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Background: Prostate cancer (PCa) is one of the most common tumors of the

urinary system. Cuproptosis is a novel mode of controlled cell death that is

related to the development of various tumor types. However, the functions of

cuproptosis-related long noncoding RNAs (CRLs) in PCa have not yet been well

studied.

Methods: In this study, data of PCa patients were obtained from The Cancer

Genome Atlas (TCGA) and from the Changhai Hospital. Univariate and

multivariate Cox regression analyses and LASSO regression analysis were

conducted to screen CRLs linked to the prognosis of PCa patients. A risk

score model was constructed on the basis of CRLs to predict prognosis.

PCa patients were categorized into high- and low-risk cohorts. The

predictive value of the risk score was evaluated by Kaplan–Meier survival

analysis, receiver operating characteristic curves, and nomograms. In

addition, gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses were used to explore possible

pathways involving CRLs in PCa. Immune function analysis confirmed the

correlation between CRLs and immunity in PCa. Finally, we explored the

tumor mutational burden and drug response in the high- and low-risk cohorts.

Results: First, we identified seven CRLs (C1orf229, C9orf139, LIPE-AS1, MCPH1-

AS1, PRR26, SGMS1-AS1, and SNHG1) that were closely related to prognosis in

PCa. The risk score model based on the selected CRLs could accurately predict

the prognosis of PCa patients. The high-risk cohort was associated with worse

disease-free survival (DFS) time in PCa patients (p < 0.001). ROC curve analysis

was performed to confirm the validity of the signature (area under the curve

(AUC) at 1 year: 0.703). Nomograms were constructed based on the risk score

and clinicopathological features and also exhibited great predictive efficiency

for PCa. GO and KEGG analyses showed that the CRLs were mainly enriched in

metabolism-related biological pathways in PCa. In addition, immune function

analysis showed that patients in the high-risk cohort had higher TMB and were
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more sensitive to conventional chemotherapy and targeted drugs including

doxorubicin, epothilone B, etoposide, and mitomycin C.

Conclusion: We constructed a novel CRL-related risk score model to

accurately predict the prognosis of PCa patients. Our results indicate that

CRLs are potential targets for drug therapy in PCa and provide a possible

new direction for personalized treatment of PCa patients.

KEYWORDS

cuproptosis, prostate cancer, long noncoding RNA signature, prognosis model,
nomogram

Introduction

Prostate cancer (PCa) is the second most commonmalignant

tumor and the sixthmost common cause of cancer-related deaths

in men worldwide (Culp et al., 2020). Early screening for PCa is

not common, especially in Asia, and most patients have locally

advanced or metastatic PCa at the time of diagnosis. Androgen-

deprivation therapy (ADT) is the main treatment for advanced

PCa. However, long-term ADT treatment can induce a

castration-resistant state. Castration-resistant PCa (CRPC) is

associated with a higher risk of distant metastasis and worse

disease-free survival (DFS) (Moreira et al., 2017). Proper

diagnosis and management contribute greatly to preventing

development of CRPC. Therefore, it is of great importance to

find new biomarkers for the prognosis of PCa.

Cuproptosis is a newly discovered form of cell death that is

different from pyroptosis, ferroptosis, etc. Cuproptosis blocks the

tricarboxylic acid (TCA) cycle by the accumulation of

intracellular copper, which leads to protein toxic stress and

induces cell death (Tsvetkov et al., 2022). Excessive

accumulation of glycolytic intermediates and enrichment of

genes involved in the TCA cycle have significant roles in the

development of PCa (Costello et al., 2005; Shao et al., 2018; Singh

and Mills, 2021). The above biological processes induce

overactivation of the TCA cycle to facilitate proliferation of

PCa. This suggests that cuproptosis may be related to the

progression of PCa. Cuproptosis-related genes could also serve

as novel biomarkers to predict prognosis of PCa patients.

