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Merino sheep are a breed of choice across the world, popularly kept for their

wool and mutton value. They are often reared as a pure breed or used in

crossbreeding and are a common component in synthetic breed development.

This study evaluated genetic diversity, population structure, and breed

divergence in 279 animals of Merino and Merino-based sheep breeds in

South Africa using the Illumina Ovine SNP 50K BeadChip. The sheep breeds

analysed included the three Merino-derived breeds of Dohne Merino (n = 50);

Meatmaster (n = 47); and Afrino (n = 52) and five presumed ancestral

populations of Merinos (Merino (n = 46); South African Merino (n = 10); and

South African Mutton Merino (n = 8)); and the non-Merino founding breeds of

Damara (n = 20); Ronderib Afrikaner (n = 17); and Nguni (n = 29). Highest

genetic diversity values were observed in the Dohne Merino (DM), with Ho =

0.39 ± 0.01, followed by the Meatmaster and South African Merino (SAM), with

Ho = 0.37 ± 0.03. The level of inbreeding ranged from 0.0 ± 0.02 (DM) to 0.27 ±

0.05 (Nguni). Analysis of molecular variance (AMOVA) showed high within-

population variance (>80%) across all population categories. The first principal

component (PC1) separated the Merino, South African Mutton Merino (SAMM),

DM, and Afrino (AFR) from the Meatmaster, Damara, Nguni, and Ronderib

Afrikaner (RDA). PC2 aligned each Merino-derived breed with its presumed

ancestors and separated the SAMM from the Merino and SAM. The iHS analysis

yielded selection sweeps across the AFR (12 sweeps), Meatmaster (four sweeps),

and DM (29 sweeps). Hair/wool trait genes such as FGF12; metabolic genes of

ICA1, NXPH1, and GPR171; and immune response genes of IL22, IL26, IFNAR1,

and IL10RB were reported. Other genes include HMGA, which was observed as

selection signatures in other populations; WNT5A, important in the

development of the skeleton and mammary glands; ANTXR2, associated

with adaptation to variation in climatic conditions; and BMP2, which has

been reported as strongly selected in both fat-tailed and thin-tailed

sheep. The DM vs. SAMM shared all six sweep regions on chromosomes 1,

10, and 11 with AFR vs. SAMM. Genes such as FGF12 on OAR 1:191.3–194.7 Mb

and MAP2K4 on OAR 11:28.6–31.3 Mb were observed. The selection sweep on
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chromosome 10 region 28.6–30.3 Mb harbouring the RXFP2 for polledness was

shared between the DM vs. Merino, the Meatmaster vs. Merino, and the

Meatmaster vs. Nguni. The DM vs. Merino and the Meatmaster vs. Merino

also shared an Rsb-based selection sweep on chromosome 1 region

268.5–269.9 Mb associated with the Calpain gene, CAPN7. The study

demonstrated some genetic similarities between the Merino and Merino-

derived breeds emanating from common founding populations and some

divergence driven by breed-specific selection goals. Overall, information

regarding the evolution of these composite breeds from their founding

population will guide future breed improvement programs and management

and conservation efforts.

KEYWORDS

Merino-type sheep, population genetic structure, breed divergence, SNP genotypes,
selection sweeps, EHH signatures

Introduction

Sheep serves as an important source of mutton, manure, and

wool, playing an important role in the economy of the country

(Groeneveld et al., 2010; Department Agriculture Forestry and

Fisheries–South Africa, 2015). Sheep is the ideal farm animal for

smallholder farmers due to its small body size that makes it an

easily disposable source of meat or cash (Hassan et al., 2014).

Furthermore, sheep are sold to meet financial obligations, and

their ability to survive in harsh weather conditions allows

resource-poor farmers to depend on sheep for food and

human livelihood (Hassan et al., 2014; Edea et al., 2017).

Sheep also fulfil different socio-cultural roles (Wilson, 2011).

