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5-Methyladenosine (m5C) is a type of epigenetic modification involved in the

progression of various cancers. To investigate the role of m5C-related long

non-coding RNAs (lncRNAs) in the prognosis and immune cell infiltration in

hepatocellular carcinoma (HCC), we obtained patients’ clinical information and

transcriptome data of HCC from the Cancer Genome Atlas (TCGA) database.

We applied Pearson correlation analysis to construct an m5C-related

lncRNA–messenger RNA (mRNA) co-expression network. Univariate Cox

analysis, least absolute shrinkage and selection operator (LASSO), and

multivariate Cox analysis were employed to establish an m5C-related

lncRNA prognostic risk model. We then verified the model using

Kaplan–Meier analysis, principal component analysis, as well as univariate

and multivariate Cox analyses. The expression of m5C-related lncRNAs was

validated in HCC tissues and different cell lines. Combining the risk score and

clinicopathological features, a nomogram was established for predicting the

overall survival (OS) of HCC patients. Furthermore, gene set enrichment analysis

(GSEA) revealed that some tumor-associated pathways were significantly

enriched in the high-risk group. Immune cell infiltration analysis

demonstrated that the levels of Treg cells, neutrophils, and M2 macrophages

were higher in the high-risk group. In addition, patients with high tumor

mutation burden (TMB) had worse OS than those with low TMB. We also

assessed the immune checkpoint level and chemotherapeutic agent

sensibility. Then in vitro experiments were performed to examine the

biological function of MKLN1-AS in HCC cells and found that knockdown of

MKLN1-AS suppressed the proliferation, migration, and invasion. In conclusion,

m5C-related lncRNAs played a critical role in predicting the prognosis of

patients with HCC and may serve as new therapeutic targets for HCC patients.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common

malignancies and the fourth leading cause of cancer-related

deaths worldwide (Ma et al., 2016; Xu et al., 2022). Many

types of pharmaceutical therapies have been approved to treat

HCC, including targeted tyrosine kinase inhibitors, immune-

based therapies, and combination of chemotherapy. However,

due to chemoresistance and immunosuppressive elements,

current therapies have not effectively improved the outcome

for HCC patients (Foerster et al., 2022). Therefore, there is an

urgent need for novel accurate prognostic biomarkers that could

lead to more effective diagnostic and treatment strategies.

RNA modification could regulate genetic expression in a

dynamic and reversible way. It is primarily modulated by three

types of effector proteins: writers, readers, and erasers (Biswas

and Rao, 2018). N6-Methylcytosine (m6A) is the main type of

modification in eukaryotic cellular RNAs and plays a vital role in

biological progress, including embryonic stem cell self-renewal,

metabolism, immunity, and apoptosis (Meyer and Jaffrey, 2017).

5-Methylcytosine (m5C) is another common RNA modification.

Similar to m6A methylation, m5C methylation is involved in

RNA metabolism, structural stability, and stress response (Zhao

et al., 2017). Furthermore, increasing evidence has shown that

m5C modification can affect the progression of multiple

malignant tumors, including HCC. Sun et al. reported that

NSUN2-mediated m5C modification of long non-coding RNA

(lncRNA) H19 was positively associated with poor differentiation

of HCC (Sun et al., 2020). Cui et al. reported that NSUN4 was

conspicuously upregulated in HCC and could work as an

independent prognostic factor (Cui et al., 2022).

LncRNA is a type of non-coding RNAmolecule with a length

greater than 200 nt. It modulates gene expression mainly at

epigenetic, transcriptional, and post-transcriptional levels

(Bridges et al., 2021). Numerous lncRNAs have been reported

to be closely correlated with carcinogenesis, metastasis,

prognosis, and diagnosis of various cancers (Abbastabar et al.,

2018). Previous studies have found that some methylation

regulators could affect tumor progression by regulating the

level of relevant lncRNAs. Dai et al. (2020) reported that

METTL3 could upregulate the expression level of

LINC00958 by increasing its stability, and

LINC00958 sponged miR-3619-5p to upregulate hepatoma-

derived growth factor, thereby promoting HCC progression.

Hu et al. reported that IGF2BP2 could serve as a member of

m6A readers and increase the stability of lncRNA DANCR, thus

promoting cell proliferation and carcinogenesis of pancreatic

cancer (Hu et al., 2020). In addition, Cui et al. reported that RNA

m6A demethylase FTO could epigenetically upregulate the

expression of LINC00022, thereby promoting tumorigenesis of

esophageal squamous cell carcinoma (Cui et al., 2021). So far, few

studies have reported the relationship between m5C regulators

and lncRNAs in HCC progression and immune cell infiltration.

Therefore, further understanding of how m5C modification

interacts with lncRNAs in HCC may be favorable for

exploring effective biomarkers and novel therapeutic targets.

Accumulating studies have shown that immune cells in the

tumor microenvironment (TME) play a determinative role in

tumor progression (Hinshaw and Shevde, 2019). A series of

immunotherapy approaches have been successfully applied in

clinical practices, such as the adoptive cell transfer, modulation of

immune checkpoints, and dendritic cell-based vaccination (Lei

et al., 2020). LncRNAs were key regulators in the immune

system, which could regulate tumor invasion and evade

immune surveillance by regulating tumor immune cell

activation, proliferation, and cytokine secretion. In HCC,

lncRNA FENDRR sponged miR-423-5p to suppress the

inhibitory function of Tregs within TME, therefore weakening

the immune evasion capability (Yu et al., 2019). Xue et al. (2019)

reported that M2 macrophages were the predominant tumor-

infiltrating immune cells in bladder cancer and associated with

the prognosis of patients. However, the relationship between

m5C-related lncRNAs and tumor-associated immune cells in

HCC remains unknown.

