.1 European 1,000 Genomes Reference Group); we also calculated
F-values to assess whether the selected SNPs were strongly
associated with exposure (Burgess et al., 2011), and finally
calculated that all SNPs had F values well above 10; harmonizing
processes were conducted to exclude ambiguous and palindromic
SNPs (Supplementary Tables S4, S5). To avoid pleiotropy, we
excluded multiple SNPs associated with multiple cytokines,
187 SNPs associated with 23 cytokines were left; Lastly,
176 available SNPs are left in the OA database. (Supplementary
Table S2).

2.3 Statistical analysis

Since each cytokine has a different number of SNPs, Among
cytokines with only one SNP, we selected the Wald ratio as the
primary MR analysis (Perry et al., 2021). We selected inverse
variance weighting (IVW) as the primary RM analysis for those
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with two or more SNPs(Lawlor et al., 2008), To assess the potential
causative effect of inflammatory factors and the risk of OA.
Subsequently, we conducted a Cochrane Q test for IVW to detect
heterogeneity. It was observed that most of the results showed no
heterogeneity with the p-value of more than 0.05. Only a few showed
heterogeneity, but our primary MR analysis was IVW; heterogeneity
can exist in it, so the presence of heterogeneity in individual results
would not have much impact on the prediction of causality (Burgess
et al., 2020).

Next, to further assess causality and investigate the presence of
pleiotropy, we performed a set of checks, including MR Egger
Regression and MR-PRESSO(Cui and Tian, 2021). Additionally,
Leave-one-out was used to analyze the possibility that individual
SNPs confounded the overall MR analysis. We also used
PhenoScanner to examine the potential dimorphic phenotypes in
the individual SNPs assessed to eliminate their potential impact on
the results.

Sincing including 23 exposure factors, we set the threshold for
statistical significance after Bonferroni-correction at 2.17 × 10−3

(0.05/23), The p-value between the standard threshold (p = 0.05)
and the statistically significant one after the Bonferroni correction
would be taken as suggestive evidence of a potential causal
association.

Most of the above work was performed in R analysis software
(version 4.0.3), applying to the related R package, including Two
sample MR, data array, Etc.

3 Results

3.1 Causality between MIP-1β and
osteoarthritis risks

A flow chart of the full-text logic is provided in Figure 1. As
shown in Table 1, we set the significance threshold at 2.17 × 10−3; we

found that high levels of genetically predicted circulating MIP-1β
were associated with a reduced risk of OA in the IVW approach
(OR = 0.998, 95% CI = 0.996–0.999, p = 9.61 × 10−5, per 1 Standard
deviation (SD) increase.) (Figure 2; Figure 3). Furthermore, we did
not find heterogeneity using Cochran’s Q test (p = 0.45). We also did
not find any directional pleiotropy (MR egger-intercept = −0.0001, P
for MR egger-intercept = 0.451; P for MR PRESSO global test =
0.739). The results of MR PRESSO and IVW are relatively similar
(OR = 0.998,95%CI=(0.996–0.999),p = 0.0001.) (Table 1). In
addition, two SNPs (rs55771110, rs2049300) were associated with
other phenotypes at the genome-wide level (Supplementary Table
S3), which we removed at an early stage and had no effect on the
results. In the leave-one-out sensitivity analysis, the removal of one
SNP did not materially alter the results.

3.2 Causality between TNF-β and
osteoarthritis risks

Also, we found by IVW analysis that increased circulating levels
of TNF-β were also associated with a reduced risk of OA (OR =
0.996, 95% CI = 0.994–0.999, p = 0.002, per 1 Standard deviation
(SD) increase.) (Figure 4; Figure 3), and did not show heterogeneity
(Cochrane Q test, p = 0.343); nor did it show directional pleiotropy
(MR egger-intercept = 0.007, p for MR egger-intercept = 0.403)
(Table 1).

3.2 Causality between rantes and
osteoarthritis risks

In addition, we identified Rantes (Table 1; Figure 3), for which
we found a suggestive association between circulating levels and OA
risk in Wald ratio analysis, with a 1.3% increase in the risk of OA for
each increase in SD (OR = 1.013, 95% CI = 1.002–1.024, p = 0.016.);

FIGURE 1
Study flow chart. Schematic representation of two-sample Mendelian randomization analyses for circulating levels of inflammatory cytokines and
risk of osteoarthritis disease.
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TABLE 1 MR estmate, heterogeneity and pleiotropy analysis of all inflammation cytokines. SNP, single-nucleotide polymorphism; OR, odds ratio; CI, confidence
interval; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier.