The Merino sheep breed is regarded as one of the oldest and

most economically influential sheep breeds in the world (Al-

Atiyat et al., 2016). The Merino breeds are known for their fine

and soft wool (Department Agriculture Forestry and

Fisheries–South Africa, 2015). In South Africa, the breed was

introduced in the 1780s from Spain (Buduram, 2004; DAD-IS)

and has become adapted to South African climatic and

environmental conditions. The South African Merino (SAM)

is believed to be a composite breed developed from Spanish,

Saxony, Rambouillet, American, and Australian sheep breeds

(Mason, 1996) that likely evolved to carry different genes that

confer adaptation to particular production environments (Peters

et al., 2010). Coupled to selection within breed, several Merino-

based breeds have been developed for either wool or mutton or as

dual-purpose breeds (Hlophe, 2011).

In South Africa, the Merino breed contributed to the

development of composite breeds such as the Afrino (AFR),

Meatmaster, and Dohne Merino (DM). The DM breed was

developed by crossing the German Mutton Merino

(commonly known as SAMM and the SAM ewes) as dual-

purpose animals for both meat and wool production (Kotze,

1951; Buduram, 2004; Naidoo et al., 2005; Jordan, 2013). DM

sheep are amongst the leading wool sheep breeds in South Africa;

they are hardy animals that are well-adapted to their local

environments (e.g., resistant to parasites, particularly

Heamonchus contortus) (Dlamini et al., 2019; Synman and

Fisher, 2019). The AFR sheep breed originated during the

depressed wool market of the late 1960s when farmers began

crossbreeding Merino ewes with mutton breeds. These dual-

purpose animals reared for both meat and wool production

originated from the crossbreeding of Ronderib Afrikaner

(RDA), SAM, and SAMM in a targeted ratio of 25:25:50 of

the respective contributing breeds that thrive in the harshest

conditions (Bezuidenhout, 2012). The Meatmaster is a breed

developed to improve the meat qualities of the fat-tailed sheep

breeds (Mason, 1996). Literature indicates that the Meatmaster is

a composite of many breeds, though it was predominantly

developed from SAMM, SAM, Damara, and other indigenous

breeds (Mason, 1996; Hlophe, 2011).

In South Africa, the Merino sheep were bred with local

breeds in an effort to improve productivity and resilience of

the breeds to the harsh local conditions whilst producing

optimally (Bezuidenhout, 2012; Dlamini et al., 2019; Synman

and Fisher, 2019). With climate change and other production

challenges, the rationale of crossbreeding and developing new

and composite breeds will prevail, thus requiring an investigation

and documentation of the genomic architecture of the current

composite breeds and their evolution from the ancestral

populations. It is, therefore, worthwhile for inventory

purposes and to guide future breed development initiatives to

investigate the breed relationships and differentiations and the

genomic regions targeted by selection through breed

development of the SAM and Merino-derived breeds. The

study by Ciani et al. (2015) suggested that intensive gene flow,

founder effects, and geographic isolation are themain factors that

determined the genetic makeup of current Merino and Merino-

derived breeds.

The Ovine SNP50 genotyping array and other similarly

designed bead chips provide unprecedented power to scan the

genomes of livestock and investigate footprints of selection and

their impact on the genetic potential of breeds to meet designed
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production goals. With the advent of genome-wide SNP

genotyping, different statistical methods have been developed

to interrogate genomes for signatures of selection and the

associated effects on phenotypes. Signatures of selection in a

genome are usually associated with either high-frequency-

derived alleles or highly differentiated allele frequencies

between populations or long-range haplotypes with strong

linkage disequilibrium (LD) (Grossman et al., 2010). Statistical

methods such as the within-population-integrated haplotype

homozygosity score (iHS) (Voight et al., 2006) and the

between-population Rsb and XP-EHH test (Tang et al., 2007)

have been developed to screen for high LD and long-range

haplotype and infer on signatures of selection. The hapFLK

package detects selection signatures based on differences in

haplotype frequencies between all the populations (Fariello

et al., 2014). A number of studies have used iHS, Rsb, and

other similar methods in the investigation of selection sweeps

in sheep (Paim et al., 2018; Alvarez et al., 2020), cattle (Chen

et al., 2016; Tijani et al., 2019), and other livestock species.

