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Single-cell multiomics sequencing techniques have rapidly developed in the

past few years. Among these techniques, single-cell cellular indexing of

transcriptomes and epitopes (CITE-seq) allows simultaneous quantification

of gene expression and surface proteins. Clustering CITE-seq data have the

great potential of providing us with amore comprehensive and in-depth view of

cell states and interactions. However, CITE-seq data inherit the properties of

scRNA-seq data, being noisy, large-dimensional, and highly sparse. Moreover,

representations of RNA and surface protein are sometimes with low correlation

and contribute divergently to the clustering object. To overcome these

obstacles and find a combined representation well suited for clustering, we

proposed scCTClust for multiomics data, especially CITE-seq data, and

clustering analysis. Two omics-specific neural networks are introduced to

extract cluster information from omics data. A deep canonical correlation

method is adopted to find the maximumly correlated representations of two

omics. A novel decentralized clustering method is utilized over the linear

combination of latent representations of two omics. The fusion weights

which can account for contributions of omics to clustering are adaptively

updated during training. Extensive experiments over both simulated and real

CITE-seq data sets demonstrated the power of scCTClust. We also applied

scCTClust on transcriptome–epigenome data to illustrate its potential for

generalizing.
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1 Introduction

High-throughput single-cell sequencing technology represented by single-cell RNA

sequencing has been widely used in cancer tumors and embryonic development in recent

years. The gene expression profile obtained by transcriptome sequencing allows us to

study tissue heterogeneity at the individual cellular level. Although the amount of

sequencing data is increasing, single-cell RNA sequencing data still meet the

characteristics of high noise and dimensions, which limits the accuracy of the

calculation method to a certain extent. The recent rise of single-cell multiomics
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sequencing technology has allowed researchers to obtain

information on the epigenomics, genetics, and proteomics of

individual cells at the same time. Representative methods include

single-cell cellular indexing of transcriptomes and epitopes

(CITE-seq) (Stoeckius et al., (2017), single-cell DNA

methylation and transcriptome (scM&T-seq) (Angermueller

et al., (2016), single-nucleus chromatin accessibility and

mRNA expression sequencing (SNARE-seq) (Chen et al.,

(2019), and single-cell gDNA-mRNA sequencing (DR-seq)

(Dey et al., (2015). Among the various single-cell multiomics

sequencing technologies, CITE-seq allows simultaneous

quantification of gene expression and surface proteins by

using single-cell RNA sequencing (scRNA-seq) and antibody-

derived tags (ADTs) in single cells. CITE-seq data have the great

potential of providing us with a more comprehensive and in-

depth view of cell states and interactions.

In scRNA-seq data analysis, a crucial step involves

clustering cells into subpopulations to facilitate subsequent

downstream analysis. Emerging multiomics CITE-seq data

can potentially enrich cell type-specific information across

different omics, yet clustering methods still need to be

tailored to fully utilize these abundant, yet complex, data

sets. Although surface protein expression profiles hold

weaker sparsity and lower dimensionality, which makes it

easier for researchers to analyze, CITE-seq data inherit the

problems existing in scRNA-seq data such as large dimensions,

high sparsity, and high noise. Other difficulties also arose when

clustering CITE-seq data. The first involves large differences in

dimension between transcriptomics and proteomics data,

making it difficult to extract omics-invariant data, which

benefits clustering in the same manner from two omics.

Second, scRNA-seq and surface protein expression data do

not necessarily have a high correlation and are not necessarily

equally important to the clustering objective. The most popular

way of handling multiomics data is to linearly combine omics

representations. However, roughly summing representations of

low correlation is very likely to blur the boundaries of clusters

and defaults that the contributions of both omics to the

clustering object are equivalent.

Recently, several computational methods able to cluster

CITE-seq data have been developed. Seurat V4 (Hao et al.,

2021) maps the input of scRNA-seq and surface protein

expression into a shared low-dimensional space with principal

component analysis (PCA) and linearly combines those

representations. A weighted nearest neighbors (WNN) graph

is constructed on that linear fusion. This forms the basis for the

application of the Leiden algorithm to present a clustering result.