Long noncoding RNAs (lncRNAs) are noncoding RNAs with

a length of more than 200 nucleotides. Abundant studies have

shown that lncRNAs have key roles in tumor proliferation,

migration, and programmed cell death (Wen et al., 2020;

Zhang et al., 2020; Tan et al., 2021). For example, lncRNA

MNX1-AS1 regulates the migration and invasion of PCa cells

by targeting miR-2113 (Liang et al., 2022). Overexpression of

RP1-59D14.5 could activate the Hippo signaling pathway to

inhibit the proliferation, migration, and invasion of PCa

(Zhong et al., 2022). Linc00963 promotes proliferation,

metastasis, invasion, and epithelial–mesenchymal transition of

PCa via regulating the miR-542-3p/NOP2 axis (Sun et al., 2020).

This lncRNA can also upregulate the expression of TRIM24 to

promote the proliferation of CRPC (Bai et al., 2021). A study

indicated that silencing Linc01963 led to downregulation of levels

of TrkB, which improved the sensitivity of docetaxel-resistant

PCa to chemotherapy (Xing et al., 2022). To date, there has been

no study of the function of cuproptosis-related lncRNAs (CRLs)

in PCa; this requires further investigation.

In this study, we constructed a risk predictive model based on

CRLs in PCa. The risk score was compared with other

clinicopathological variables to assess the prognostic efficacy

of the model. We also analyzed the mechanism of CRLs in

PCa by performing gene ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) analyses, immune-related

function analysis, and drug sensitivity analysis. The purpose

of our study was to confirm the predictive value of CRLs in

the prognosis of PCa and demonstrate that they may have a role

in the development of new therapeutic strategies for PCa.

Materials and methods

Patients and datasets

This study included two independent PCa patient cohorts,

from The Cancer Genome Atlas (TCGA) and Changhai Hospital,

respectively. Transcriptome data (FPKM values) from TCGA-

PCa were downloaded from the TCGA official website (https://

portal.gdc.cancer.gov/) and normalized. The corresponding

clinical information of 490 PCa patients was also obtained

from TCGA. The download of TCGA data was completed on

20 May 2022. To facilitate study of the differences in gene

expression and other bioinformation of PCa tissues between

Chinese and Western populations, our team developed a

genomic and epigenomic atlas of PCa in Asian populations

(Li et al., 2020). We extracted complete FPKM-standardized

RNA sequencing (RNA-seq) data for 136 PCa patients from

Changhai Hospital in the previous study. DFS data for PCa

patients in this dataset were based on follow-up until 15 March

2022. The transcriptome data of the two cohorts were combined

via log2 normalization and removal of batch effects with the

“combat” R package. A total of 19 cuproptosis-related genes were

obtained from a previous study (NFE2L2, NLRP3, ATP7B,
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ATP7A, SLC31A1, FDX1, LIAS, LIPT1, LIPT2, DLD, DLAT,

PDHA1, PDHB, MTF1, GLS, CDKN2A, DBT, GCSH, and

DLST) (Kahlson and Dixon, 2022).

Gene mutation data for PCa were downloaded from the

TCGA official website (https://portal.gdc.cancer.gov/, accessed

on 20 May 2022). We selected “Simple Nucleus Variation” as the

data category, “Masked Somatic Mutation” as the data type, and

“mar” as the form to save the downloaded file.

Construction of the CRL predictive model

A PCa risk score model was established on the basis of RNA-

seq data from the TCGA cohort and the Changhai Hospital cohort,

which included 19 cuproptosis-related genes. The “limma” R

package was used to calculate the correlations between

expression of cuproptosis-related genes and lncRNAs. A total of

173 CRLs were extracted using the criteria |R2| ≥ 0.4 and p < 0.05.

We randomly divided the PCa patients into a training set and a test

set. In the training set, univariate Cox regression analysis was used

to screen out the CRLs (p < 0.05) that were associated with DFS of

PCa patients. To avoid overfitting of the model, we performed

LASSO regression analysis with the “glmnet” R package and

further screened out CRLs in PCa. Multivariate Cox regression

analysis was performed and identified seven CRLs (C1orf229,

C9orf139, LIPE-AS1, MCPH1-AS1, PRR26, SGMS1-AS1, and

SNHG1) that were used to construct a risk score model for

PCa. The risk scores of PCa patients were calculated by the

following formula:

RISK Scores � ∑ expression lncRNAs( )*β( )

FIGURE 1
Flow chart of the study. TCGA: The Cancer Genome Atlas; PCa: prostate cancer; lncRNAs: long noncoding RNAs. GO: gene ontology; KEGG:
Kyoto Encyclopedia of Genes and Genomes.
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Using the newly constructed PCa prognostic risk score formula,

PCa patients in the training set and the test set were categorized into

high- and low-risk cohorts. The “survival” and “survminer” R

packages were used for Kaplan–Meier survival analysis to compare

the DFS of PCa patients in the high- and low-risk cohorts. The

“timeROC” package was used to evaluate the accuracy of the novel

risk scoremodel in predicting theDFS of PCa patients. The prediction

efficiency of the new model was confirmed in the test set.

To evaluate the applicability of the CRL risk score model, we

divided different subgroups according to patients’ age, Gleason

score (GS), pathological T stage, pathological N stage, and

surgical margin (SM). Kaplan–Meier survival analysis was

used to evaluate the predictive power of the new model in

subgroups with different clinical characteristics.

To better evaluate prognosis in PCa, we combined the

cuproptosis-related risk score model with patient

clinicopathological characteristics (age, GS, T stage, N stage,

and SM). The “rms,” “regplot,” and “survival” R packages were

used to build nomograms that could predict the 1-, 3-, and 5-year

DFS of PCa patients.We also constructed a calibration curve to test

the accuracy and reliability of the nomograms.

Functional enrichment analysis of CRL
predictors

The risk scoremodel was used to classify PCa patients into high-

and low-risk cohorts. Cuproptosis-related genes with differential

expression between the high- and low-risk cohort were screened out

using the “limma” R package (|log2 fold change| ≥ 0.585, and false

discovery rate <0.05). We further performed GO and the KEGG

analyses to annotate gene functions of the differentially expressed

FIGURE 2
Construction of prognostic CRL signature in PCa. (A) Sankey diagram showing the relationships between 173 CRLs and cuproptosis-related
genes. (B) Forest plot of 39 prognostic CRLs selected by univariate Cox regression analysis. (C)Heatmap of the associations between the expression
levels of the seven CRLs and cuproptosis-related genes. (D) Sankey diagram showing the correlations of seven CRLs, cuproptosis-related genes, and
risk types.
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genes (DEGs) using the “clusterProfiler” R package. Then, the

“GSVA” R package was used to evaluate the activities of

13 immune-related pathways involving DEGs in the high- and

low-risk cohorts.

On 20 May 2022, we downloaded PCa somatic mutation data

through the full exome sequencing platform available through the

official TCGAwebsite. The downloaded data format was mutation

annotation format (MAF). The R package “maftools” was used to

screen the gene mutation frequencies of patients in the high- and

low-risk cohorts, and the mutation sites and the highest mutation

frequencies of the 15 genes in PCa were visualized. The “limma”

package was used to compare the degree of tumor mutation

burden (TMB) between the high- and low-risk cohorts. The

survival and prognosis of PCa patients with different degrees of

TMB were analyzed using the “survminer” R package.

Prediction of potential therapeutic drug
response in prostate cancer

To evaluate the ability of the CRL risk score model to

predict drug response in PCa, we used the “pRRophetic0.5″ R

FIGURE 3
Development and validation of risk score model. (A) Kaplan-Meier analysis of DFS rates in high- and low-risk cohorts in the training set. (B) Risk
score distribution, survival distribution, and heatmap of CRL expression for patients in high- and low-risk cohorts in the training set. (C) ROC curves
for 1-, 3-, and 5-year DFS based on the risk scoremodel in the training set. (D) ROC curves for risk score and other clinicopathological characteristics
based on DFS in PCa patients. (E) Forest plot of the associations between risk score and other clinicopathological characteristics by univariate
Cox regression analysis. (F) Forest plot of the associations between the risk score and other clinicopathological characteristics by multivariate Cox
regression analysis.
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package to calculate the half-maximal inhibitory

concentration (IC50) of certain conventional clinical drugs

for the treatment of PCa. Then, the “limma” R package was

used to analyze the differences in IC50 values between

the high- and low-risk cohorts to guide clinical decision-

making.