This study aimed to explore the prognostic significance and

immune landscape of them5C-related lncRNAs inHCC. Based on

the Cancer Genome Atlas (TCGA) database and bioinformatic

analyses, we constructed an m5C-related lncRNA prognostic

model and subsequently validated the accuracy and efficiency

of the model. We utilized a nomogram to predict patients’ survival

rates. Furthermore, the association between immune cell

infiltration and the risk model was analyzed. More importantly,

the responses of HCC patients to chemotherapy and

immunotherapy were predicted to provide guidance for clinical

treatment. Finally, we conducted experiments in vitro to identify

the biological function of MKLN1-AS identified with the highest

contribution in the risk model.

Materials and methods

Data and m5C regulator acquisition

The clinical and transcriptome data of 374 HCC tissues and

50 normal tissues were obtained from TCGA data website (http://

portal.gdc.cancer.gov/). After excluding four samples without

complete survival time and status, 370 HCC samples were

included for further study. The clinical characteristics of these

patients with HCC are shown in Supplementary Table S1. We

also downloaded the annotation file of GRCH38 from the

Ensemble official website (http://asia.ensembl.org) to

distinguish mRNAs and lncRNAs. A total of 16 m5C

regulators (NOP2, DNMT1, DNMT3A, DNMT3B, NSUN2,

NSUN3, NSUN4, NSUN5, NSUN6, NSUN7, TRDMT1,

ALYREF, YBX1, TET1, TET2, and TET3) were selected

according to previous publications. The differential expression
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of 16 m5C regulators between tumor and normal tissues was

analyzed using the limma package in R software (p < 0.05, | log2

(folding change) | > 1). We also used survival and survminer

packages to perform survival analysis.

Construction and validation of m5C-
Related lncRNA prognostic risk model

Pearson correlation analysis was implemented to identify

m5C-related lncRNAs with |Pearson R| > 0.4 and p < 0.001. We

then used the limma package to perform differential m5C-related

lncRNA expression analysis between HCC tissues and normal

tissues and thus acquired 633 differentially expressed lncRNAs

(p < 0.05). HCC cases were randomly divided into a training

cohort and a testing cohort in a 1:1 ratio. In the training cohort,

we conducted the univariate Cox regression analysis to screen out

prognostic lncRNAs. Based on screened 17 lncRNAs with

prognostic value, we performed the least absolute shrinkage

and selection operator (LASSO) Cox regression and

multivariate Cox regression to construct the prognostic

prediction model. Five lncRNAs were extracted and used for

further analysis. The risk score of each patient was calculated

using the following formula:

Risk score = ∑i=1
n Coefi ×Xi (Coefi represents the coefficients,

and Xi represents the expression value of each m5C-related

lncRNA).

Next, we graded each HCC patient. All patients were divided

into high- and low-risk groups based on the median risk score

calculated from the training cohort. We used the survival R

package to implement Kaplan–Meier (KM) survival curve

analysis. Receiver operating characteristic (ROC) curves was

also constructed to evaluate the prognostic capability of the

risk model. Moreover, we used principal component analysis

(PCA) to visualize whether the risk score could well distinguish

the high-risk group from the low-risk group.

Evaluation of m5C-Related lncRNA risk
model as independent prognostic
indicator

We performed subgroup stratification survival analysis in

clinicopathological features using KM plot to confirm the

prediction performance of the model. Univariate and

multivariate Cox regression analyses were conducted to assess

whether the risk model was an independent factor. In addition,

we constructed a heatmap based on clinical characteristics and

differential expression of the five prognostic lncRNAs in different

risk groups. Furthermore, combining the risk score and TNM

stage, we established a nomogram to improve clinical diagnosis

and application. Moreover, the nomogram’s predictive value was

evaluated using ROC curve.

Cell culture and quantitative real-time
PCR assay

Human HCC cell lines (Huh7, HepG2, Hep3B, and SNU-

387) and one normal liver cell line (L-02) were obtained from the

Cell Bank of the Chinese Academy of Sciences (Shanghai, China).

The cell lines were cultured in medium containing 10% fetal

bovine serum (FBS) with 5% CO2 at 37°C. We also collected

20 pairs of HCC and para-carcinoma tissue samples from the

Department of Hepatobiliary Surgery, the Affiliated Hospital of

Xuzhou Medical University, from March 2021 to May 2022. To

evaluate the expression level of m5C-related lncRNAs, we used

RNA Isolater Total RNA Extraction Reagent (Vazyme, Nanjing,

China) to isolate total RNAs from the tissue samples and cell

lines. Reverse transcription was performed using HiScript II Q

RT SuperMix (Vazyme, Nanjing, China), and quantitative real-

time PCR was then conducted using ChamQ SYBR qPCRMaster

Mix (Vazyme, Nanjing, China). The relative expression of the

five lncRNAs was calculated using the 2−ΔΔCT method, and

GAPDH served as an internal control. The primer sequences

used in our study are listed in Supplementary Table S2.

Prediction of m5C sites on five lncRNAs

RNAm5Cfinder (Ban et al., 2020), m5C-Atlas (Ma et al.,

2022), and iRNA-m5C (Chen et al., 2021) databases were used to

predict the m5C site of the lncRNAs.

Function and signaling pathways
enrichment analysis

The limma package was implemented to screen genes that

were differentially expressed between the high- and low-risk

groups. Subsequently, we performed gene ontology (GO) and

Kyoto encyclopedia of genes and genomes (KEGG) analysis to

explore the potential function and pathway between the

differentially expressed genes (DEGs). Finally, GSEA software

(GSEA_4.2.2) was used to identify potential signaling pathways

in the high- and low-risk groups.