A number of previous studies have contributed towards the

genomic characterisation of Merino and Merino-derived

breeds. The study by Liu et al. (2022) used whole-genome

sequences of 10 South African Mutton Merino (SAMM)

sheep together with 39 Australian Merino and Chinese

Merino (wool-type Merino) sheep to identify selection

signatures using the iHS and XP-EHH methods. On the

other hand, the study by Megdiche et al. (2019) used a

multi-cohort approach, comparing wool-type Merino-derived

breeds with non-Merino-derived breeds raised in the same

geographical regions using FST outlier methods, local

ancestry approaches, and genome-wide patterns of

distribution of runs of homozygosity (ROH) to infer on

selection signatures. The South African Merino-derived

breeds are a composite of Merino breeds and non-Merino-

type breeds of predominantly fat-tailed Damara, Nguni, and

Ronderib Afrikaner and other local breeds. In order to

complement and add more information on Merino and

Merino-derived breeds, our study included the presumed

non-Merino and presumed ancestors of the Merino-derived

breeds in the analysis. The addition of the non-Merino-type

breeds, which is unique to this study, allowed for a

comprehensive analysis and interpretation of the divergence

of the Merino-derived breeds from their presumed ancestors.

Therefore, this study aimed to investigate the population

genetic structure, breed similarities, and divergence of

Merino-derived sheep breeds in South Africa. As such, this

study first investigated population structure and admixture

levels by referencing the composite breeds of AFR, DM, and

Meatmaster against their presumed ancestral breeds of Merino,

South African Merino (SAM), South African Mutton Merino

(SAMM), Ronderib Afrikaner (RDA), Damara, and Nguni.

Based on this analysis, the study went on to investigate

regions habouring selection sweeps within the composite

breeds and between each composite breed and its presumed

ancestors. In addition to the iHS (Voight et al., 2006) and Rsb

and XP-EHH (Tang et al., 2007) methods used by Liu et al.

(2022), which investigated signatures of selection within

populations and between pairs of populations, respectively,

this study used the hapFLK (Fariello et al., 2014) method for

a global analysis of signatures of selection in a data set

consisting of both Merino-type and the non-Merino

presumed ancestors. SNP genotypes for this analysis were

limited to those generated in previous studies (Nxumalo

et al., 2018; Dzomba et al., 2020) and the International

Sheep Genomics Consortium HapMap data (http://www.

sheephapmap.org). The study hypothesised that

crossbreeding, followed by intensive selection towards breed-

specific production goals, resulted in genomic divergence

between the South African Merino and Merino-derived breeds.

Materials and methods

Animal genotypes

The study used Ovine SNP50K genotype data from a total of

279 animals obtained from five different sheep populations

consisting of Merino (n = 46), SAMM (n = 8), SAM (n = 10),

DM (n = 50), AFR (n = 52) and Meatmaster (n = 47), Nguni =

(n=29), RDA (n =17) and Damara (n =20). The AFR, DM,

Meatmaster, SAM, and SAMM genotypes were obtained from

samples kept in a biobank at Grootfontein College of Agriculture,

South Africa, together with the Nguni sheep that were sampled

from the KwaZulu-Natal region of South Africa, and the SNP

genotype data were generated and reported in a previous study by

Dzomba et al. (2020). The Damara sheep genotypes were

provided from a separate study (Nxumalo et al., 2018), while

the RDA and Merino genotypes were extracted from the ISGC

(http://www.sheephapmap.org). The AFR, DM, and Meatmaster

are the Merino-derived composite breeds, and their presumed

ancestral breeds based on literature (Synman, 2014a-d) are

presented in Table 1.