Cytokine NO.of
SNPs

OR (95%CI) P Hetergeneity
test (p)

MR-Egger
(intercept,P)

P for MR-PRESSO global
test

β-NGF

Wald ratio 1 1.003
(0.996–1.012)

0.346

CTACK

Inverse variance
weighted

2 1.002
(0.997,1.008)

0.425 0.130

Eotaxin

Inverse variance
weighted

3 1.002
(0.998,1.006)

0.324 0.877

MR egger 3 1.002
(0.991,1.012)

0.761 4.474 × 10−6,0.997

Weight median 3 1.002
(0.997,1.006)

0.367

GRO-α

Inverse variance
weighted

6 1.003
(0.999,1.005)

0.0668 0.193

MR egger 6 0.996
(0.989,1.006)

0.262 0.002,0.082

Weight median 6 1.001
(0.998,1.006)

0.385

MR-PRESSO 6 1.002
(0.997,1.005)

0.126 0.268

HGF

Inverse variance
weighted

2 0.997
(0.990,1.004)

0.367 0.567

IL-2rα

Inverse variance
weighted

2 1.001
(0.997,1.005)

0.526 0.169

IL-7 1

Wald ratio 0.999
(0.996,1.004)

0.888

IL-10

Inverse variance
weighted

2 1.000
(0.997,1.004)

0.902 0.908

IL-12p70

Inverse variance
weighted

11 0.999
(0.996,1.001)

0.358 0.786

MR egger 11 1.002
(0.997,1.007)

0.490 −7 × 10-4,0.227

Weight median 11 0.999
(0.996,1.002)

0.623

MR-PRESSO 11 1.003
(0.997,1.001)

0.275 0.793

(Continued on following page)
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TABLE 1 (Continued) MR estmate, heterogeneity and pleiotropy analysis of all inflammation cytokines. SNP, single-nucleotide polymorphism; OR, odds ratio; CI,
confidence interval; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier.

Cytokine NO.of
SNPs

OR (95%CI) P Hetergeneity
test (p)

MR-Egger
(intercept,P)

P for MR-PRESSO global
test

IL-13

Inverse variance
weighted

4 1.000
(0.997,1.002)

0.726 0.906

MR egger 4 1.000
(0.995,1.006)

0.701 −1 × 10-4,0.842

Weight median 4 1.000
(0.992,1.007)

0.842

MR-PRESSO 4 1.000
(0.993,1.005)

0.477 0.943

IL-16

Wald ratio 1 0.999
(0.996,1.002)

0.708

IL-18

Inverse variance
weighted

7 1.002
(0.999,1.005)

0.231 0.333

MR egger 7 1.006
(0.999,1.014)

0.151 −1 × 10-3,0.257

Weight median 7 1.002
(0.998,1.004)

0.233

MR-PRESSO 7 1.003
(0.997,1.006)

0.276 0.402

IP-10

Inverse variance
weighted

2 0.998
(0.992,1.005)

0.616 0.739

MCP-1

Inverse variance
weighted

6 1.001
(0.995,1.007)

0.744 0.167

MR egger 6 0.995
(0.980,1.002)

0.500 1 × 10−3,0.389

Weight median 6 1.000
(0.995,1.007)

0.762

MR-PRESSO 6 0.997
(0.994,1.005)

0.757 0.215

MIG

Wald ratio 1 0.998
(0.989,1.006)

0.579

MIP-1β

Inverse variance
weighted

57 0.998
(0.996,0.999)

9.641 ×
10−5

0.734

MR egger 57 0.998
(0.996,1.000)

1.678 ×
10−1

−1 × 10-4,0.450

Weight median 57 0.997
(0.996,0.999)

1.020 ×
10−2

MR-PRESSO 57 0.998
(0.996,0.999)

0.0001 0.739

(Continued on following page)
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TABLE 1 (Continued) MR estmate, heterogeneity and pleiotropy analysis of all inflammation cytokines. SNP, single-nucleotide polymorphism; OR, odds ratio; CI,
confidence interval; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier.

Cytokine NO.of
SNPs

OR (95%CI) P Hetergeneity
test (p)

MR-Egger
(intercept,P)

P for MR-PRESSO global
test

PDGF-bb

Inverse variance
weighted

9 1.001
(0.999,1.005)

0.268 0.671

MR egger 9 1.005
(0.999,1.012)

0.171 −7 × 10-4,0.291

Weight median 9 1.001
(0.997,1.005)

0.508

MR-PRESSO 9 1.002
(0.998,1.005)

0.229 0.705

RANTES

Wald ratio 1 1.013
(1.002,1.024)

0.016

SCF

Inverse variance
weighted

2 0.992
(0.982,1.002)

0.131 0.227

SCGF-β

Inverse variance
weighted

7 0.998
(0.993,1.002)

0.405 0.011

MR egger 7 0.998
(0.988,1.008)

0.695 2.60 × 10−5,0.987

Weight median 7 0.999
(0.995,1.003)

