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Background: Chronic kidney disease (CKD) is a heterogeneous disease with multiple
etiologies, risk factors, clinical manifestations, and prognosis. The aim of this study
was to identify different immune-related molecular clusters in CKD, their functional
immunological properties, and to screen for promising diagnostic markers.

Methods: Datasets of 440 CKD patients were obtained from the comprehensive
gene expression database. The core immune-related genes (IRGs) were identified by
weighted gene co-expression network analysis. We used unsupervised clustering to
divide CKD samples into two immune-related subclusters. Then, functional
enrichment analysis was performed for differentially expressed genes (DEGs)
between clusters. Three machine learning methods (LASSO, RF, and SVM-RFE)
and Venn diagrams were applied to filter out 5 significant IRGs with distinguished
subtypes. A nomogram diagnostic model was developed, and the prediction effect
was verified using calibration curve, decision curve analysis. CIBERSORT was applied
to assess the variation in immune cell infiltration among clusters. The expression
levels, immune characteristics and immune cell correlation of core diagnostic
markers were investigated. Finally, the Nephroseq V5 was used to assess the
correlation among core diagnostic markers and renal function.

Results: The 15 core IRGs screened were differentially expressed in normal and CKD
samples. CKDwas classified into two immune-relatedmolecular clusters. Cluster 2 is
significantly enriched in biological functions such as leukocyte adhesion and
regulation as well as immune activation, and has a severe immune prognosis
compared to cluster 1. A nomogram diagnostic model with reliable prediction of
immune-related clusters was developed based on five signature genes. The core
diagnostic markers LYZ, CTSS, and ISG20were identified as playing an important role
in the immune microenvironment and were shown to correlate meaningfully with
immune cell infiltration and renal function.

Conclusion: Our study identifies two subtypes of CKD with distinct immune gene
expression patterns and provides promising predictive models. Along with the
exploration of the role of three promising diagnostic markers in the immune
microenvironment of CKD, it is anticipated to provide novel breakthroughs in
potential targets for disease treatment.
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Introduction

Chronic kidney disease (CKD) is a highly heterogeneous disease
with multiple etiologies, risk factors, and outcomes, that is commonly
defined as the persistence of structural or functional abnormalities of
the kidney for greater than 3 months that severely affect health. CKD
has been recognized as one of the world’s growing public health
problems. According to the Global Burden of Kidney Disease (2017),
there are 697.5 million CKD cases worldwide, almost a third of which
are in China and India, and the total number of individuals receiving
kidney replacement therapy is over 2.5 million and is expected to
double by 2030, making it a major health and economic challenge
across regions (Bikbov et al., 2020). The prevalence of CKD is still
increasing, and clinical outcomes are unsatisfactory. Very often, the
burden of CKD is not restricted to the impact on the need for renal
replacement therapy after progression to end-stage renal disease
(ESRD). In fact, patients with CKD tend to have a significantly
increased risk of cardiovascular disease and are at higher risk of
hospitalization and death (Webster et al., 2017). And since there
are no symptoms in the early stages, as many as nine out of ten adults
with CKD are unaware of their kidney damage, and CKD acts as a
“silent killer”. Despite the high burden and impact caused by the
disease, available therapy options to stop or slow the progression of
CKD continue to be limited. This may be attributed to the fact that the
underlying mechanisms of CKD pathogenesis and progression are not
fully understood. Therefore, in-depth study of CKD-related
pathologies and understanding of its underlying molecular
mechanisms are important for early diagnosis of the disease and
providing new therapeutic targets.

Influencing the rate of progression in CKD patients is usually
associated with genes polymorphisms of inflammatory response,
fibrosis, metabolism, CKD progression, and renin-angiotensin-
aldosterone system (RAAS) (Yan et al., 2021). Notably, there is
mounting evidence that renal immune dysregulation plays a critical
role in the physiological dysfunction and development associated with
CKD (Espi et al., 2020; Tang et al., 2021). Regardless of the underlying
etiology, the inflammatory response is continuously activated in CKD,
characterized by the recruitment of immune cell throughout the
kidney, along with local overproduction of growth factors (e.g.,
tumor necrosis factor (TNF)-α, interleukins, interferon (IFN)-γ,
chemokines) and pro-fibrotic cytokines (Suárez-Fueyo et al., 2017;
Cantero-Navarro et al., 2021). Under this regulation, different cellular
and molecular processes are activated, leading to persistent kidney
injury and disease progression in CKD. Therefore, exploring the
correlation between immune-related genes and CKD progression
may help to elucidate the pathogenesis of CKD patients at the
molecular level. However, little is known about the precise
regulatory genetic and molecular mechanisms of immune
involvement in the pathogenesis and progression of CKD.