Tumor immune analysis and somatic
variant analysis

We calculated the correlation coefficient between the risk

score and the immune infiltrated cells based on currently

acknowledged software, including TIMER, XCELL,

QUANTISEQ, MCPcounter, EPIC, CIBERSORT-ABS, and

CIBERSORT. We used Wilcoxon signed-rank test to analyze

the difference in immune infiltrating cell abundance between

high- and low-risk groups. We also measured Spearman
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correlation coefficients between the risk score and the immune

infiltrated cells, and the results are displayed herein in a lollipop

diagram. The activities of 13 immune-related pathways between

two groups were quantified using the “GSVA” package by

ssGSEA. Next, we performed a two-way analysis of variance

(ANOVA) to explore the association of the immune infiltration

subtype with a risk score. R package maftools were used to

analyze the gene somatic mutation data downloaded from the

Genomic Data Commons (GDC) database.

Immunotherapy response and drug
sensitivity analysis

The TIDE algorithm was applied to predict the

immunotherapeutic response. We also analyzed the

differential expression level of 34 immune checkpoints

between different risk groups. Furthermore, we used R

package pRRophetic to predict the half-maximal inhibitory

concentration (IC50) of drugs for HCC samples from different

risk groups. In addition, the association between the expression

level of prognostic lncRNAs and drug sensitivity was determined

using relevant data obtained from CellMiner database.

Cell transfection

SiRNAs targeting MKLN1-AS (si-MKLN1-AS#1, si-

MKLN1-AS#2) and the negative control (si-NC) were

designed and synthesized by Gene Pharma Technology

(Shanghai, China). HepG2 cells were transfected with

siRNAs by siLentFect Lipid Reagent (Bio-Rad, CA,

United States). After 48 h, the cells were collected for further

experiments. The siRNAs sequences against MKLN1-AS are

listed in Supplementary Table S3.

Cell counting Kit-8 (CCK-8) assay

Transfected cells (2000 cells/pore) were seeded into 96-well

plates for CCK-8 assay. Then, 10 μl of CCK-8 reagent (APExBIO,

USA) and 100 μl of serum-free MEM medium were introduced

into cells and incubated for 2 h. Subsequently, the absorbance

was measured at 450 nm at 0, 24, 48, 72, and 96 h.

Transwell assay

In invasion assay, the top chamber was treated with

Matrigel (BD Biosciences, Mississauga, Canada) while in the

migration assay was not. Transfected cells (5 × 105 cells/pore)

were seeded into the upper layer of the transwell. A total of

700 μl chamber MEM medium with 20% FBS was added to the

lower chamber, and the chamber was cultured at 37°C for

24–48 h. The invaded cells were fixed by 4%

paraformaldehyde and stained with 0.1% crystal violet. A

light microscope was used to observe cell migration and

invasion.

Wound healing assay

Transfected HepG2 cells were seeded in six-well plates and

cultured to 80% confluence. Then, 200 μL pipette tips were used

to create clear scratches in each well. Thereafter, the cells were

cultured in a serum-free MEM medium. The scratches were

imaged by a light microscopy at 0 and 24 h.

Statistical analysis

One-way ANOVA was used to compare the differential

expression level of 16 m5C regulators between HCC tissues

and normal tissues. Cytoscape was used to plot the co-

expression network of five m5C-related lncRNA–mRNA.

The KM method and log-rank test were employed to

compare the survival curves between various subgroups.

Univariate and multivariate Cox regression analyses were

used to identify independent prognostic factors. The

nomogram was evaluated for predictable performance by

calibration curve, and ROC curve was used to measure the

prognostic efficiency of the nomogram for 1-, 3-, and 5-year

overall survival (OS). Statistical analysis was carried out using

R version 4.1.1, and p < 0.05 was considered statistically

significant.

Results

The Landscape of Expression and Prognosis of 16 m5C

Regulators in HCC Tissues.

The workflow of this study is shown in Figure 1. We first

explored the differential expression of 16 m5C regulators

between HCC tissues and normal tissues in TCGA dataset.

We found that all 16 m5C regulators except TET2 and

TRDMT1 were differentially expressed. NSUN6 expression

was significantly downregulated in HCC than in normal

tissues, whereas that of the other 13 m5C regulators was

significantly upregulated in HCC (Figure 2A). To evaluate the

interaction among 16 m5C regulators, the correlation analysis

showed that most m5C regulators were positively correlated with

other regulators. We found a weak correlation between

NSUN6 and other regulators and a strong correlation between

DNMT3A and TET3 (Figure 2B). The m5C regulator network

was depicted to indicate the interactions, connection, and

prognostic value of m5C regulators for HCC patients. The
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most common positive correlation was found not only in the

same category but also between different types of regulators.

Negative correlations occurred between NSUN6 and NSUN5,

NSUN6, and YBX1, and NSUN6 and ALYREF (Figure 2C). KM

survival analysis showed significant differences among 15 m5C

regulators in OS of HCC patients (Figures 2D–F and

Supplementary Figure S1).

Construction and verification of the m5C-
Related lncRNA risk model

Pearson correlation analysis was conducted to identify the

m5C-related lncRNAs based on the expression of m5C regulators

and lncRNAs in HCC patients. Then 633 m5C-related lncRNAs

were screened out using differential expression analysis. We

FIGURE 1
Flow diagram of this study.
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FIGURE 2
The landscape of expression and prognosis of m5C regulators in HCC patients. (A)Heatmap displaying different expressions of m5C regulators
in HCC. (B) Spearman correlation analysis of 16 m5C regulators. (C) The interaction between m5C regulators in HCC. The size of the circle
represented the influence of each regulator on prognosis, and the range of values calculated by log-rank test was p < 0.0001, p < 0.001, p < 0.01, p <
0.05, and p < 1. Purple in the right part of the circle indicates risk survival factors and green in the right part of the circle indicates favorable
survival factors. The types of m5C regulators are labeled as different colors in the left part of the circle. The thickness of lines shows correlation
strength. Positive correlation is shown in pink and negative correlation in blue. (D–F) Overall survival analysis based on three m5C regulators’
expression in HCC.
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FIGURE 3
Construction of the m5C-lncRNA risk model. (A) The co-expression network of m5C regulators and their related lncRNAs. (B) Forest plot
showing the hazard ratio of 17 lncRNAs with prognostic value using univariate Cox regression analysis. (C,D) LASSO regression is performed, and
cross-validation for optimal parameter. (E) Co-expression network of the five m5C-related lncRNAs and m5C regulators. (F) Sankey diagram
showing the relationship between m5C regulators and m5C-related lncRNAs. (G) The correlations between 16 m5C regulators and five m5C-
related lncRNAs. (H) Heatmap of the differential expression of five lncRNAs in tumor-and normal tissues.