Seurat V4 received great popularity among biological researchers

accounting for its convenience and scalability. However, Seurat

separates the dimension reduction, WNN graph construction,

and clustering procedures so that the low-dimensional

representations of RNA and protein data may not suit for

constructing a WNN graph or clustering. Also, the WNN

graph will be of poor significance when RNA and protein

representations are of low correlation. Moreover, the fusion

weights of two representations need to be set manually, yet

there is no way to assess the contributions of two omics to

the clustering object.

On the other hand, deep generative models have been

introduced into single-cell multiomics data clustering

analysis and have quickly gained popularity. TotalVI

(Gayoso et al., 2021) utilizes a variational autoencoder

(VAE) (Kingma and Welling, 2014) to handle gene

expression and protein data. A latent variable is introduced

to represent the shared information of different modalities, or

“cell state”, and the posterior estimation of both modalities is

learned by omics-specific encoders. Clusters are inferred using

the Leiden algorithm. TotalVI is widely used for clustering

large-scale multiomics data. However, similar to Seurat, it also

separates the character extraction process from the clustering

step, making it hard to obtain latent representations well suited

for clustering. Moreover, TotalVI ignores the relationship

between the representations of RNA and protein data and

simply averages them. This primitive process waives the

chance to find a better space for clustering and attaches

equivalent importance to both omics, thus being easily

affected by the influence of the less informative omics.

In this study, we propose single-cell CITE-seq Cluster

(scCTClust) to conduct clustering for CITE-seq data. First, we

introduce the zero-inflated negative binomial (ZINB) model to

characterize RNA data and build two omics-specific

autoencoders to extract omics-specific information from both

transcriptomics and proteomics separately. Second, a deep

canonical correlation analysis (DCCA) (Andrew et al., 2013)

method is utilized to find the maximumly correlated expressions

of both omics. The representations of the two omics are linearly

combined to a fused representation on which clustering is

conducted. The fusion weight referring to the contribution of

each omics to the clustering object is adaptively updating during

the training process. Third, a novel Cauchy–Schwartz (C-S)

divergence-based clustering (Kampffmeyer et al., 2019)

module is adopted to effectively divide the fused

representation into subgroups. This novel C-S divergence-

based clustering encourages the clusters to be separable and

compact and pushes the assigning vectors to be orthogonal and

close to simplex in RK, where K is the cluster number. Notably,

our clustering module is truly decentralized and thus more

robust than the popular metrics-based clustering methods

which highly influenced the quality of initialization. Extensive

real data and simulation experiments have been conducted to

demonstrate the effectiveness and robustness of scCTClust

clustering CITE-seq data. To demonstrate the potential of

scCTClust clustering other single-cell multiomics data, we also

applied scCTClust and other state-of-the-art multiomics

clustering methods on several SNARE-seq data sets and

received satisfactory results.
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2 Materials and methods

The pipeline of our proposed scCTClust is depicted in Figure 1.

In the following section, we describe this pipeline in detail.

Suppose our data set consists of n samples (cells) observed in

transcriptomics and proteomics. Let x(r)
i and x(p)

i be the

observation of sample i from transcriptomics and proteomics;

then the total observation of cell i is {x(r)
i , x(p)

i }. Given cluster

(cell type) numberK, our objective is to assign the observation set

of each cell i, {x(r)
i , x(p)

i }, to one of the K clusters.

2.1 Omics-specific autoencoder

First, we transform x(r)
i and x(p)

i to low-dimensional

representations z(r)i and z(p)i with omics-specific encoder

networks f(r) and f(p) separately.

z r( )
i � f r( ) x r( )

i( ) nonumber

z
p( )

i � f p( ) x
p( )

i( ). (1)

To capture the character of transcriptomic (scRNA-seq) data, we

utilize the same ZINB (zero-inflated negative binomial) (Huang

et al., 2018) model-based autoencoder as in scSemiCluster (Chen

et al., 2021). Protein data are not as sparse as scRNA-seq data;

therefore, we empirically use a negative binomial (NB) model, a

ZINB model hybrid, to characterize it. Formally, NB is

parameterized with a mean (μ) and dispersion (θ) of the negative

binomial distribution, while ZINB is parameterized with an

additional coefficient (π) that represents the weight of the point

mass of probability at zero (the probability of dropout events):