Thanks to the rise and advancement of bioinformatics analysis and
high-throughput sequencing, new approaches will contribute to a
better understand the biology of kidney disease through the use of
genetic, epigenetic modification and transcriptomic studies, providing
new clues and opening up new unknown avenues for the study of
disease mechanisms (Pareek et al., 2011; O’seaghdha and Fox, 2011).
Several bioinformatics studies have made significant advances in the
identification of diagnostic biomarkers for CKD (Ahmed et al., 2022;
Wang et al., 2022). However, purely assessing the differences between
CKD cases and normal controls is far from meeting the growing need

for its complex pathological features, risk stratification for progressive
end-stage renal disease, and high-risk clinical outcomes. Early
characterization of this heterogeneity is an important step in
developing an individualized follow-up strategy for patients with
CKD (Zheng et al., 2021). Several studies have explored the
importance of dysregulated signaling events in various renal and
environmental cells, suggesting that immune cell infiltration
patterns have predictive power for clinical guidance (Şenbabaoğlu
et al., 2016). A comprehensive and integrated exploration of immune
subtypes based onmultiple transcriptome expression profiles may be a
nice addition to the mechanisms of CKD progression (Li et al., 2022).

Therefore, in this study, we systematically examined the
differentially expressed IRGs and immune profiles of renal tissues
among normal and CKD individuals for the first time. The biological
features, enrichment pathways and immune profiles among the two
subtypes were further investigated by dividing 440 CKD patients into
two immune-related subgroups through the expression profiles of
15 characterized IRGs. Predictive models disclosing patients with
diverse molecular clusters were developed by combining several
machine learning algorithms. Finally, we also investigated the
correlation between the diagnostic value of prospective markers
and clinical characteristics. We hope that a feature-based
classification model for IRGs will reveal important molecular
mechanisms underlying the role of immunity in CKD and provide
for improved diagnosis, management and treatment of CKD.

Materials and methods

Data source

The CKD-associated microarray expression data were obtained
from the Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih. gov/geo/). CKD datasets were searched using the
following key terms: “CKD”, “human genome” and “chronic
kidney disease” and screened according to the following criteria:
(1) each dataset consisted of at least 30 samples; (2) the data tissue
type is renal interstitial tissue; and (3) the original data is available in
the GEO database and the type of experiment is microarray. On the
basis of these criteria, the analysis included four CKD-related datasets
GSE66494, GSE69438, GSE99325, and GSE104954 (Ju et al., 2015;
Nakagawa et al., 2015; Shved et al., 2017; Grayson et al., 2018), of
which the GSE66494 dataset contained 53 CKD and 8 normal samples;
GSE69438 dataset had 42 CKD cases; GSE99325 dataset included
80 samples (CKD: normal = 171:4); and the ratio of CKD: normal was
174:21 in the GSE104954. A total of 440 CKD patients and 33 normal
controls were obtained from the dataset, and all were renal interstitial
tissue samples. GSE66494 was used as an external verification set.

These four raw datasets were batch corrected to eliminate batch
effects for subsequent analysis using the “sva” R package (version 3.44)
(Ritchie et al., 2015). Principal component analysis (PCA) was
employed to visualize the distribution pattern across the samples.
DEGs were screened by “limma” package (version 3.52.3), and p <
0.05, |log2(fold change, FC)| > 0.5 were considered statistically
significant differences. After excluding duplicates, the IRGs were
obtained from the Immunology Database and Analysis Portal
(ImmPort) website (https://www.immport.org) (Bhattacharya et al.,
2014). A total of 1793 genes were acquired for later research. The
general flow chart of our study is presented in Figure 1.
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Weighted gene co-expression network
analysis

Each sample’s immune gene set enrichment score was determined
using gene set variance analysis (GSVA), and the R package

“WGCNA” (version 1.71) was applied to build a score-based
weighted gene co-expression network (Langfelder and Horvath,
2008). The optimal soft threshold was determined to convert the
gene expression matrix into a weighted adjacency matrix and
subsequently into a topological overlap matrix (TOM). Next, a

FIGURE 1
Work flowchart of the study.
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FIGURE 2
Identification of core IRGs in CKD. (A, B) PCA results of sample clustering before (A) and after (B) batch calibration. (C) Filtering of soft thresholds. (D)
Cluster trees of co-expressing genes. (E) Division of gene modules, heat map of the relationship between building blocks and characteristics. (F)
Representative heatmap of 15 differentially expressed IRGs. (G) Diagram of the gene relationship network for 15 IRGs with differential expression. (H)
Representative correlation diagram of 15 differentially expressed IRGs. Blue is a positive correlation and red is a negative correlation.
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hierarchical clustering method identified the modules. At last, Pearson
correlation analysis was performed to assess the correlation among the
three phenotypes of the immune score, normal control and CKD
groups and the genes encompassed in each module.

Consensus cluster analysis

Based on the key differential IRGs in the relevant modules
obtained by WGCNA, a cluster analysis was performed using the
ConsensusClusterPlus algorithm to identify potential subclusters of
440 CKD cases.

The cumulative distribution function (CDF) curve and consistent
clustering score were utilized to determine the best k-value. In the
meantime, PCA was applied to validate the classification of different
subgroups.