Frontiers in Genetics frontiersin.org07

Lu et al. 10.3389/fgene.2022.990594

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.990594


FIGURE 4
Verification of the m5C-lncRNA risk model. Kaplan-Meier curves of overall survival of high-risk and low-risk groups in the training cohort (A),
testing cohort (B), and entire cohort (C). The distribution of risk scores, survival status and expression matrix of five-lncRNA signature in the training
cohort (D), testing cohort (E), and entire cohort (F). ROC curves of the model for OS prediction including 1, 2, and 3 years in the training cohort (G),
testing cohort (H), and entire cohort (I). PCA analysis between the high-risk and low-risk groups based on all genes (J), m5C genes (K), m5C-
lncRNAs (L), and risk lncRNAs (M).

Frontiers in Genetics frontiersin.org08

Lu et al. 10.3389/fgene.2022.990594

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.990594


constructed a co-expression network of m5C regulators and

their related lncRNAs (Figure 3A). In addition, we randomly

divided 370 HCC cases into a training cohort (50%, n =

186 cases) and a testing cohort (50%, n = 184 cases). Next,

univariate Cox regression analysis was conducted to screen the

prognostic m5C-related lncRNAs in the training cohort. The

result showed that 17 lncRNAs with increased risk (hazard

ration, HR > 1) were deemed to have important prognostic

value (Figure 3B). Subsequently, we performed LASSO Cox

regression to analyze the 17 prognostic m5C-related lncRNAs,

followed by multivariate Cox regression analysis to build a

prognostic risk model for HCC (Figures 3C,D). Finally, we

obtained five lncRNAs with a prognostic significance to

construct the prognostic model (Supplementary Table S4). A

co-expression network for the visualization of the five m5C-

related lncRNAs and 16 m5C regulators was established

(Figures 3E,F). We also observed that NRAV and

AL031985.3 had the strongest correlation with m5C

regulators, whereas ELFN1-AS1 had the weakest correlation.

Moreover, correlations among m5C regulators and lncRNAs

were mostly positive (Figure 3G). As displayed in Figure 3H, the

expression levels of the five m5C-related lncRNAs were

significantly different between HCC and normal tissues. The

risk score of each HCC patient was calculated as follows: Risk

score = 0.4635* NRAV expression level +0.8199* MKLN1-AS

expression level +0.6452* AL031985.3 expression level +

0.3553* ELFN1-AS1 expression level +0.7350*

AL928654.1 expression level. Notably, the positive

coefficients of the five lncRNAs revealed that they were all

risk survival factors. We then divided the patients of the

training cohort into high- and low-risk groups based on the

median risk score. KM survival curves showed that patients

with high-risk scores had poor prognoses (Figure 4A). Risk

score and survival status distributions showed that more and

more patients died as the risk score increased. Additionally, our

analysis showed that all the five lncRNAs had higher expression

levels in the high-risk group (Figure 4D). Then, we used the

same score formula to calculate the risk score of each patient in

the testing cohort and the entire cohort, which were employed

to validate the signature. The results were similar to those

displayed in the training cohort (Figures 4B,C,E,F).

Furthermore, we analyzed the prognostic accuracy of risk

score using the ROC analysis (in the training cohort: 1-, 2-,

and 3-year AUC = 0.762, 0.761, and 0.749, respectively; in the

testing cohort: 1-, 2-, and 3-year AUC = 0.776, 0.701, and 0.679,

respectively; in the entire cohort: 1-, 2-, and 3-year AUC =

0.771, 0.730, and 0.712, respectively) (Figures 4G–I). We used

PCA to visualize the different distribution patterns between the

two groups based on all genes, m5C genes, m5C-lncRNAs, and

risk lncRNAs. Based on risk lncRNAs, patients were distributed

in obviously different directions, so that the m5C-related

lncRNA risk model may well differentiate between the high-

and low-risk groups (Figures 4J–M).

Validation of the suitability of the model
using stratified survival analysis

We conducted stratified analysis by dividing the HCC

patients into various subgroups and comparing the OS

between high- and low-risk groups to evaluate the prognostic

value of this model under different HCC clinicopathological

subgroups. The survival analysis revealed that patients with

high-risk scores had shorter OS in various subgroups

(age >65 years versus age ≤65 years, female versus male,

G1–2 versus G3–4, T stage1–2 versus T stage3–4, M0 stage,

N0 stage, TNM stage I–II versus TNM stage III–IV)

(Supplementary Figure S2).