Statistical analysis

All data were sorted and analyzed using R software (version

4.1.1) and Perl 5 (version 5.30.0). Univariate Cox regression was

used to analyze the relationships between CRLs and DFS of PCa

patients. LASSO regression was used to avoid overfitting of the

FIGURE 4
Construction of nomograms. (A) Nomograms composed of clinicopathological characteristics and risk score to predict 1-, 3-, and 5-year DFS
of PCa patients; Kaplan–Meier survival curves for the high- and low-risk cohort based on clinicopathological variables are shown (B) Positive and
negative SM subgroups. (C) Age (57 years and ≤57 years) subgroups. (D) GS (6–7 and 8–10) subgroups. (E) Pathological N0 and N1 stage subgroups.
(F) Pathological T2 and T3–4 stage subgroups.
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model and obtain a model with optimized variables. Finally,

multivariate Cox analysis was used to screen out CRLs that could

be used to construct a risk score model to predict the progression

of PCa. ROC curve analysis was used to evaluate the predictive

accuracy of the DFS prognostic model. The risk score was

combined with clinical characteristics to construct a

nomogram to predict the DFS of PCa. p < 0.05 was

considered the threshold for statistical significance; all

p-values were two-tailed.

Results

Identification of CRLs in prostate cancer

A flowchart of this study is shown in Figure 1. First, we

obtained a list of 19 cuproptosis-related genes (Tsvetkov et al.,

2022). The RNA-seq dataset for the above genes was obtained

from the TCGA and Changhai Hospital data. Finally, we

obtained 173 CRLs (Figure 2A).

Construction of the CRL risk score model
in prostate cancer

To verify the prognostic potential of CRLs in PCa, the TCGA

and Changhai Hospital dataset was randomly categorized into a

training set and test set. The clinical characteristics of the samples

in the two sets are shown in Supplementary Table S1. A total of

39 CRLs related to the prognosis of PCa were preliminarily

identified by univariate Cox regression analysis performed on the

training set (Figure 2B). Then, LASSO regression analysis was

used to filter 17 of the 39 CRLs related to the prognosis of PCa.

Supplementary Figures S1A,B show the cvfit and lambda curves,

respectively. Further, multivariate Cox regression was used to

screen seven CRLs that were used to build a prognostic risk score

model. The correlations between the expression of these seven

CRLs and cuproptosis-related genes are shown in Figure 2C. A

Sankey diagram was used to visualize the co-expression

relationships between these seven CRLs and cuproptosis-

related genes. The results indicated that C1orf229, C9orf139,

and SNHG1 were risk factors, whereas LIPE-AS1, MCPH1-AS1,

PRR26, and SGMS1-AS1 were protective factors for PCa patients

(Figure 2D). The CRL risk score was calculated as follows: risk

score = MCPH1-AS1*(−1.53858002747392)–SGMS1-

AS1*0.905123102552302 + SNHG1*1.50996720923543 +

C1orf229*1.41525455919748–PRR26*1.05076026105109–LIPE-

AS1* 1.29480669719969 + C9orf139*0.783456595077748.

Validation of the CRL risk score model

The samples in the training and test sets were divided into high-

and low-risk cohorts according to the median risk score. PCa patients

in the high-risk cohort in the training set had significantly worse DFS

than those in the low-risk cohort (p < 0.001) (Figure 3A), and the

distribution of risk scores and survival was displayed in the training set

(Figure 3B). The sample distribution was also reasonable for the high-

and low-risk cohorts in all sets (Supplementary Figures S2A,B) and

the test set (Supplementary Figures S2C,D). The 1-, 3-, and 5-yearDFS

area under the curve values were 0.703, 0.712, and 0.676 respectively,

indicating good predictive performance (Figure 3C). Based on the

FIGURE 5
CRL functional enrichment analysis. (A) Bubble diagram showing results of GO enrichment analysis of prognostic CRLs. (B) Bar plot showing
results of KEGG enrichment analysis of prognostic CRLs. BP: biological process, CC: cellular component, MF: molecular function.
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ROC curves constructed from risk scores and clinicopathological