Functional and pathway enrichment analysis

DEGs between different immune-related subtypes were
determined using the limma package with p < 0.05 and |
log2 FC| > 0.5 as cut-off thresholds. The volcano map was mapped
using the “ggplot2” R package (version 3.4.0). Meanwhile, Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis of DEGs were conducted utilizing the

“clusterProfiler” package of R software (version 4.4.4). For Gene Set
Enrichment (GSEA) analysis, the “c2.cp.kegg.v7.4.symbols.gmt” file
was selected from the MSigDB online database (http://www.gsea-
msigdb.org/gsea/msigdb). The first six significantly enriched
pathway gene sets are shown. Adjusted p values less than 0.05 were
determined to be significantly meaningful.

PPI network construction

The use of the STRING database facilitates the development of
Protein-Protein Interaction (PPI) networks. A list of differential IRGs
was uploaded to the STRING database for identification and
integration to construct PPI networks with a default composite
score greater than 0.4. PPI network files were exported and re-
visualised using Cytoscape 3.9.1 software.

Immune cell infiltration analysis

Cell type identification was performed in the R software using the
CIBERSORT method to assess the relative abundance of 22 immune
cell infiltrates in every sample between different groups (Newman
et al., 2015). Violin plots were plotted to visualise the different
expression levels of 28 immune infiltrating cells. The association
between immune cells and diagnostic markers was examined using

FIGURE 3
Analysis of GSEA enrichment and immunoinfiltration among the normal and CKD patients (A) Six enriched KEGG pathways in normal samples. (B) Six
enriched KEGG pathways in CKD samples. (C) Barplot of the relative frequency of 22 different immune cell infiltration in normal and CKD samples. (D) Vioplot
of the difference of 22 different immune cells in normal and CKD samples.
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Spearman correlation analysis. In addition, the immunological
characteristics of the diagnostic markers were further analysed by
“GSVA” based on the gene set of 29 immune-related responses
(Bindea et al., 2013).

Screening and validation of diagnostic
markers for different immune subtypes
of CKD

Three machine learning methods, LASSO logistic regression, SVM-
RFE and Random Forest algorithms were used to select key differential
genes between subtypes. LASSO analysis is a method of feature selection
based on the “glmnet” R package (version 4.1-4) using 10-fold cross-
validated turning/penalty parameters by reducing the dimensionality of
high-dimensional data. SVM-RFE is a sequential backward selection
algorithm that removes redundant features by ranking each feature with
a score based on the maximum interval principle of SVM. SVM-RFE
was applied to feature selection for ten-fold cross validation. The RF
algorithm is an integrated approach to ranking the importance of
immune-related genes through the “randomForest” package (version
4.7-1.1) in the R software. Specific genes are selected by obtaining the
minimum error rate of the model. After creating a nomogram model
with the “rms” R package (version 4.3-0), the constructed model’s
clinical value and predictive power were assessed using calibration
curves, decision curve analysis (DCA), and clinical impact curves (CIC).

The “pROC” program (version 1.18.0) was applied to perform
receiver operating characteristic (ROC) analysis and generate area
under the curve (AUC) values in order to identify key genes with high
differential gene diagnostic efficiency obtained by screening as
diagnostic markers.

Analysis of the clinical relevance of
biomarkers

Correlation between biomarkers and renal function was
performed with the Internet Nephroseq v5 online database (http://
v5.nephroseq.org).

Statistical analysis

All statistical tests were implemented using the Rstudio software
(version 3.6.3). Correlation analysis was achieved through Pearson’s
analysis. Wilcoxon test was performed to determine the differences in
immune scores among the two groups. Logistic regression algorithms
were applied to build predictive models. Additionally, Independent
sample t-tests were applied to compare the differential expression
levels among the two groups. If not otherwise specified, p < 0.05 was
deemed statistically relevant.

Results

Identification of core IRGs in CKD

The gene expression profiles of four GEO datasets
(GSE66494,GSE69438, GSE99325 and GSE104954), including

33 normal controls and 440 kidney tissues from CKD patients,
were acquired from the GEO database. All samples were clustered
together after batch correction to remove batch effects and log
normalization (Figures 2A, B), and the final integrated dataset was
analyzed further.

Differentially expressed IRGs were identified by comparing the
gene expression levels in renal tissues of normal control and CKD
patients. Following that, we conducted GSVA enrichment analysis
according to the expression profiles of all IRGs, and were able to
determine the immune scores for each sample. The immunological
score and sample grouping information were combined to create a
scale-free network, with a soft threshold of 4. WGCNA discovered a
total of 8 modules, each of which was labeled with a distinct color.
Among them, the yellow module is most associated with the CKD
immune score (Figures 2C–E). The yellow module contains
15 important differentially expressed IRGs, comprising fourteen
upregulated and one downregulated genes (Figure 2F), and we
visualized these 15 IRGs through gene relationship network plots
to better analyze the interactions and interrelationships between genes
(Figure 2G). In addition, Spearman correlation analysis elucidated the
correlation patterns between these genes (Figure 2H). Among these
IRGs, EGF was negatively associated with a majority of genes.