The m5C-Related lncRNA risk model was
an independent prognostic factor for HCC
patients

According to the expression level of each lncRNA, we divided

HCC patients into high- and low-expression groups and then

performed KM survival analysis on them. The survival curves

showed that patients in the high-expression group of

AL031985.3, AL928654.1, MKLN1-AS, and NRAV had

shorter OS and worse prognoses. Nevertheless, OS of ELFN1-

AS1 in the high- and low-expression groups had no statistical

differences (Figures 5A–E). According to the heatmap, TNM and

T stages (p < 0.01) were statistically significantly different

between the high- and low-risk groups, but other

clinicopathological features had no statistical differences

(Figure 5F). Furthermore, we conducted univariate and

multivariate Cox regression analyses to confirm whether the

risk score calculated using the m5C-related lncRNA risk

model could be used as an independent prognostic factor. The

univariate analysis showed that TNM stage (p < 0.001), T stage

(p < 0.001), M stage (p = 0.021), and risk score (p < 0.001) were

prognostic factors, whereas the multivariate Cox regression

analysis revealed that TNM stage (p < 0.001) and risk score

(p < 0.001) could serve as independent prognostic factors for

patients with HCC (Figures 5G,H). In clinical practices, to

provide an accurate quantitative tool for evaluating the

individual OS of HCC patients, we formulated a nomogram

based on risk score and TNM stage screened by multivariate Cox

regression analysis to predict 1-, 3-, and 5-year OS probability

(Figure 6A). As shown in the calibration curve, the actual and

predicted 1-, 3-, and 5-year OS were almost in perfect

concordance (Figures 6B–D). The time-dependent ROC

curves were used to evaluate the specificity and sensitivity of

the nomogram for predicting the prognosis of HCC patients. Our

results revealed that AUC values of nomogram were 0.778, 0.806,

and 0.786 at 1-, 3-, and 5-year OS, respectively (Figure 6E).

Besides, we compared AUC values of risk score, age, gender,

grade, and stage and noted that the risk score was superior to
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FIGURE 5
Validation of the m5C-related lncRNAs risk score as an independent prognostic factor in HCC patients. (A–E) KM survival curves indicated the
relationship of the five lncRNAs with prognosis in HCC patients. (F) Heatmap showing the correlation between expression levels of the five m5C-
lncRNAs and clinicopathological features. (G,H)Univariate andmultivariate Cox regression analysis of risk score and clinicopathological parameters.
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FIGURE 6
Construction and validation of the nomogram based on m5C-related lncRNA risk model. (A) Nomogram with risk score and TNM stage for
predicting 1-, 3-, and 5-year survival for HCC patients. (B–D) The calibration curves showing the consistency of nomogram-predicted and actual 1-,
3-, and 5-year OS. (E) ROC analysis evaluating the predictability of the nomogram for 1, 3, and 5 years OS. (F) A comparison of AUC of risk score and
clinical factors at 1-year showed the optimal prognostic value of the risk score.
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FIGURE 7
Validating the expression levels of fivem5C-related lncRNAs. The expression levels of m5C-related lncRNAs in (A–E) 5 cell lines and (F) 20 pairs
HCC tissues and paracancerous tissues. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 8
Function and pathways enrichment analysis of m5C-related lncRNAs. (A–C) Visualization of the enriched biological processes by GO analysis.
(D,E) KEGG analysis displaying the enriched signaling pathways related to risk model.
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other clinical factors (Figure 6F). In summary, the m5C-related

lncRNA risk model had the optimal ability to predict the

prognosis of HCC patients.

Validation of the fivem5C-Related lncRNA
expression in hepatocellular carcinoma
cell lines and tissues, and analysis of m5C
modification sites

We further validated the five m5C-related lncRNA

expression levels in HCC cell lines and tissue samples by RT-

qPCR assay. The expression levels of these five lncRNAs were

examined in Huh7, HepG2, Hep3B, SNU-387, and L-02 cell lines.

Our results showed that NRAV expression level was upregulated

in HCC cell lines compared with the liver cell line (Figure 7A).

AL031985.3, AL928654.1, ELFN1-AS1, and MKLN1-AS

expressions were upregulated in part of HCC cell lines

(Figures 7B–E). We then performed the differential expression

analysis of the five lncRNAs in 20 pairs of HCC and para-

carcinoma tissue samples. The results revealed that MKLN1-AS,

NRAV, ELFN1-AS1, AL928654.1, and AL031985.3 expression

levels were upregulated in HCC tissues (Figure 7F). After

scanning the m5C-Atlas, we found two m5C modification

sites on NRAV and eleven m5C modification sites on

MKLN1-AS. We also utilized RNAm5Cfinder and iRNA-m5C

databases to predict potential m5C modification sites on our five

lncRNAs, and eventually obtained m5C modification sites on all

five lncRNAs (Supplementary Table S5).

The functional and pathway enrichment
analysis

We conducted GO and KEGG analysis based on the

differential genes between the high- and low-risk groups to

better identify the potential biological mechanisms. The top five

GO terms were sister chromatid segregation, nuclear division,

mitotic sister chromatid segregation, mitotic nuclear division, and

chromosome segregation (Figures 8A–C). KEGG analysis showed

that these signaling pathways were mainly enriched in cell cycle,

PI3K-Akt signaling pathway, proteoglycans in cancer, glycolysis/

gluconeogenesis, and ECM–receptor interaction (Figures 8D,E).

Furthermore, the activated pathways enriched in the high- and

low-risk groups were identified through gene set enrichment

analysis (GSEA). We found that Notch signaling pathway, cell

cycle, regulation of autophagy, and pathways in cancer were

activated in the high-risk group, whereas fatty acid metabolism,

tryptophan metabolism, PPAR signaling pathway, and beta

alanine metabolism were activated in the low-risk group

(Supplementary Figure S3). These results revealed the

association of m5C-related lncRNAs with biological function

in HCC.

Association of m5C-Related lncRNAs with
immune cell infiltration

We conducted a Spearman correlation analysis to illustrate

the relationship between the m5C-related lncRNAs and immune

cell infiltration. As shown in the lollipop diagram, the risk score

was positively correlated with Treg cells, CD4 + T cells,

neutrophils, M1 macrophages, and M2 macrophages and

negatively correlated with hematopoietic stem cells and

endothelial cells (Figure 9A and Supplementary Table S6).