NB X i( ) | μ i( ) , θ i( )( ) � Γ X i( ) + θ i( )( )
Γ X i( ) + 1( )Γ θ i( )( ) × θ i( )

θ i( ) + μ i( )( )θ i( )
μ i( )

θ i( ) + μ i( )( )X i( )

ZINB X i( ) | π i( ) , μ i( ) , θ i( )( ) � π m( )G0 X i( )( ) + 1 − π i( )( )NB X i( ) | μ i( ) , θ i( )( ),
(2)

where X(i) represents the raw read counts from omics i, i = r, p.

The omics-specific autoencoder for transcriptomics estimates the

parameters μ(r), θ(r), and π(r) by constructing three parallel output

layers, and that for protein data estimates μ(r), θ(r) by constructing

two parallel output layers. The loss function of the omics-specific

autoencoder is the sum of negative log-likelihoods of according

distribution:

LAE � −log ZINB X r( )|μ r( ), π r( ), θ r( )( )( )
− log NB X p( )|μ p( ), θ p( )( )( ). (3)

We introduce a fusion layer to represent the integrated

information of transcriptomics and proteomics, which

computes a weight average as given below:

zi � wrz
r( )

i + wpz
p( )

i , (4)

where wr, wp are fusion weights which are contributions of omics

to the omic-invariant representation zi. These weights will be

adaptively chosen when optimizing the following clustering object.

2.2 Canonical correlation analysis

We consider that the latent representations of

transcriptomics and proteomics data, z(r) and z(p), are

distributed differently and are often lowly correlated in the

FIGURE 1
Structure of the scCTClust model: (1) preprocessedmultiomics data are used as input of omics-specific encoders separately; outputs are latent
features and estimated posterior parameters of the ZINB or NB model. (2) A fusion layer is introduced to linearly fuse the latent features of different
omics data. (2) A CCA loss is introduced to find the maximumly correlated omics latent representations. (4) A Cauchy–Schwatz divergence-based
clustering module is added after the fusion layer.
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latent space. We introduce a canonical correlation analysis

(CCA) method to improve the correlation between these two

representations and thus get a fusion representation z more

suited for further clustering.

Let (X1, X2) ∈ Rn1 × Rn2 denote random vectors with

corvariances (Σ11,Σ22) and cross-corvariance Σ12. Typical

CCA finds pairs of linear projections of the two views

(w1′X1, w2′X2) that are maximally correlated:

wp
1, w

p
2( ) � argmax

w1 ,w2

corr w1′X1, w2′X2( )
� argmax

w1 ,w2

w1′Σ12w2














w1′Σ11w1w2′Σ22w2

√ .
(5)

Since the objective is invariant to scaling of w1 and w2, the

projections are constrained to have unit variance, defined as

wp
1, w

p
2( ) � argmaxw1′Σ11w1�w2′Σ22w2�1w1′Σ12w2. (6)

When finding multiple pairs of vectors (wi
1, w

i
2), subsequent

projections are also constrained to be uncorrelated with previous

ones, that is, wi
1Σ11w

j
1 � wi

2Σ22w
j
2 � 0 for i < j. Assembling the

top k projection vectors wi
1 into the columns of a matrix

A1 ∈ Rn1×k and similarly placing wi
2 into A2 ∈ Rn2×k, we

obtain the following formulation to identify the

top k≤min(n1, n2) projections :
maximize : tr A1′Σ12A2( )
subject to : A1′Σ11A1 � A2′Σ22A2 � I

. (7)

There are several ways to express the solution to this objective;

we follow the one in the study by Jupp and Mardia (1979). We

define T ≜ Σ−1/2
11 Σ12Σ−1/2

22 , and let Uk and Vk be the matrices of

the first k left- and right-singular vectors of T, respectively.