0.594

MR-PRESSO 7 0.998
(0.993,1.003)

0.437 0.022

TNF-β

Inverse variance
weighted

3 0.996
(0.994,0.999)

0.002 0.343

MR egger 3 0.989
(0.980,0.999)

0.285 7 × 10−3,0.403

Weight median 3 0.996
(0.993,0.998)

0.001

TRAIL

Inverse variance
weighted

22 1.003
(0.998,1.002)

0.720 0.149

MR egger 22 1.000
(0.997,1.002)

0.779 3 × 10−4,0.479

Weight median 22 1.001
(0.998,1.004)

0.302

MR-PRESSO 22 1.000
(0.998,1.002)

0.724 0.135

VEGF

Inverse variance
weighted

20 0.999
(0.997,1.000)

0.276 0.734

MR egger 20 1.001
(0.997,1.004)

0.573 −4 × 10-4,0.210

(Continued on following page)
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according to PhenoScanner, we did not find the SNP correlated with
other phenotypes, suggesting that it does not contribute to the risk of
OA through the non-exposure route.

Apart from TNF-β, MIP-1β and Rantes, the other 20 cytokines
(e.g., VEGF, GRO-α, Trail, MIG, IL-7, IL -17) did not show any
association with the risk of OA in either IVW primary MR analysis
or in other secondary analyses (Table 1). In the heterogeneity assay,
most of the cytokines were significantly non-heterogeneous, except for
SCGF-β (p = 0.011). MR-egger regression did not show pleiotropy in p
values for all cytokines. An additional solidity test, the MR-PRESSO
assay, did not show any abnormal values except SCGF-β (p = 0.022).

4 Discussion

Osteoarthritis (OA), characterized by cartilage lesions, is a
chronic degenerative disorder with a high prevalence and
disability rate (Glyn-Jones et al., 2015). With the development of
clinical medicine, OA has changed from a superficial cartilage “wear
and tear” disease to a diverse disease with complex pathogenesis

affecting all tissues in the joint (Primorac et al., 2020). OA has
seriously affected the quality of life, especially for the elderly, and
imposed a severe economic burden on families and the country. Still,
the biological mechanisms underlying OA etiology are poorly
understood. Due to these limitations, we performed a two-sample
MR analysis; our study is the first MR analysis to determine whether
inflammatory cytokine levels are associated with OA risk based on
genetic data from publicly available databases.

We obtained evidence showing a causal association between
high levels of MIP-1β/TNF-β and decreased risk of OA; increased
circulating levels in Rantes had a suggestive association with
increased risk OA.

Macrophage inflammatory protein-1beta (MIP-1β/CCL4) is the
essential chemotactic cytokine in the immune response against
infection and inflammation; A chemokine (chemotactic factors)
is a small cytokine that attracts other cells to a local area to exert
its biological effects. Chemokines, which can be secreted by
leukocytes and some tissue cells, are a protein family with over
60 members, mostly 8–10 kDa in molecular weight (Allen et al.,
2007). Few clinical observational studies or Meta-analyses have been

TABLE 1 (Continued) MR estmate, heterogeneity and pleiotropy analysis of all inflammation cytokines. SNP, single-nucleotide polymorphism; OR, odds ratio; CI,
confidence interval; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier.

Cytokine NO.of
SNPs

OR (95%CI) P Hetergeneity
test (p)

MR-Egger
(intercept,P)

P for MR-PRESSO global
test

Weight median 20 1.000
(0.998,1.002)

0.839

MR-PRESSO 20 1.001
(0.998,1.004)

0.233 0.694

FIGURE 2
Scatter plot of genetic associations with MIP-1β against osteoarthritis using different MR methods.
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performed correlation between MIP-1β and OA, but our current
MR analysis determined that high levels of circulating MIP-1b were
associated with a reduced risk of OA (OR = 0.998, 95% CI =
0.996–0.999, p = 9.61 × 10−5, per 1 Standard deviation (SD)
increase).

In addition, our MR analysis revealed a potential association
between the chemokine CCL5, also known as Rantes, and an
increased risk of osteoarthritis (OA). CCL5 is a member of the
CC chemokine family and has been shown to regulate the expression
and secretion of normal or activated T Cells. Our findings suggest
that increased circulating levels of CCL5 may contribute to the
development of OA (Suffee et al., 2011). Several observational
studies have previously demonstrated a link between CCL5 and
OA; Beekhuizen et al. reported that the most significantly elevated

mediator in synovial fluid in the articular cavity of patients with OA
compared with controls was CCL5. A further study confirmed this,
documenting significantly higher CCL5 levels in 18 patients
compared with the control group (Beekhuizen et al., 2013).
Nevertheless, due to the limitations of studies, the results are
suspicious and ambiguous; for the following reasons: small
sample size and potential confounders. Our MR analysis,
therefore, yielded a more reliable suggestive association; an
increase of one SD was associated with a 1.3% increased risk of
OA (OR = 1.013, 95% CI = 1.002–1.024, p = 0.016).