The heatmap indicated the difference in the infiltrating levels

of immune cells between the high- and low-risk groups based on

the TIMER, XCELL, QUANTISEQ, MCPcounter, EPIC,

CIBERSORT-ABS, and CIBERSORT software (Figure 9B).

Comparative analysis of immune-related functions or

pathways by ssGSEA showed that the scores of APC co-

stimulation, MHC class I and para-inflammation were higher

in the high-risk group, while the cytolytic activity and type II IFN

response scores were the opposite (Figure 9C). Furthermore, we

compared the risk score in different immune infiltration subtypes

and found that the high-risk score was strikingly correlated with

C1, while the low-risk score was strikingly correlated with C4

(Figure 9D). The above results suggested that the m5C-related

lncRNA risk model of HCC was related to immune status.

Tumor mutation burden based on m5C-
Related lncRNA risk model

We analyzed the association between the risk score and

tumor mutation burden (TMB) using somatic mutation

information downloaded from TCGA-HCC cohort. Figures

9E,F show the top 20 mutated genes with a high mutation

frequency. We found that patients in the high-risk group had

more mutation event compared with those in the low-risk group

(Figure 9G), and TP53 presented the highest mutation frequency

in both groups. Besides, patients with high TMB suffered shorter

survival time than those with low TMB (Figure 9H). Next, we

divided HCC patients into four groups to conduct a combined

analysis of TMB and risk score: high TMB + high risk, high TMB

+ low risk, low TMB + high risk, and low TMB + low risk. As

shown in Figure 9I, patients in the low TMB + low-risk group

were found with a better survival probability than those in the

other three groups.

Evaluation of responses to
immunotherapy and chemotherapy based
on m5C-Related lncRNA risk model

The TIDE algorithm was used to predict immunotherapy

response in the high- and low-risk groups. As demonstrated in

Figure 10A, the patients in the high-risk group were found with
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FIGURE 9
Estimating the correlation between m5C-related lncRNAs and immune infiltration and mutation analysis. (A) The correlation analysis of risk
score and tumor-infiltrating immune cells by TIMER, XCELL, QUANTISEQ, MCPcounter, EPIC, CIBERSORT-ABS, and CIBERSORT software. (B) A
heatmap indicating the differential immune responses between the high- and low-risk groups based on the above seven software. (C) The
differential scores of 13 immune-related functions in high- and low-risk groups. (D)Comparison of the risk score in different immune infiltration
subtypes. *p < 0.05, **p < 0.01, and ***p < 0.001; ns, non-significant. (E,F)Waterfall plot of the 20 topmutated genes with highmutation frequency in
the high-risk group (E) and low-risk group. (F,G) The differentmutation event between two groups. (H) KM analysis between high/low TMB groups. (I)
Comparative analysis of prognosis combining risk score and TMB.
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FIGURE 10
Analysis of immunotherapy and chemotherapy responses based on m5C-related lncRNAs risk model. (A) Comparison of TIDE scores between
the high-risk and low-risk groups. (B) The difference of 34 immune checkpoints expression level between high- and low-risk groups shown in the
box plot. (C) Differences in PD-L1 expression between high- and low-risk groups. IC50 of axitinib (D), dasatinib (E), doxorubicin (F), erlotinib (G),
gemcitabine (H), mitomycin.C (I), rapamycin (J), and sorafenib (K) in high- and low-risk groups.
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higher TIDE scores than those in the low-risk group, suggesting

that the high-risk group was more likely to react to

immunotherapy. To investigate the relationship between the

risk group and the expression of immune checkpoints, we

compared the expression levels of 34 immune checkpoints

and found higher expression level in the high-risk group than

FIGURE 11
Analysis of correlation between the prognostic lncRNAs expression and drug sensitivity. (A–P) The scatter plot showed the top 16 associations
between prognostic lncRNAs expression and drug sensitivity.
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in the low-risk group (Figure 10B). Recently, immune checkpoint

inhibitors (ICIs) have been conducted in the field of HCC

therapy. Programmed cell death 1 ligand 1 (PD-L1), one of

the key indicators in cancer immune evasion, has already been

used to predict the potential response to immune checkpoint

blockade (ICB) therapy. In our study, we discovered that PD-L1

expression level was significantly higher in the high-risk group

than in the low-risk group, indicating that high-risk patients were

more sensitive to PD-L1 blockade immunotherapy (Figure 10C).

Furthermore, we identified the relationship between risk score

FIGURE 12
MKLN1-AS facilitated the proliferation, migration, and invasion of HCC cells in vitro. (A) qRT-PCR validation of MKLN1-AS expression in
HepG2 cells transfected with siRNAs. (B) The viability of HepG2 detected by the CCK-8 assay. (C) Transwell assay performed to evaluate the
migration and invasion abilities of HepG2 cell transfected with indicated siRNAs. (D) Cell migration ability detected via wound healing assay. All data
are presented as the mean ± standard deviation (SD). * p < 0.05, **p < 0.01, ***p < 0.001.
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and common chemotherapeutic drug sensitivity. The results

showed that IC50 values of axitinib, rapamycin, dasatinib,

sorafenib, and erlotinib were higher in the high-risk group,

suggesting that patients from the low-risk group had higher

sensitivity to these five drugs. Besides, IC50 values of gemcitabine,

doxorubicin, and mitomycin C was higher in the low-risk group,

which indicated higher sensitivity to these three drugs in the

high-risk group (Figures 10D–K). Finally, we investigated the

prognostic lncRNAs from the CellMiner database NCI 60 RNA

seq and compound activity: DTP NCI-60. As revealed in

Figure 11, ELFN1-AS1 and NRAV were correlative to the

sensitivity of some chemotherapy drugs, and the correlativity

between ELFN1-AS1 expression level and the sensitivity of drug

dromostanolone propionate was the strongest (correlation =

0.410, p = 0.001).