Activation of the immune system in CKD
patients

To better explore the potential functional and signaling
enrichment pathways between control and CKD subjects, we
performed GSEA enrichment analysis (Figures 3A, B). The results
showed that metabolism-related pathways were concentrated in
normal samples, whereas the allograft rejection, asthma,
autoimmune thyroid disease, graft−versus−host disease, intestinal
immune network for IgA production, T ype I diabetes mellitus
were significantly enriched in the CKD group, suggesting that
immune imbalance may be one of the main pathogenic
mechanisms in the advancement of CKD.

Therefore, we further analyzed the differences in the proportions
of 22 immune cell subtypes between the normal and disease states
according to the CIBERSORT algorithm (Figure 3C), and the results
showed that CKD patients had higher levels of T-cell CD4 memory
resting, Macrophages M1, Macrophages M2, Mast cells resting, and
the results confirmed that activation of the immune system is closely
associated with the progression of CKD (Figure 3D).

Identification of molecular clusters in CKD

To explore the role of IRGs in CKD clusters, we performed an
unsupervised consensus cluster analysis on 440 CKD samples
according to the expression of the 15 IRGs. The combined
assessment of clinical significance and clustering effects showed
that clustering was highly stable and reliable when k = 2
(Figure 4A), and the CDF curve of the consensus index was stable
around 0.4 when the value of k was set to 2 (Figure 4B). When k = 2-9,
the change in the delta region is shown in the CDF plot (Figure 4C).
CKD samples were divided into cluster 1 with 307 samples and cluster
2 with 133 samples. Moreover, the principal component analysis
(PCA) clustering results further confirmed that cluster 1 and
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cluster 2 were well differentiated (Figure 4D). To explore the
molecular features between clusters, we used heat maps and box
plots to depict the differential expression levels of 15 core IRGs
between Cluster1 and Cluster2 (Figures 4E, F). Cluster1 exhibited

significantly higher levels of IFIH1, CX3CR1, LTB, PLSCR1, TRIM22,
and EGF, while Cluster2 had markedly enhanced expression levels of
CTSS, LYZ, CD48, ITGB2, and TYROBP, IFITM1, CCL19, and
S100A8.

FIGURE 4
Unsupervised consensus clustering in CKD samples based on IRGs. (A)Consensus clusteringmatrix displaying the twoCKD sample clusters with k = 2. (B)
Cumulative distributive function for k = 2 to 9. (C)Delta graph displaying the change in the CDF curve’s area from k = 2 to 9. (D) PCA scatter plot based on the
results of cluster analysis. (E, F) Heatmap (E) and box plots (F) of 15 IRGs among the two clusters. ***p < 0.001; **p < 0.01; and *p < 0.05.
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FIGURE 5
Identification of the DEGs and enrichment analysis between the twomolecular subtypes.(A) Volcano plot of the DEGs among cluster one and 2. (B, C)GO
analysis of upregulated DEGs in cluster 1 (B) and cluster 2 (C). (D, E) KEGG analysis of the upregulated DEGs in cluster 1 (D) and cluster 2 (E).
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Identification of cluster-specific DEGs and
functional annotation

To explore the biological functional differences between the
different subtypes, we first identified 634 DEGs. Among them,
there were 246 upregulated genes and 388 downregulated genes
identified in cluster one compared to cluster 2 (Figure 5A). GO
functional enrichment analysis indicated that most of the
upregulated genes in cluster 2 were enriched in defense processes

(e.g., leukocyte cell-cell adhesion and regulation) and immune-related
processes (e.g., antigen processing and presentation, activation of the
immune response, regulation of T-cell activation) (Figure 5B), whereas
metabolism-related signaling processes, biosynthesis, and stimulated
response were upregulated in cluster 1 (Figure 5C). KEGG enrichment
analysis indicated that immune and inflammation-related disease
pathways such as infection and allograft rejection, rheumatoid
arthritis, and graft-versus-host disease were important signaling
pathways for Cluster 2 (Figure 5D), while metabolism-related

FIGURE 6
Identification of diagnostic biomarkers from subtypes using machine learning algorithms. (A) The LASSO coefficient profiles analysis. (B) Selecting the
appropriate lambda value for a LASSO regression model. (C) Random forest trees constructed by cross-validation and gene ranking by importance score. (D)
Estimation of 10-fold cross-validation error using SVM-RFE method. (E) Venn plot illustrating the key genes among LASSO, RF, and SVM-RFE.
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pathways were mainly enriched on Cluster 1 (Figure 5E). These results
reveal significant differences in enrichment pathways and biological
functions among immune subgroups of CKD patients.