Then the optimal objective value is the sum of the top k singular

values of T (the Ky Fan k-norm of T), and the optimum is

attained at

Ap
1, A

p
2( ) � Σ−1/2

11 Uk,Σ−1/2
22 Vk( ). (8)

Back to our scCTClust model, we wish to find proper latent

representations of transcriptomics and proteomics that can be

maximumly correlated. Instead of finding proper linear

projections, we seek appropriate parameters θ(r) and θ(p) for

omics-specific encoders f(r) and f(p). The according

optimization problem is

θ r( )p, θ p( )p( ) � argmax
θ r( ) ,θ p( )( ) corr f r( ) X r( ); θ r( )( ), f p( ) X p( ); θ p( )( )( ).

(9)
To find (θ(r)p, θ(p)p), we follow the gradient of the correlation

objective as estimated on the training data. We follow the

notation in Eq. 1; let Hr and Hp be the transpose of the latent

representations z(r) and z(p), respectively. It should be noted that

the solution in Eq. 8 assumes that the covariance matrices Σ11

and Σ22 are nonsingular, which is satisfied in practice because

they are estimated from data with regularization. We define the

centered data matrix �Hr � Hr − 1
nHr, �Hp � Hp − 1

nHp and

define

Σ̂12 � 1
n − 1

�Hr
�Hp′ ,

Σ̂11 � 1
n − 1

�Hr
�Hr′ + r1I,

Σ̂22 � 1
n − 1

�Hp
�Hp′ + r2I

, (10)

where r1, r2 > 0 are regularization parameters so that Σ̂11 and Σ̂22

are positive definite.

As is discussed ahead for typical CCA, the total correlation of

the top k components of Hr and Hp is the sum of the top k

singular values of the matrix T � Σ̂−1/2
11 Σ̂12Σ̂

−1/2
22 . Using all

components, our CCA loss is defined as follows:

Lcca � corr Hr,Hp( ) � ‖T‖tr � tr T′T( )1/2. (11)

2.3 C-S divergence-based clustering

To obtain the final cluster assignments, we add a fully

connected layer with a softmax activation after the fusion

layer to obtain the k-dimensional soft label αa.

To perform ideal clustering, we want clusters to be compact

and separable, thus making it easy to distinguish among different

clusters. We also want cluster assignments, which are

K-dimensional soft labels, to be deterministic and close to

one-hot vectors. Additionally, the existing metrics-based

clustering method, deep embedded clustering (DEC), for an

instance, initializes by randomly selecting samples as

representatives of clusters and is thus easily affected by bad

initialization. Therefore, we wish that the clustering module can

be decentralized and robust.

Based on this clustering concept, we designed a deep

divergence-based clustering (DDC) loss based on

Cauchy–Schwartz divergence (CS divergence) to conduct

clustering over zi. DDC loss consists of three parts, ensuring

the separability and compactness of clusters, closeness of cluster

assignments to simplex corners, and orthogonality of cluster

assignments. DDC loss focuses on the relationships between all

samples and thereby does not depend on ideal initialization to

perform well.

Considering k ≥ 2 distinct probability density functions

(PDF), CS divergence is defined as

Dcs p1, . . . , pk( ) � −log 1
k
∑k−1
i�1

∑
j>i

∫pi x( )pj x( )dx















∫p2
i x( )dx∫p2

j x( )dx
√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(12)
For a pair of PDFs, pi and pj, we have 0≤Dcs(p1, p2)<∞, where

we obtain the minimum value if pi = pj. Assume that we have an

n × k assignment matrixA = [αa,i]. For the first term of clustering

loss, we make use of the divergence in Eq. 12 to measure the
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distance between clusters. Since the underlying true densities at

point x, pi(x), are unknown, we replace them with soft cluster

assignments of cluster i for the cell as a αa,i and configure the

optimization object with a Gaussian kernel having bandwidth σ.