Functional validation analysis

We then selected MKLN1-AS with the highest contribution

in the risk model (Coef = 0.8) for further biological function

verification in HCC cells. HepG2 cell was chosen for MKLN1-AS

knockdown via transfection with siRNAs. qRT-PCR assays were

performed to detect the transfection efficiency, and both siRNA

fragments downregulated the expression level of MKLN1-AS

(Figure 12A). CCK-8 assay indicated that MKLN1-AS

knockdown markedly repressed the proliferation of

HepG2 cells (Figure 12B). Then, we observed that the

knockdown of MKLN1-AS remarkably suppressed migration

and invasion abilities of HepG2 cells via transwell assay

(Figure 12C). Furthermore, wound healing assay showed that

after culture for 24 h, scratches of knock-down groups healed

slowly and the area of cell migration decreased, indicating that

downregulation of MKLN1-AS expression could inhibite the

migratory ability of HepG2 cells (Figure 12D). Collectively,

these findings confirmed that MKLN1-AS promotes HCC cell

proliferation, migration, and invasion in vitro.

Discussion

RNA post-transcriptional modifications (such as m6A, m5C,

m1A, and m7G), as well-explored events, have been proved to be

involved in the carcinogenesis and progression of various cancers.

M5C modification, already observed in various RNAs, can promote

the proliferation, migration, invasion, and angiogenesis of cancers

(Li et al., 2022). LncRNAs, which are widely used as a target or

biomarker for disease and treatment, can regulate tumor growth

through various mechanisms, including chromatin remodeling,

natural antisense transcripts, and chromatin interactions (Fang

and Fullwood, 2016). A growing body of evidence has indicated

that m6A modification can modulate lncRNAs to affect the

pathological processes of cancer development. However, few

studies have systematically reported the function of m5C-related

lncRNAs in HCC. Taken together, gaining more insight into the

relationship between lncRNAs andm5Chas ameaningful likelihood

of predicting the prognosis and guiding therapy for HCC. In this

study, we constructed a prognostic risk model of five m5C-related

lncRNAs and analyzed their role in the prognosis and immune cell

infiltration. Moreover, cell experiments for one of the five m5C-

related lncRNAs, MKLN1-AS, were conducted to confirm the

accuracy of the prognostic risk model. So far, no study has been

conducted to analyze the prognostic value of m5C-related lncRNAs

in HCC. Our findings may be used as novel biomarkers or

therapeutic targets for more accurate diagnosis, prognosis, and

treatment.

Recently, ferroptosis-related gene signature, pyroptosis-

related lncRNA signature, inflammatory response-related gene

signature, immune-related gene signature, and m6A-related gene

signature have been constructed to predict OS for HCC. In this

study, we explored m5C-related lncRNAs by analyzing HCC data

downloaded from TCGA database, and five m5C-related

lncRNAs capable of prognostic value were finally selected to

construct a prognostic risk model. PCA analysis showed that

high-risk group patients could be clearly differentiated from the

low-risk group patients by using the model. Besides, the model

can serve as an independent prognostic factor for HCC patients

based on univariate and multivariate Cox regression analyses. In

addition, our nomogram could figuratively predict 1-, 3-, and 5-

year survival according to the comprehensive score. The results

above suggested that the prognostic risk model constructed by

five lncRNAs had a potential predictive effect. The five m5C-

related lncRNAs, which were NRAV, AL031985.3, MKLN1-AS,

ELFN1-AS1, and AL928654.1, were highly expressed in tumor

tissues by bioinformatics analysis. We subsequently validated the

expressions of the five lncRNAs in HCC cell lines and tissues by

RT-qPCR assay. The results were consistent with results from

bioinformatics analysis. Besides, four of these lncRNAs were

associated with prognosis based on survival analysis. A recent

study has revealed that NRAV could negatively regulate antiviral

responses by repressing the expression of interferon-stimulated

genes (Ouyang et al., 2014). MKLN1-AS has been proven to be

one of lncRNAs in hepatocellular carcinoma-related competing

endogenous RNA networks and affected HCC progression (Gao

et al., 2020). Our results showed that the knockdown of MKLN1-

AS could suppress proliferation, migration, and invasion in the

HepG2 cell line. Bioinformatic analysis showed that AL031895.3,

as inflammatory response-related lncRNA and immune-related

gene, was also overexpressed in HCC cell lines, which indicated

that AL031985.3 could be an adverse prognostic indicator for

HCC (Li et al., 2022). ELFN1-AS1 affects the proliferation,

invasion, and metastasis of esophageal cancer and colorectal

cancer by regulating miRNAs (Zhang et al., 2020; Zhai et al.,

2021). AL928654.1 has not been reported yet; hence, further

studies are needed to clarify the effects of these five lncRNAs in

the tumorigenesis and development of HCC.
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Using GSEA, we explored the molecular mechanism

underlying m5C-related lncRNAs. Notch signaling pathway,

cell cycle, regulation of autophagy, and pathways in cancer

were significantly enriched in the high-risk group. Previous

studies have shown that Notch signaling pathway was related

to the pathogenesis of liver fibrosis, and EGFL8 regulated HCC

cell migration, invasion, and apoptosis via the activation of

Notch signaling pathway (Wu et al., 2021; Zhu et al., 2021).