Identification of two subtype-specific gene
patterns by machine learning

To further elucidate the role of immune in the heterogeneity of
CKD patients, we applied machine learning methods to screen
subtype-specific potential genes for constructing prediction models.
First, using a LASSO regression model with 10-fold cross-validation,
we proved the optimal value of λ and screened 27 potential candidate
biomarkers in IRGs for inter-subtype differences (Figures 6A, B). The
RF algorithm ranked genes according to the calculated importance of
each gene and identified 23 valid predictors (Figure 6C). By using the
SVM-RFE algorithm, 12 genes were extracted as potential key genes
(Figure 6D). The crossover of the three algorithms was visualized by
Venn diagram and five genes (CD48, CTSS, ITGB2, LYZ, and ISG20)
were identified for final validation (Figure 6E).

Subsequently, we constructed a diagnostic nomogram model to
assess the risk of immune clustering in 440 patients with CKD
(Figure 7A). The calibration curve showed that there was a small

difference between the actual risk and the anticipated risk, indicating
that the Nomogram model has great accuracy in predicting immune
subtypes (Figure 7B). According to DCA, the values of the “model”
curve of the gene of interest in the nomogram model are greater than
the gray curve, suggesting a potential clinical benefit for patients
within a threshold risk probability range of 0–1 (Figure 7C). Clinical
Impact Curves (CIC) based on DCA showed that the nomogram
model can be a sound basis for clinical decisionmaking (Figure 7D). In
addition, the model displayed a remarkably high AUC value (0.997),
confirming the outstanding predictive properties.

PPI network construction of immune-related
DEGs among subtypes

The 134 immune-related DEGs between subtypes were imported
into STRING database, and the acquired data were introduced into
Cytoscape to build a PPI network (Figure 8). A total of 130 nodes and
1,369 edges were obtained. Supplementary Table S1 summarizes the
topological features of the first 30 nodes in the PPI network. After
calculation, the degrees of five key candidate genes were CD48 (24°),
CTSS (32°), ITGB2 (47°), LYZ (22°) and ISG20 (19°). Interestingly, all
five key genes were upregulated in Cluster2 compared to Cluster1.

FIGURE 7
Construction of diagnostic Nomogram model. (A) Nomogram for predicting risk of CKD subtypes based on 5 key IRGs. (B, C) Calibration curve (B) and
DCA (C) to estimate the predictive efficiency of the Nomogram model. (D) Clinical impact curves (CIC) to estimate the clinical validity of Nomogram model
based on DCA curve. (E) ROC curves to evaluate the discrimination ability.
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Analysis of the diagnostic value of key
candidate biomarkers

By using box plots, we evaluated the expression levels of 5 key
candidate genes in CKD and normal sample. Figure 9A shows that the
expression of all five genes in the CKD group was substantially higher
than that in the normal controls. Subsequently, the expression levels of
these five key genes were further validated in the dataset GSE66494, and
the results showed that they had similar expression patterns (Figure 9C).
Plotting the ROC curves of key genes allowed researchers to evaluate how
well they performed in predicting illness samples. When we analyzed the
AUC values of five important genes, four of them had values > 0.7, while
the ITGB2 gene had an AUC value of 0.675, indicating that these genes

were successful at differentiating between CKD and normal samples
(Figure 9B). To validate their clinical efficacy, the diagnostic value of the
five key genes mentioned above was further verified in the
GSE66494 dataset. The results showed that CTSS, ISG20 and LYZ
genes with AUC >0.8 had high diagnostic value (Figure 9D).

Immune infiltration characteristics between
the two subtypes

To further assess the immune landscape between the two clusters,
we quantified the level of 22 immune cell infiltrates in each patient
sample using the CIBERSORT method (Figure 10A). Our results

FIGURE 8
PPI network construction of immune-related DEGs among subtypes. Nodes with rose-colored outlines represent key candidate genes, green nodes
(negative logFC) represent genes upregulated in Cluster1, and red nodes (positive logFC) represent genes upregulated in Cluster2. FC, fold change.

Frontiers in Genetics frontiersin.org11

Yan et al. 10.3389/fgene.2023.1111976

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1111976


revealed that the proportions of naive B-cell, plasma cells, naive
CD4 T-cell, memory resting CD4 T-cell, and activated mast cells
were markedly higher in Cluster1, while Cluser2 exhibited a greater

abundance of CD8 T-cell, T-cell gamma delta, M1 and
M2 macrophages, and resting mast cells (Figure 10B). These
differences suggest that there is abundant immune cell

FIGURE 9
Validate clinical diagnostic capabilities of key biomarkers. (A, B) Expression levels (A) and diagnostic potency (B) of key genes in the models in the four
combined datasets. (C, D) Expression levels (C) and diagnostic potency (D) of key genes in the models in the dataset GSE66494.
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heterogeneity within renal tissue during disease progression.
Meanwhile, a definite correlation was observed among immune
cells of various infiltration degrees, with resting mast cells and
memory resting CD4 T-cell were negatively correlated with most

immune cells (Figure 10C). Additionally, we thoroughly compared the
immune scores of both clusters and discovered that the Cluster2 had
higher scores than the Cluster1 group, indicating an elevated level of
immune cell infiltration in Cluster2 (Figure 10D).