To be more explicit,

L1 � Dcs α1, . . . , αk( ) � 1
k
∑k−1
i�1

∑
j>i

αT
i Kαj












αT
i KαiαT

jKαj

√ , (13)

where αi is the ith column of A, the similarity values in K follows

κij � exp(−‖hi − hj‖2/(2σ2)), and σ is a hyperparameter.

Minimizing L1 pushes cosine similarity between cells in the

same cluster to be small and the similarity between cells in

different clusters to be large, making clusters separable and

compact.

For the second term of clustering loss, we make use of the

divergence in Eq. 12 to measure the distance between soft cluster

assignment vectors for cells and simplex corners. Suppose that αa
is the ath row of A, and ej is corner j of the standard simplex in

Rk. We define an additional term for the loss function ma,j =

exp(−‖αa − ej‖) and m = [ma,j]

L2 � Dcs m1, . . . , mk( ) � 1
k
∑k−1
i�1

∑
j>i

mT
i Kmj














mT
i KmimT

jKmj

√ , (14)

where mi is in the ith column of m. Minimizing this part of loss

encourages the cluster assignment vectors to be close to the

standard simplex in Rk.

The third part is designed as the strictly upper triangular

elements of ATA, where A is the n × K soft assignment matrix,

L3 � triu ATA( ). (15)

It consists of inner products between cluster assignment vectors.

Cluster assignment vectors are orthogonal if and only if these

inner products are zero. Optimizing L3 encourages the cluster

assignment vectors for different objects to be orthogonal.

The final clustering loss is the sum of these three terms:

Lcluster � L1 + L2 + L3. (16)
Finally, the total loss we use to train scCTClust is

L � γLAE + δLcca + Lcluster, (17)
whereLcluster is the clustering loss we defined in Eq. 16, and γ and

δ are hyperparameters which influence the strength of the CCA

loss and ZINB loss.

3 Results

3.1 Simulation studies

ScCTClust is powerful clustering transcriptome–proteome

multiomics data. For comparison, we applied scCTClust and

several state-of-the-art multiomics clustering methods over a

series of simulated CITE-seq data sets generated by R package

Splatter. The detailed settings of the simulated datasets are listed

in Table 1. Specifically, we aim to investigate the performance of

scCTClust against competing methods under different cluster

numbers, protein data dimensions, and differential expression

feature probabilities. We fix the number of every group of cells at

500 during our experiments. We investigate the performance of

each method under different cluster numbers, which varied as 4,

6, 8, and 10, while gene numbers and protein types were fixed at

2500 and 75 differential expression gene/protein probabilities at

0.15 and 0.7. The competing methods include Seurat V4,

MOFA+ (Argelaguet et al., 2020), CiteFuse (Kim et al., 2020),

BREM-SC, and TotalVI. The performance of each method is

evaluated by the commonly used evaluation index in clustering

problems ARI and NMI.

In Figure 2, we can see that the ARI of scCTClust maintained

a high level, ranking top 2 of all six methods, across all

experiments. When increasing the number of surface proteins,

the performance of scCTClust improved, indicating that the

neural network-based scCTClust is fully capable of extracting

clustering information from omics data of high dimension.

While the ARI of Seurat, CiteFuse, and MOFA decreased

evidently as the cluster number was larger, the performance of

scCTClust maintained an ARI over 0.95. We can also find that

when the differential expression probability of a protein is low,

scCTClust was not visibly affected as BREM-SC or MOFA was.

Similar things happened when the differential expression

probability of RNA decreases, which illustrate that scCTClust

is less affected by the less informative omics data. To further

demonstrate the power of scCTClust, in Figure 2, we plotted the

two-dimensional visualization of latent features extracted by

scCTClust during the cluster number experiments. The

UMAP plot was colored by true labels. scCTClust achieved

satisfactory performance, making the clusters compact and

separable. We also studied the variation of fusion weights

across the experiments. Figure 2 clearly shows that the fusion

weights maintained stable when the cluster number, which

hardly influenced the contributions of omics to clustering

objects, varied. Also, when the protein DE or RNA DE varied,

the fusion weights changed adaptively and are positively

correlated with the quality of the omics data.

TABLE 1 Simulation data settings for all experiments; each cluster
contains 500 cells; ‘*’ refers to the variable parameter.