Genotype data quality control

In this study, the Illumina OvineSNP 50K BeadChip

genotypes (as reported by Nxumalo et al. (2018); Dzomba

et al. (2020); and ISGC, http://www.sheephapmap.org) were

subjected to quality control using PLINK v1.07 (Purcell et al.,

2007) and Golden Helix SVS v8.1 (Golden Helix, Inc., Bozeman,

MT, www.goldenhelix.com) to ensure all SNPs had less than 5%

missing genotypes, a call rate more than 95%, a minor allele

frequency (MAF) less than 5%, and in Hardy–Weinberg

equilibrium (p < 0.0001). Additional quality control measures

ensured that individual animals had an IBD <0.025. High levels
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of pairwise linkage disequilibrium (LD) between SNPs may affect

both the performance and efficiency of genomic prediction

models. Therefore, in order to minimise bias for SNPs in

strong linkage disequilibrium (r2 > 0.2), the second SNP was

removed, leaving a dataset with SNP pairs whose r2 < 0.2 (Purcell

et al., 2007).

Determination of within-breed genetic
diversity

To determine the expected (HE) and observed heterozygosity

(Ho) values, PLINK v1.07 (Purcell et al., 2007) was used by

running the command “--hardy” on the data for each breed.

Inbreeding coefficients were calculated as the difference between

expected (HE) and observed heterozygosity (Ho) values divided

by the expected heterozygosity (HE) values also in PLINK v1.07.

The mean HE and Ho values per breed were calculated using the

PROC MEANS procedure in SAS (2013).

Analysis of molecular variation

Analysis of molecular variance (AMOVA) was used to

determine the genetic variance within populations (FIS),

among populations within groups (FSC), and among groups

(FCT) using Arlequin v3.5 (Excoffer and Lischer, 2009). The

populations were categorised into (i) all nine breeds; (ii)

composite breeds of the AFR, DM, and Meatmaster; (iii) the

presumed ancestral populations of the Nguni, Damara, RDA,

SAMM, SAM, andMerino; and (iv) each composite breed and its

presumed ancestors, which included (a) the AFR and Ronderib

Afrikaner, Merino, and SAMM; (b) the Meatmaster, Damara,

Nguni, SAMM, and SAM; and (c) the DM, SAM, SAMM, and

Merino.

Analysis of population structure

Principal component analysis (PCA) was carried out using

Golden Helix SVS v8.1 (Golden Helix, Inc., Bozeman, MT, www.

goldenhelix.com). The eigen values and eigen vectors for the

principal components were estimated using Golden Helix SVS

v8.1 (Golden Helix, Inc., Bozeman, MT, www.goldenhelix.com).

Inference of local genomic ancestry
(PCAdmix)

PCAdmix v1.0 (Brisbin et al., 2012) was used to infer local

genomic ancestry in the composite breeds. The program utilises

haplotypes from ancestral representatives to infer the ancestry of

focal individuals. In this study, the SAMM, SAM, Merino, and

RDA were treated as the ancestral representatives of the AFR

sheep, the SAMM, SAM, and Merino breeds were treated as the

ancestral representatives of the DM, and the SAMM, SAM,

Damara, and Nguni were treated as the ancestral

representatives of the Meatmaster. The software algorithms

perform the inference chromosome-wide through PCA, via

short windows along each chromosome. Using a hidden

Markov model, PCAdmix then returns the posterior

probability (PP) of ancestry from each reference population

for each haploid individual in each window. PCAdmix

requires phased genotypes, which were obtained using

fastPHASE v1.2 (Scheet and Stephens, 2006) with default

parameters.