FIGURE 10
Immune cell infiltration differences among clusters. (A) Immune microenvironment of cluster1 and cluster2. (B) Box plots showing variation in immune
cell infiltration among clusters. (C) Relevance heatmap of immune cells with disparities. (D) Estimated Immunoscore among subtypes.
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The correlation of three key diagnostic biomarkers with
immune cell infiltration was explored based on the results of
“GSVA” and “CIBERSORT”. The correlation results of GSVA
showed that regulatory T-cell (Tregs), helper T (Th) one cells,
plasmacytoid dendritic cells (pDCs), neutrophils, macrophages,
CD8+ T-cell, and B-cell were significantly positively associated with
CTSS, ISG20, and LYZ, while T-follicular helper (Tfh) and
immature dendritic cells (iDCs) were highly negatively
associated with these three genes. In addition, in terms of
immune function, the activities of T-cell costimulation, T-cell
coinhibition, parainflammation, major histocompatibility
complex (MHC) class I, inflammation−promoting, human
leukocyte antigen (HLA), check−point, cytolytic-activity,

chemokine C-C-Motif receptor (CCR), and antigen-presenting
cells (APC) costimulation were significantly positively correlated
with the expression of three genes (Figure 11A).

Meanwhile, spearman correlation analysis indicated that
CTSS, ISG20, and LYZ were all positively correlated with T-cell
gamma delta, M1 Macrophages, M2 Macrophages, and
memoryB cells, and negatively correlated with naive B-cell,
memory resting CD4 T-cell, naive CD4 T-cell, and activated
mast cells, confirming that these genes play an important role
in differentiating subtypes (Figures 11B–D). In addition, we
explored the correlation of IRG-DEGs with immune checkpoint
genes, HLA, and immune receptor genes and found positive
correlations with most of them (Figure 12).

FIGURE 11
Relationship between three key diagnostic biomarkers and immune cell infiltration. (A) Visualization of immune cells or pathways in relation to three
biomarkers by GSVA. (B–D) Correlation between immune cell infiltration and (B) CTSS, (C) LYZ, (D) ISG20 gene expression. ***p < 0.001; **p < 0.01;
and*p < 0.05.
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FIGURE 12
Correlation of IRG-DEGswith immune-related genes. (A–C)Correlation of IRG-DEGswithHLA (A), immune checkpoint genes (B), and immune receptor
genes (C).
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Expression profiles and clinical relevance of
biomarkers

On the basis of the Nephroseq v5 online tool, we further confirmed
the expression profiles of three potential diagnostic markers CTSS,
LYZ and ISG20 in the renal tissues of CKD patients. The results
displayed that the expression of all three candidate markers was
markedly upregulated in CKD kidney tissues compared with
normal kidney tissues (Figures 13A–C). In addition, correlation
analysis showed that the expression of all three potential markers
in CKD renal interstitial tissue was negatively correlated with
glomerular filtration rate (GFR) (Figures 13D–F).

Discussion

Chronic kidney disease affects 11.7%–15.1% of the global
population and is one of the world’s most serious health problems
(Lv and Zhang, 2019). Regardless of the potential cause, CKD
progresses gently and contributes to irreversible nephron loss, end-
stage renal disease, and increased mortality. The differential
phenotypes of CKD are not always well known in clinical practice

due to the presence of marked heterogeneity in pathogenic processes,
risk factors, pathological changes, and outcomes, and thus their overall
treatment outcomes are extremely limited. Previous studies have
emphasized the development of tools for characterizing this
potential heterogeneity with different phenotypic data (Zheng et al.,
2021), but no in-depth analysis of CKD subgroup-specific biomarker
data has been performed. The addition of distinguishing CKD clusters
at the molecular level will undoubtedly increase our comprehension of
CKD heterogeneity and is important for guiding individualized
treatment of CKD. Furthermore, despite significant efforts to
explore new targets for CKD, the current knowledge appears to be
inadequate and there is still an urgent need for potential biomarkers
with high specificity and sensitivity.

Immunomodulation has been extensively studied due to its close
relationship with CKD. As previously mentioned, CKD is a chronic
and confusing process that affects a variety of normal metabolic
functions and kinase-mediated pathways. Chronic inflammation
underlies one of the major pathogenic mechanisms of chronic
kidney disease, a process that can be characterized as a
complicated interaction among renal cells and resident immune
cells, such as dendritic cells and macrophages, and the recruitment
of circulating monocytes, neutrophils and lymphocytes (Andrade-

FIGURE 13
Validation of the three identified biomarkers and clinicality analysis.(A–C) Expression patterns of identified biomarkers CTSS (A), LYZ (B), ISG20 (C). (D–F)
Correlation between the expression of biomarkers CTSS (D), LYZ (E), ISG20 (F) and renal function indicators. ***p < 0.001; **p < 0.01; and *p < 0.05.
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Oliveira et al., 2019). With further exploration of the mechanisms of
monocytes (Heine et al., 2012), macrophages (Guiteras et al., 2016),
mast cells (Holdsworth and Summers, 2008), T-cell and dendritic cells
(Weisheit et al., 2015) in CKD revealed that they are closely related
with the progression and development of CKD. Characterizing the
molecular role of immune cell infiltration into CKD is crucial, and
immunogene features may be a prognostic or predictive factor
for CKD.