Cell/cluster Cluster Protein ProbRNA Probprotein

500 * 75 0.15 0.7

500 8 * 0.15 0.7

500 8 75 * 0.7

500 8 75 0.15 *
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3.2 Real data experiments

3.2.1 scCTClust is powerful clustering CITE-seq
data

To further confirm the effectiveness of scCTClust, we

selected four real-world CITE-seq data sets on which

scCTClust and competing methods were applied. In specific,

the competing methods include Seurat V4, scMM (Minoura

et al., 2021), CiteFuse, joint DIMM-SC (Sun et al., 2018),

BREM-SC, and TotalVI. First, we evaluated the performance

of scCTClust and competing methods applied to all four data sets

by NMI and ARI. As is shown in Figure 3, scCTClust is evidently

superior to other methods on data sets 10X10 k and 10XInhouse,

achieves similar NMI and ARI against TotalVI on the Spleen data

set, and is slightly worse than TotalVI on the Spleen data set.

TotalVI gained better NMI and ARI than Seurat and CiteFuse,

indicating the advantage of a deep learning algorithm in

characterizing the features of high-dimensional data. BREM-

SC behaved pretty well in these two data sets, especially over the

10XInHouse data set, with its ARI approaching our scCTClust.

However, utilizing a vanilla MCMC, BREM-SC can hardly be

praised as scalable, taking hours over the 10X10 k data set with

7865 cells. Second, we used the two-dimensional visualization

method UMAP to investigate the latent structure of scCTClust.

We showed fused representation and RNA and protein low-

dimensional representations of scCTClust applied to the

10XInHouse data set, colored with the true cell types. We can

see that although the protein representation was not well suited

for clustering, scCTClust managed to fuse it with RNA

representation and obtain a fusion representation with

compact and separable clusters and thus obtaine accurate

predictions. Third, we plotted the UMAP visualization of

latent features extracted by TotalVI, Seurat, CiteFuse, and

scCTClust trained without optimizing CCA loss. We can see

that the clusters of these three competing methods are not only

less compact but also less separable than scCTClust.

Additionally, CD8+ cells were assigned to two clusters by

Seurat. Casting out sight to the UMAP plot of scCTClust (no

cca), CD4+ cells have also been divided into two clusters. This

phenomenon indicates that the representations of two omics

have not been properly combined. We also colored the UMAP

plot of fusion representation by the expression of surface proteins

FIGURE 2
Simulation Experiments. (A) Performance of scCTClust and competingmethods by ARI over simulated CITE-seq data sets. (B) Two-dimensional
visualization of latent features extracted by scCTClust using the UMAP dimension reduction method. Only cluster numbers varied in according
experiments. (C) Behavior of fusion weights during the simulation experiments.
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in Supplementary Figure S2. For instance, we can clearly see that

protein CD56 is highly expressed in NK cells. It demonstrated

that scCTClust can help us verify and may discover new

correlations between the expressions of surface proteins and

cell types.

3.2.2 scCTClust can also cluster SNARE-seq data
Although scCTClust is designed for CITE-seq data clustering

analysis, it is well modularized and can easily be generalized to

cluster other multiomics data. We selected applied scCTClust

and several state-of-the-art multiomics clustering methods on

two transcriptome–epigenome data sets. The two data sets

contain a SNARE-seq (Jin et al., 2020) CellLine data set and a

SHARE-seq (Ma et al., 2020) Ma data set. The competing

methods are, namely, Seurat V4, MOFA+, scAI, scMVAE

(Zuo and Chen, 2021), and DCCA (Zuo et al., 2021). The

performance of each method was evaluated by evaluation

index NMI and ARI.

To adapt scCTClust on SNARE-seq data, we converted the

peak level count matrix of scATAC-seq data to the gene activity

data like gene expression values of the scRNA-seq data and

modeled each omics data drawn from one zero-inflated negative

binomial (ZINB) distribution. In this way, the large dimensional

difference between scRNA-seq and scATAC-seq data can be

balanced. The training loss for scCTClust still follows Eq. 17,

while the ZINB loss consists of two parts, ZINB loss for RNA and

ZINB loss for ATAC.