Biologically, CLL4 is the blocker of infection and inflammation,
leading to a better amelioration of various inflammatory conditions
through the corresponding immune response. CCL4 and CCL5 are
CCR5 receptor-binding ligands, but CCL4 plays a minimal role for

FIGURE 4
Scatter plot of genetic associations with TNF-α against osteoarthritis using different MR methods.

FIGURE 3
The effect of genetically predicted MIP-1β,TNF-β and Rantes on osteoarthritis risk. CI: confidence interval; OR: odds ratio. OR:odds ratio.
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CCR5 compared to CCL5 (Molnar et al., 2021). Elevated
CCL4 activates the NF-kappaB signalling pathway, which leads to
the development of OA inflammation is effectively mitigated.
Several studies have elucidated the relationship between NF-
kappaB and OA. NF-kappaB is strongly associated with
chondrocyte survival and apoptosis in osteoarthritis (Barreto
et al., 2020). In a study by Tianlong Pan et al., it has been shown
that activation of the NF-kappaB signalling pathway inhibited
chondrocyte apoptosis induced by inflammatory factors
(especially interleukin-1β), thereby delaying the progression of
OA (Pan et al., 2017). CCL5 and CCL4 have opposite effects,
with CCL5 binding to CCR5 leading to cartilage breakdown in
the joint (Borzì et al., 2000). The main reason for this is that
CCL5 and CCR5 binding to each other regulates the expression
of MMP-3, which leads to the inhibition of proteoglycan synthesis
and increases the release of proteoglycan, thereby degrading
cartilage (Masuko-Hongo and Yudoh, 2005). CCL5/CCR5 not
only degrades cartilage but also increases the production of the
remaining inflammatory mediators (such as IL6) by human synovial
fibroblasts through the PKCδ/c-Src/c-Jun signal pathway and AP-1
signaling pathways, allowing further development of OA (Tang
et al., 2010).

Tumour necrosis factor beta (TNF-β), also called lymphotoxin
A, is a close homolog of tumour necrosis factor alpha (TNF-α)
(Aggarwal et al., 2012). In the present MR analysis, we found that
elevated circulating levels of TNF-βwere associated with a decreased
risk of developing OA (OR = 0.996,95% CI = 0.994–0.999, p = 0.002,
per 1 Standard deviation (sd) increase). TNF-β, as well as TNF-α,
could bind to TNF receptors (TNFR 1 and TNFR2) (Doss C G,
2014). Prior studies have suggested that the sequences of TNF-β and
TNF-α are similar, so that TNF-β increases the risk of inflammatory
diseases as does the TNF-α. However, the affinity of TNF-β for
receptors is much lower than that of TNF-α, and TNF-β is
1,000 times less effective in receptor activation. Therefore, higher
levels of TNF-β can compete with TNF-α for the TNFR1 and
TNFR2 receptor sites, and act as an antagonist of TNF-α,
reducing the risk of OA.

Our study has several strengths. (1) This is the first MR study to
elucidate the relationship between inflammatory cytokines and OA
risk. (2) Unlike observational studies, our current study avoids
confounders and reverse causality to the greatest extent possible,
providing a reliable pair of cause-and-effect relationships. (3) Our
study data were obtained from the publicly available GWASS
database with a large amount of original study data, which
provided a strong guarantee for this study. (4) Unlike the time-
consuming randomized controlled studies (RCTs), the cost of time
and money invested in this study is highly cost-effective for the
results we obtained. However, this study also has some limitations.
First, because the data in the database were sourced from Europe,
the study was limited to European participants, and the usefulness
of the results for other populations remains to be seen. (润色)
Second, this study ignored the diversity of OA diseases and did not
analyze site-specific OA, and cytokines may have a causal effect on
knee OA/hip OA. Third, for the 20 cytokines that did not yield
significance in the current study, a relationship between them and

OA cannot be excluded, possibly due to the small number of SNPs
involved in the study and the lack of MR computational power.
Fourth, cytokines are a dynamic indicator, and unlike other
indicators such as weight, MR does not address the dynamics of
cytokine levels.

5 Conclusion

Our study finally identified a causal association between
circulating levels of TNF-β, MIP-1β and OA risk and a
suggestive link between Rantes and OA. Our study may provide
a deeper understanding of the pathogenesis of OA, as well as the
development of effective management strategies for the clinic. We
suggest that TNF-β, MIP-1β, and Rantes may serve as potential
therapeutic targets for OA development.
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