The cell cycle regulates the duplication and transmission of

genetic information; however, the dysregulated cell cycle

progression is common in the pathogenesis of cancer (Wiman

and Zhivotovsky, 2017). Autophagy plays a key role in cellular

homeostasis maintenance and tumorigenesis. A relevant study

has indicated that in the progress of affecting lipid metabolism in

hypoxic environments, autophagy could maintain the

proliferation of HCC cells and promote cancer cell survival

(Toshima et al., 2014). It is worth noting that the metabolism-

related pathways were closely linked with patients in the low-risk

groups. Many studies illustrate the role of metabolic-related

pathways in HCC progression; for instance, CD147, which is

overexpressed in many cancers, influences tumor progression by

promoting the reprogramming of fatty acid metabolism (Li et al.,

2015). These results suggested that m5C-related lncRNAs may

participate in the genesis and development of HCC by the

pathways mentioned above, but further experimentation

verification is needed. LncRNAs are known to be expressed in

various immune cells and play a vital role in controlling the

development and differentiation of these immune cells (Atianand

et al., 2017). Tumor infiltration of immune cells in TME, which

influences the prognosis of many tumor patients, is attracting

much attention. In this study, we made an in-depth analysis of

the relationship between risk scores and tumor-infiltrating

immune cells using seven common methods. We found

higher infiltrating levels of Treg cells, CD4 + T cells,

neutrophils, M1 macrophages, and M2 macrophages in the

high-risk group than in the low-risk group. Alternatively,

endothelial cells and hematopoietic stem cells had a higher

expression level in the low-risk group. Based on previous

studies, the increased expression of tumor-associated

neutrophils, M2 macrophages, and Treg cells are correlated

with adverse clinical outcomes in HCC patients (Zhou et al.,

2016; Wu et al., 2021). Our results were consistent with previous

results. Moreover, the increased activities of type II IFN response

meant that tumor immune surveillance and elimination play a

role in the high-risk group (Kaplan et al., 1998; Liang et al., 2022).

Immunotherapy has received much attention and is expected to

become a promising therapeutic method in HCC. We used TIDE

algorithm to evaluate the immunotherapeutic response. The

result indicated that HCC patients in the high-risk group had

a better response to immunotherapy.

ICB therapy, such as anti-PD-L1 antibodies, has shown good

prospects in a variety of malignancies. In HCC, the anti-PD-

1 antibodies and the anti-Cytotoxic T-Lymphocyte Antigen 4

(CTLA-4) antibodies have been approved for second-line

treatment (Pinter et al., 2021). However, immune-related

adverse events occur during therapy. Thus, predictive

biomarkers for ICB response are urgently needed to maximize

the efficacy and keep more patients from adverse effects and

heavy economic burden of immunotherapy. Therefore, we

compared the expression level of 34 immune checkpoint

genes and found a higher expression in the high-risk

group. The results above prove that the risk model could

predict the expression level of immune checkpoints and is

expected to provide important insights into the enhancement

of immunotherapy efficacy. Recent studies have found that

tumor mutation burden was related to the production of

antitumor neoantigens and was identified as a useful

biomarker to predict the response to immunotherapy,

especially PD-L1 therapy (Chan et al., 2019). As shown in our

result, TMB was higher in the high-risk group than the low-risk

group, indicating better sensitivity to immunotherapy in the

high-risk group. Furthermore, survival analysis suggested that

patients with a high burden of tumor mutations had poor

prognoses than patients with a low burden. Besides, we

combined TMB and risk score and analyzed their survival.

The prognosis of patients with high tumor mutation loads in

the high-risk subgroup was the worst. Taken together, our

research is the first study to explore the relationship between

m5C-related lncRNA prognostic risk model and immune cell

infiltration, especially immunotherapy.

Tumor resistance to chemotherapeutic drugs often makes

chemotherapy unsatisfactory, and thus, efficient and

individualized drugs and targets are needed to benefit more

HCC patients (Wu et al., 2021). Drug sensitivity analysis

suggested that doxorubicin, gemcitabine, and mitomycin are

ideal choices for HCC patients in the high-risk group, while

axitinib, dasatinib, erlotinib, sorafenib, and rapamycin are

suitable for patients in the low-risk group. We also explored

the therapeutic potential of five m5C-related lncRNAs by

analyzing their association with drug sensitivity of some small-

molecule drugs. Our results showed that ELFN1-AS1 was sensitive

to dromostanolone propionate, vorinostat, denileukin diftitox

ontak, and vismodegib. NRAV was sensitive to vandetanib,

dacomitinib, afatinib, lbrutinib, copanlisib, and erlotinib.

Ibrutinib is a first-in-class oral irreversible inhibitor of BTK

(Bruton’s tyrosine kinase) and has been demonstrated to be an

effective treatment for chronic lymphocytic leukemia and other

B-cell lymphomas (Ahn and Brown, 2021). Erlotinib, an epidermal

growth factor receptor tyrosine kinase inhibitor, is used to treat

some types of non-small cell lung cancer and advanced pancreatic

cancer (Carter et al., 2022). Vorinostat (Lin et al., 2021),

dacomitinib (Ji et al., 2021), vandetanib (Carvalho et al., 2022),

afatinib (Wu et al., 2021), and vismodegib (Duplaine et al., 2021)

also have anticancer effects in malignancies. In the future, further

experiments are required to confirm their therapeutic potential for

the targeted therapy of HCC.
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However, there are some shortcomings and limitations in our

study. For example, we constructed and validated our m5C-

related lncRNA risk model using TCGA database, lacking

external validation from ICGC or GEO databases for lack of

expression data of some selected m5C-related lncRNAs. In

addition, we validated the five m5C-lncRNA expression levels

using RT-qPCR, but further underlying molecular mechanisms

studies are required to make the prediction results more reliable.

Moreover, partial clinical information, such as M stage and N

stage, was unavailable. Hence, in the future, more clinical and

experimental studies are warranted to confirm the accuracy of

the prognostic risk model.

Conclusion

We constructed a new prognostic risk model consisting of

five m5C-related lncRNAs. Our risk model proved to be

meaningful in functional analysis, immune cell infiltration,

tumor mutation load, and drug sensitivity, indicating the

prospect of targeting these lncRNAs for improving the

responsiveness to immunotherapy and chemotherapy in HCC.

To a certain degree, our study provides new insights to support

further research on the role of m5C-related lncRNAs in HCC

occurrence and development.
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