We displayed the NMI and ARI of scCTClust and competing

methods applied to CellLine and Ma data sets in Figure 4. On the

four-cluster CellLine data sets, scCTClust gained similar

FIGURE 3
CITE-seq Experiments. (A) Performance of scCTClust and competing methods by NMI and ARI over real CITE-seq data sets 10X10 k,
10XInhouse, Lymph, and Spleen. (B)UMAP visualization of RNA, protein, and fused features applying scCTClust over the 10XInHouse data set; the left
three are colored by true cell types, and the right one is colored by the predictions. (C) UMAP visualization of latent features extracted by competing
integrative methods, namely, scCTClust trained without CCA loss, TotalVI, Seurat, and CiteFuse, over the 10XInHouse data set.
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performance comparing scMVAE and is slightly poorer than

DCCA. However, tuning the hyperparameters of DCCA,

especially tuning the loops for cross-omics cycle attention,

is quite time-consuming. Matrix factorization-based methods

MOFA+ and scAI did not present a significant performance,

ranking in the fourth and fifth positions of the six methods in

NMI and ARI. Seurat performed poorly with an NMI of

around 30%. Ma is a large-scale mouse skin data set with

34,774 cells. When applied on Ma-2020, scCTClust obtained

the best ARI over six methods and got an NMI ranking

second. DCCA gained an NMI and an ARI lower than

scCTClust and scMVAE. Although the attention

mechanism adopted by DCCA has potential in integrative

analysis, the low-quality part of highly sparse ATAC data

easily perturbs RNA feature extracting through network

feedback. Additionally, as the number of different cell

types concluded in Ma comes to a number of 22, it is

especially hard for the highly sparse and less informative,

ATAC-seq data to accurately distinguish all cell types. As

illustrated in the introduction, the power of this kind of

alignment rapidly deteriorates, which may account for the

unsatisfactory performance of DCCA. scAI and MOFA again

presented ordinary results, ranking fourth and fifth of all six

methods. In addition, matrix factorization-based methods

were far less scalable than deep learning methods, spending

days on large data sets such as Ma. Overall, the performance of

scCTClust well demonstrated that it has great potential for

generalizing to cluster other single-cell multiomics data.

3.3 Ablation studies

3.3.1 Canonical correlation analysis finds shared
space suited for clustering

In Figure 3, we plotted the two-dimensional visualization of

fusion representations learned by scCTClust, trained with or

without CCA loss, over the 10XInHouse data set. We can clearly

see that without improving the correlation between two omics

representations, scCTClust trained without Lcca divided CD4+

T cells into two clusters and got less compact clusters for NK cells

and CD14+ monocytes, compared to scCTClust trained with

Lcca. It illustrated that improving the correlation helps find a

better space for clustering. Comparing the visualization of fusion

representations to RNA and protein representations extracted by

scCTClust, we can see that after fusion, the clusters became more

compact and separable than any single omics representation. It

demonstrates that CCA loss helps effectively integrate

multiomics representations.

FIGURE 4
SNARE-seq experiments and ablation studies. (A) Performance of scCTClust and competing methods by NMI and ARI over the SNARE-seq data
set CellLine and SHARE-seq data set Ma. (B) Ablation study to determine the robustness of hyperparameters and the advantages of C-S divergence-
based clustering against metric-based clustering. (C) Performance of scCTClust over different scales of simulated data sets. The estimated number
of clusters and clustering results were obtained with it.
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3.3.2 C-S divergence-based clustering is more
robust than metrics-based clustering

To demonstrate the advantages of C-S divergence-based

clustering against the conventional metric-based clustering, we

replaced the present clustering module in scCTClust with a deep

embedded clustering one (Xie et al., 2016). We applied these two

implements of scCTClust on 10X10 k and 10XInHouse; each

experiment is repeated with 10 different random seeds. Themean

NMI ± the variance of NMI is depicted in Figure 4, and we can

see that our C-S divergence-based clustering got a higher mean

and lower variance, indicating that it is more accurate and more

robust than metric-based clustering.