parameters, pathological T stage, GS, and risk score showed better

predictive efficacy than other clinicopathological parameters

(Figure 3D). Both univariate and multivariate Cox regression

analyses showed that pathological T stage, GS, and risk score were

independent predictors of DFS in PCa patients (Figures 3E,F).

Nomograms incorporating clinicopathological features and risk

score were constructed to improve the clinical applications of the CRL

risk scoremodel for PCa. The nomograms predictedDFS outcomes at

1, 3, and 5 years for PCa patients (Figure 4A). The calibration curve

showed good consistency between actualDFS and the predicted 1-, 3-,

and 5-year DFS values (Supplementary Figure S3). Survival analysis

after grouping patients in high- and low-risk cohorts by

clinicopathological parameters showed that for the age, GS,

pathological T stage, and SM subgroups, DFS was significantly

worse in the high-risk cohort compared with the low-risk cohort

(Figures 4B–D,F). In the pathological N stage subgroup, only

pathological N0 stage showed a significant difference between the

high- and low-risk cohorts (Figure 4E). These results demonstrate that

the risk score model maintains its predictive efficacy in most

subgroups.

GO and Kyoto Encyclopedia of Genes and
Genomes enrichment analysis of CRLs

Through GO and KEGG analyses, relevant pathways were

identified to verify the biological functions of CRLs. First, GO

analysis showed that the seven CRLs were mainly involved in the

following biological processes: muscle contraction, muscle system

process, and vascular process. The main enriched cellular

components were contractile fiber and myofibrils. The main

enriched molecular functions were metal ion transmembrane

transporter activity, actin binding, and endopeptidase inhibitor

FIGURE 6
Immune functional and mutation landscape analysis of high- and low-risk cohorts. (A) Heatmap of immune function expression in high- and
low-risk cohorts. (B) Waterfall plot of mutation rates in high- and low-risk cohorts. (C) TMB levels in high- and low-risk cohorts. (D) Kaplan-Meier
analysis of DFS rates in high- and low-TMB cohorts. (E) Kaplan-Meier analysis of DFS rates in different TMB and risk score subgroups.
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activity (Figure 5A). In addition, the seven CRLs were associated

with the calcium signaling pathway, vascular smooth muscle

contraction, and the cGMP-PKG signaling pathway according

to the KEGG enrichment analysis (Figure 5B).

Immune-related functional correlation
analysis

Accumulating evidence indicates a correlation between

immunological features and survival in malignant tumors.

Therefore, we analyzed the correlations between the

cuproptosis-related risk score model and immune-related

functions. The results showed that PCa-related lncRNAs were

highly associated with the activation of type-II-IFN response,

APC co-stimulation, T cell co-stimulation, MHC class I, and

chemokine receptors (Figure 6A).

Analysis of gene mutations in different risk
cohorts

The gene mutations in the high- and low-risk cohorts of PCa

patients were analyzed. The SPOP, TNN, TP53, KMT2D, FOXA1,

MUC16, SYNE1, KMT2C, LRP1B, ATM, RYR2, andMUC17 genes

had higher mutation frequencies in the high-risk cohort than in the

low-risk cohort, whereas PTEN and CSMD3 had lower mutation

frequencies in the high-risk cohort (Figure 6B).

Previous study had shown that high TMB is associated with

good survival outcomes in cancer immunotherapy (Samstein

et al., 2019). We therefore investigated the correlation between

risk score model and TMB. The results indicated that TMB was

significantly higher in the high-risk group of PCa patients than

those in the low-risk group (p < 0.001) (Figure 6C). DFS was

significantly worse in the high-TMB group than those in the low-

TMB group (p = 0.011) (Figure 6D). The predictive ability of risk

score model in the low- and high-TMB subgroups was also

assessed, demonstrating that the prognostic model presented

consistent predictive ability in the high- and low-TMB

subgroups. The high- or low-TMB did not influence the

predictive efficacy of the model (Figure 6E).