In this study, we first comprehensively analysed the expression
profiles of IRGs in normal and CKD patient‘s renal interstitial tissue
samples and identified 15 important core genes that may be involved
in the immune-related pathological processes of CKD. Most of these
IRGs were higher in CKD patients than in normal controls,
suggesting that immune regulation may play a key role in the
pathogenesis of CKD. In addition, we explored the differences in
immune cell levels between them and found that CKD patients
showed higher levels of T-cell, macrophages and mast cells, which is
consistent with earlier studies (Zeisberg and Neilson, 2010; Lee et al.,
2020).

Subsequently, we investigated for the first time the identification of
two distinct immune-related clusters based on central IRGs. Cluster
2 showed higher immune scores and levels of immune infiltration than
Cluster 1. GO enrichment analysis of the two clusters revealed that
leukocyte cell adhesion and regulation, as well as immune-related
processes (e.g., antigen processing and presentation, immune response
activation, T-cell activation regulation) were significantly different
immune processes. The buildup of interstitial leukocytes is a feature of
numerous CKD subtypes. Leukocyte adhesion is a key link in the pro-
inflammatory, pro-apoptotic, and pro-fibrotic mediators produced by
interstitial leukocyte infiltration, thereby contributing to the
progression of CKD (Anders et al., 2006). Locally secreted
chemokines play a key role in the progression of CKD by
mediating the recruitment of inflammatory leukocytes and
activation of immune cells (Anders et al., 2006). Additionally,
enrichment analysis suggests that clustering distinguishes CKD
patients with different levels of immune response and immune
activation. KEGG enrichment analysis reveals distinction between
immunometabolic disorder pathways and abnormal immune
diseases in CKD subtypes.

Given that immune molecular features may be key regulators of
individual heterogeneity in CKD. Based on three machine learning
algorithms, we next evaluated immune-related DEGs between the two
clusters and selected five important immune-related genes (CD48,
CTSS, LYZ, ITGB2, and ISG20) to predict subtypes of CKD patients.
The CD48 molecule is a glycosylphosphatidylinositol (GPI)-anchored
cell surface protein of the CD2 family of molecules, and through its
interaction with the ligands CD2 and CD244, it contributes to a variety
of immune processes, including immune prominence of tissues, cell
adhesion and co-stimulation, regulation of target cell lysis, and
promotion of T-cell activation (Mcardel et al., 2016). ISG20
(interferon stimulated exonuclease gene 20) is an RNA nucleic acid
exonuclease that stimulates the progression of a variety of tumors (Gao
et al., 2019), and enhanced ISG20 expression is correlated with greater
infiltration of monocyte-derived macrophages and neutrophils and
suppresses adaptive immune responses (Gao et al., 2019). The
expression of ISG20 was significantly elevated in renal fibrosis
compared to normal samples, and in vitro knockdown of
ISG20 significantly inhibited fibrotic protein expression in HK-2
(Sun et al., 2022).

As a member of the cysteine protease family, CTSS (cathepsin S)
levels are elevated in a variety of diseases and are strongly associated
with diseases such as IgA nephropathy, diabetes mellitus and
atherosclerosis (Liu et al., 2006; Zhao et al., 2021). According to a
recent study, macrophage-derived CTSS may hasten endothelial
damage and nephrosclerosis in diabetic nephropathy (Kumar Vr
et al., 2016). In addition, CTSS mediates the TGF-β/smad
signalling pathway to promote extracellular matrix deposition and
epithelial-mesenchymal transition (EMT) in the kidney (Yao et al.,
2019). ITGB2 is capable of encoding integrin β-chains that binds to
other α-chains to form distinct integrin heterodimers. It is involved in
cell surface-mediated signalling and immune responses, and functions
to promote leukocyte adhesion, extravasation and extracellular matrix
remodelling (Tan, 2012; Boguslawska et al., 2016). LYZ (lysozyme) is
an innate immune protein released from neutrophil and macrophage
granules (Faust et al., 2000), which has antimicrobial properties and is
involved in immune regulation, inflammatory signalling, vasodilation
andmyocardial inhibition (Mink et al., 2008). A recent study indicated
a significant association of LYZ with all CKD stages, eGFR and
survival (Makridakis et al., 2020). LYZ may be a promising
therapeutic target for chronic kidney disease. Subsequently, we
constructed a nomogram model for the diagnosis of CKD subtype
based on the 5 gene and found that the model had significant
predictive power, suggesting the value of this prediction model in
clinical application. In other words, the model can provide clinicians
with a trial strategy to pre-emptively identify patients at high risk of
CKD immunisation and to develop early interventions to slow the
trajectory of renal decline in patients.Notably, all of these biomarkers
were overexpressed in the CKD samples compared to controls. The
potential diagnostic value of these markers was also further analysed
and CTSS, LYZ, and ISG20 were found to be highly accurate in
differentiating CKD from normal tissue and to correlate closely with
renal function.