3.3.3 scCTClust is not sensitive to
hyperparameters

We also verified stability, while varying two hyperparameters

introduced in our model, including σ and γ, which can be seen in

Figure 4. We fix the training data set and CITE-seq data set at

10X10 k and tuned those hyperparameters to observe any change

in scCTClust’s performance. We found the performance of

scCTClust to be insensitive to γ. We also found that the

adequate intervals for σ were similar across different

experiments.

3.3.4 scCTClust can cluster small-scale data
One of the limitations of many machine learning models

(especially neural networks) is the requirement of a large number

of input data, to allow for a robust estimation of the model

parameters and hyperparameters. To investigate whether

scCTClust can still perform well when data are relatively

insufficient, we applied scCTClust over a series of simulated

CITE-seq data, generated by the R package Splatter. We only

vary the number of cells in each cluster as (50, 100, 200, 500,

and 1000), with each simulated data set keeping (n_cluster,

n_protein, DE_RNA, DE_protein) = (8, 75, 0.15, 0.7). The

performance of scCTClust is evaluated with ARI and is shown in

the form of a line chart in Figure 4.We can see that the performance

of scCTClust slightly decreased as the size of the input data set

became smaller. The clustering result for the data set with the

smallest scale is still trustworthy.

3.3.5 The selection of cluster number K
Through all experiments, including scCTClust and

competing methods ones, we set the parameter K referring to

the number of clusters as the true different cell types contained in

the according data set. In practice, when the number of different

cell types is not attainable, we suggest determining the value of K

based on the k-means algorithm and evaluate the index SSE (sum

of squared error).

To be specific, we first pre-train the scCTClust model merely

with the loss for omics-specific autoencoders LAE. By doing this,

we obtain a fused latent representation z on which we apply the

k-means algorithm with different values of K to obtain a clustering

result. We compute SSEs with those clustering results and plot the

SSE-K line chart. The best value ofK is determined as the inflection

point of the chart. We repeated the aforementioned methods

10 times over the 10X10 k and CellLine data set and trained

scCTClust with the learned K each time. The evaluated K and the

ARI of the clustering result using that estimate are shown in

Figure 4. We can see that scCTClust estimates the number of

clusters accurately and can still perform well when the parameter

referring to the number of clusters is slightly biased.

4 Conclusion and discussion

Clustering CITE-seq data is a challenging job. CITE-seq data

inherit the large dimension and high sparsity from scRNA-seq

data. Clustering CITE-seq data encounter new obstacles such as

the dimension difference between omics, the difficulty to

quantify the contributions of omics to the clustering object,

and the probable low correlation between the representations

of omics. To address these problems, we proposed scCTClust.

Our scCTClust is equipped with omics-specific encoders to

extract omics features separately. scCTClust utilizes ZINB and

NB models to characterize two different omics data sets and

introduces a CCA loss to maximize the correlation between

omics representations. A decentralized clustering module is set

after the linear combination of omics representations. The

combining weights are adaptively chosen during training to

quantify the contribution of two omics to clustering objects.

Extensive real-world and simulated CITE-seq experiments have

illustrated the effectiveness and efficiency of scCTClust. SNARE-

seq and SHARE-seq experiments revealed that scCTClust can be

easily generalized to cluster other multiomics data.

However, we also find several shortages of scCTClust in the

experiments. First, scCTClust does singular value decomposition

(SVD) when computing the correlation between latent

representations of omics data and thus encounter a problem

of numerical instability. Stopping the use of all components and

use of the top components instead can alleviate this problem in

most cases. Second, in Figure 2, when clustering the six-cluster

10XInHouse data set, although scCTClust achieved high NMI

and ARI, scCTClust failed to distinguish the rare cell type

‘CD16+ monocytes’ from NK cells. Since there are only seven

samples from ‘CD16+ monocytes’ out of a total of 1182 samples,

identifying them is a tough job indeed. However, we will still

make our best efforts to address these two problems.
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