Drug sensitivity analysis

In order to enable practical application of our PCa risk score

model in the treatment of PCa, we performed a drug sensitivity

analysis of patients in the high- and low-risk cohorts with

chemotherapy and targeted drugs commonly used in PCa.

The results demonstrated that patients in the high-risk cohort

were significantly more sensitive to doxorubicin, epothilone B,

etoposide, and mitomycin C than those in the low-risk cohort,

and significantly less sensitive to embelin (Figures 7A–E).

Discussion

Cuproptosis is a mode of controlled cell death that is different

from apoptosis, pyroptosis, necrotic apoptosis, and ferroptosis. It

mainly induces cell death by blocking the TCA cycle. Cuproptosis can

be considered to be a very promising tumor therapeutic target (Tang

et al., 2022; Tsvetkov et al., 2022). Liu et al. showed that PCa cells

mainly depend on the TCA cycle in the G1 phase of cell cycle to

produce energy; however, in S phase, PCa cells mainly regulate the

TCA cycle and glycolysis via the Skp2- IDH1 axis, which provides

energy for development of PCa (Liu et al., 2021b). The TCA cycle is

not only linked to the initiation of cuproptosis but also supports the

growth of PCa (Bader andMcGuire, 2020). Hence, we speculated that

there might be an association between cuproptosis and PCa. Recent

research has shown that cuproptosis-related genes are potential

prognostic factors in patients with renal clear cell carcinoma (Bian

et al., 2022). However, no link between cuproptosis-related

biomarkers and the prognosis of PCa has yet been reported.

In this study, we first explored CRLs and established a risk score

model associated with DFS in PCa. First, Cox regression analysis and

LASSO regression analysis were conducted to screen CRLs related to

the prognosis of PCa. The selected lncRNAswere used to construct a

risk score model for predicting the prognosis of PCa patients.

According to our risk score model, patients were divided into

high-and low-risk cohorts. The DFS of the high-risk cohort in

PCa was significantly lower than that of the low-risk cohort (p =

0.012). Compared with other clinicopathological variables, such as

SM and pathological T and N stage, the risk score showed a better

ability to predict the prognosis of PCa patients. The ROC curve also

reflected the superior predictive ability of the risk score. To improve

the clinical applicability of the model, we also constructed a novel

nomogram combining the risk score with clinicopathological indices

(age, GS, T stage, N stage, and SM). This nomogram provides an

intuitive and quantitative evaluation method for predicting 1-, 3-,

and 5-year DFS of PCa patients. In addition, we confirmed the

feasibility of our model in a test dataset. Finally, we determined the

prognostic value of seven CRLs in PCa (C1orf229, C9orf139, LIPE-

AS1, MCPH1-AS1, PRR26, SGMS1-AS1, and SNHG1).

Previous studies have found that lncRNA LIPE-AS1 is

overexpressed in a variety of tumor types, including cervical

cancer and breast cancer, compared with normal tissues. Several

studies have also shown that high expression of LIPE-AS1 is

associated with better prognosis (Liu et al., 2021a; Xu et al.,

2021; Dai et al., 2022), consistent with our results. Xu et al.

showed that the expression of LIPE-AS1 was significantly

correlated with that of the PD-L1 gene (Xu et al., 2021). PD-1/

PD-L1 immunoblocking therapy is a very promising treatment for

advanced PCa (Xu et al., 2021). Therefore, further study of lncRNA

LIPE-AS1 may lead to the discovery of new targets for

immunotherapy of advanced PCa. Liu et al. reported that

lncRNA SGMS1-AS1 could inhibit the proliferation, migration,

and invasion of lung adenocarcinoma and could thus represent a

therapeutic target (Liu et al., 2021). LncRNA C9orf139 could
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promote the growth of pancreatic cancer cells by targeting the miR-

663a/Sox12 axis, which is a risk factor for prognosis of pancreatic

cancer (Ge et al., 2020). Our results also indicated that higher

expression of C9orf139 was associated with worse prognosis of PCa

patients. No study has yet revealed the mechanisms of C1orf229,

MCPH1-AS1, PRR26, and SNHG1 in PCa or other malignant

tumors. Therefore, the associations between these lncRNAs and

PCa require further exploration. We performed GO and KEGG

enrichment analyses to explore possiblemechanisms in the high and

low-risk cohorts; however, the specificmechanism of CRLs in PCa is

still not clear. This will be our main research direction in the future.