For the immune infiltration results between clusters, we
discovered that Cluster 1 significantly infiltrated cells were naive
B-cell, plasma cells, naive CD4 T-cell, memory resting CD4 T-cell,
and activated mast cells, whereas Cluster 2 had a higher abundance of
CD8 T-cell, T-cell gamma delta, and M1 and M2 macrophages.
Studies between immune metabolism and naive B-cell and plasma
cells have been extensively explored. When naive B-cell are activated,
oxidative phosphorylation (OXPHOS), TCA cycling, and nucleotide
biosynthesis increas (Waters et al., 2018). Plasma cells are able to rely
on glutamine and long-chain fatty acids as substrates for oxidative
metabolism to provide underlying oxidative phosphorylation (Raza
and Clarke, 2021). Whether these immune cells are associated with the
enhanced metabolic pathway in cluster 1 is unclear. Mast cells and
CD4 T-cell exert a role in regulating inflammatory cell infiltration, but
their role in CKD should be interpreted with caution (Kim et al., 2009;
Tapmeier et al., 2010). Depletion of naive T-cell and CD4+ central
memory cells is associated with progressive renal function decline
(Litjens et al., 2006). γδ T-cell promote renal interstitial fibrosis (Law
et al., 2019). Macrophages, as important heterogeneous cells of the
innate immune system, can exhibit different phenotypes in response to
the local microenvironment. Most forms of renal inflammation are
characterized by M1 macrophage infiltration in the early stages, but
M2 macrophage infiltration predominates in the chronic phase, and
polarization of macrophages is noted during CKD (Lee et al., 2020). It
is reasonable to expect that elevated M1 and M2 macrophages are
observed in CKD. Overall, these results suggest that subtype 2 has
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higher levels of immune infiltrating cells that promote CKD
progression than subtype 1, representing a worse prognosis for
CKD. Finally, we evaluated the correlation between the biomarkers
CTSS, LYZ and ISG20 and infiltrating immune cells. CTSS, ISG20, and
LYZ were all positively correlated with T-cell gamma delta, M1 and
M2 macrophages, and memory B-cell and negatively correlated with
naive B-cell, naive CD4 T-cell, memory resting CD4 T-cell, and naive
CD4 T-cell, confirming that these genes play an important role in
differentiating subtypes. Furthermore, these genes are positively
correlated with T-cell costimulation, T-cell coinhibition,
parainflammation, MHC class I, inflammation-promoting genes,
cytolytic activity, human leukocyte antigen (HLA), checkpoint
activation, chemokine C-C-motif receptor (CCR), and antigen-
presenting cells (APC) costimulation. Overall, a deeper
understanding of immune cell-biomarker correlations may provide
new insights into immune mechanisms, and targeting CTSS, LYZ, and
ISG20 to improve abnormal immune status may be a promising
method for treating CKD.

We collected sufficient samples and used comprehensive
bioinformatics analysis methods, such as WGCNA and machine
learning, which made this study more comprehensive and reliable.
However, some limitations of our study have to be acknowledged.
First, under long-term chronic kidney disease pathophysiological
conditions, the gene expression patterns of certain immune cell
types may be influenced and adjusted due to a number of
immunologic or non-immunologic complex pathogenetic factors.
Further work exploring this differential variation is necessary.
Secondly, our study mainly focused on interstitial renal data and a
parallel comparison of glomerular and tubulointerstitial data seems to
be better convincing and reliable. Furthermore, it is necessary to
collect additional important clinical information such as age, gender,
stage, prognosis, etc. To further verify the diagnostic properties of the
model in predicting CKD clusters as well as to adjust the clinical
prediction curves. Finally, this study is based on published data, and
although external datasets were applied for validation, more
experiments are needed to demonstrate the biological function of
the studied biomarkers.

Conclusion

In summary, this study identified two immune-related clusters in
CKD patients by unsupervised clustering and used to elucidate the
biological functions between different subtypes using a bioinformatics
analysis approach.A diagnostic model based on five characteristic
IRGs (CD48, CTSS, LYZ, ITGB2, and ISG20) identified by three
machine algorithms was shown to have good ability to discriminate
between subtypes. CTSS, LYZ, and ITGB2 were demonstrated to be
promising diagnostic biomarkers for CKD by using external datasets,
and they all showed a negative correlation with GFR. Immune cell
infiltration is heterogeneous among subtypes, and CTSS, LYZ, and

ITGB2 are closely associated with multiple immune cells. Our study
preliminarily explored the underlying immunomolecular mechanisms
leading to CKD heterogeneity, and these results may provide new
insights to explore the pathophysiology and prognostic heterogeneity
of CKD patients.
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