At present, the main challenge of PCa therapy is not the initial

treatment but the choice of therapeuticmethod for CRPC. CRPC is

often caused by drug resistance after long-term endocrine therapy.

Emerging immunotherapies may represent a new strategy to

optimize the treatment of PCa patients with CRPC (Lu et al.,

2017; Cha et al., 2020). Our results indicated significant differences

in the activated levels of Type-II-IFN response, APC co-

stimulation, T cell co-stimulation, chemokine receptor, and

MHC class I between the high- and low-risk cohorts. Thus,

these immune functions might have important roles in the

occurrence and development of PCa. Previous studies have

shown that PCa has low sensitivity to immune checkpoint

blockade treatment owing to a lack of T cell infiltration and

Type-I/II IFN characteristics (Annels et al., 2021). Studies have

also shown that OX40-specific agonists can improve

immunotherapeutic response rates in PCa patients by using

T cell co-stimulation to induce T cell activation and anti-tumor

immunity (Sturgill et al., 2021). Oncolytic viruses could also guide

the local expression of Type-II-IFN to induce PD-L1 and PD-L2 to

act on tumor cells, thereby making PCa sensitive to immune

checkpoint blockade (Samson et al., 2018). In addition to

activation of immune functions, the high-risk cohort showed

higher TMB. Previous studies have shown that higher TMB is

FIGURE 7
Drug sensitivity analysis in high- and low-risk cohorts. IC50 values of (A) Doxorubicin, (B) Embelin, (C) Epothilone B, (D) Etoposide, and (E)
Mitomycin C in high- and low-risk cohorts.
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associated with higher survival rates in patients with various tumor

types who received immune checkpoint inhibitors (Samstein et al.,

2019). Our results demonstrate that high-risk patients are likely to

be sensitive to doxorubicin, epothilone B, etoposide and

mitomycin C but resistant to embelin. Doxorubicin is among

the most widely used anti-tumor drugs for PCa treatment, but it

has clinical non-selectivity and noticeable adverse effects. In recent

years, abundant research has shown that nano-drugs can be used

as doxorubicin carriers (SreeHarsha et al., 2019; Sun et al., 2021).

Such targeted drug delivery could improve the efficacy of drugs.

Combined with our results, this indicates that patients in the high-

risk cohort might have more drug options and provides a basis for

individualized drug therapy for PCa patients.

To the best of our knowledge, this was the first study to

construct a prognostic model based on CRLs in PCa. Our PCa risk

score model was based on complete RNA-seq data of the TCGA

PCa cohort and 136 cases of PCa from the Changhai Hospital;

thus, it could provide reliable and robust prognosis prediction for

Chinese PCa patients. Our research had some limitations. First, the

details of the mechanisms involving cuproptosis and CRLs in PCa

are still not clear and need to be further elucidated by a large

number of experiments. Second, we only used TCGA data and the

Changhai Hospital data for internal validation. External validation

is needed to confirm the applicability of our model.

In conclusion, we constructed a PCa risk score model

consisting of seven CRLs. The model was independent of

clinicopathological features and could accurately predict the

prognosis of PCa patients. In addition, GO and KEGG

analyses revealed potential pathways involving cuproptosis in

PCa. Immune function analysis, TMB analysis, and drug

sensitivity analysis provided a basis for further exploration of

chemotherapy and targeted therapies for PCa. Our model may

serve as a potential prognostic indicator, and our findings

provide potential new directions for studying CRLs in PCa.
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