Analysis of selective sweeps and
differentiating genomic regions

Selection signature analysis was used to assess genome-wide

signatures of selection in the composite Merino-derived sheep of

South Africa. The hapFLK package v1.2 was used to detect

selection signatures based on differences in haplotype

frequencies between all the Merino-derived breeds included in

this study (Fariello et al., 2014). The number of haplotype clusters

(K) was calculated using the imputeqc R package and

accompanied scripts (Khvorykh and Khrunin, 2020). Using

the number of haplotype clusters, the hapFLK values and the

kinship matrix were calculated in the fastPHASE model (-K 40).

Since the implementation of this approach required the

construction of a neighbour-joining (NJ) tree from using a

kinship matrix, Reynolds genetic distances were converted

into the kinship matrix using an R script supplied with the

package. In the construction of the NJ tree, Afrino was used as the

outgroup population. The hapFLK statistic was computed as the

average value across 40 expectation maximization (EM) runs to

fit the LD model. The p-values were obtained by running a

Python script “Scaling_chi2_hapFLK.py” available at forge-dga.

TABLE 1 South African Merino-derived breeds and their ancestral breeds.

Composite breed SAMM (8) SAM (10) Merino (46) RDA (17) Damara (20) Nguni (29)

Afrino (52) X X X X

Dohne Merino (50) X X X

Meatmaster (47) X X X X
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jouy.inra.fr/documents/588, which fits a chi-squared distribution

to the empirical distribution. The Manhattan plot was rendered

in R using the qqman package (Turner, 2014) (settings for the

suggestive line q = 0.03 and genome-wide line q = 0.01) to

indicate selection.

The selection signature analysis also included

complementary extended haplotype-based statistics (EHH-

based statistics). The integrated haplotype score (iHS)

approach compares EHH between alleles at an SNP within a

population (Voight et al., 2006), while the extended haplotype-

based homozygosity (Rsb) and cross population extend

haplotype homozygosity (XP-EHH) approaches compare EHH

patterns of the same allele between two populations (Tang et al.,

2007). The ancestral alleles required for the computation were

inferred as the most common alleles in the entire dataset, as

previously described (Bahbahani et al., 2015). Haplotypes were

phased using Beagle (Browning and Browning, 2007) and used to

calculate iHS scores for each SNP/haplotype within a breed/

population and Rsb and XP-EHH scores for each SNP/haplotype

between breeds/populations. Haplotype frequencies were

calculated using sliding windows of 20 SNPs that overlapped

by five SNPs. For each locus, the iHS, XP-EHH, and Rsb scores

were computed using the REHH package (Gautier and Vitalis,

2012) in R. For the analysis of within-population (iHS) and

between-population differences (Rsb and XP-EHH), a score > 3

(i.e., a –log10 3 score corresponding to a two-sided p-value <
0.001) was used to infer the candidate genomic regions under

selection.

Mapping the region of differentiation to
find genes

Under selection SNPs (p<0.001) were mapped for genes

using the Ensembl genome browser and NCBI (NCBI; www.

ncbi.nlm.nih.gov). Ensembl Ovine (Ovis aries) genome build

OAR3 was implemented in Golden Helix SVS v8 (Golden

Helix, Inc., Bozeman, MT, www.goldenhelix.com). Candidate

genes were considered if their boundaries fell within 75 kb up or

downstream of the selection sweep region defined. The associated

genomic regions were also annotated using the Sheep QTL

database (www.animalgenome.org/cgi-bin/QTLdb/OA/

summary).

Results

Genetic diversity

All 277 animals proceeded for further analysis following

quality control. The number of SNPs retained for analysis

ranged from 36,976 in the Ronderib Afrikaner to 37,671 in

the AFR (Table 1). Highest genetic diversity values were

observed in the DM with Ho = 0.39 ± 0.01 followed by the

Meatmaster and SAMwithHo = 0.37 ± 0.03. Lowest diversity was

observed in the Nguni with Ho = 0.28 ± 0.02. Inbreeding

estimates ranged from 0.00 ± 0.02 in the DM to 0.27 ±

0.05 in the Nguni (Table 2).

Analyses of molecular variation in pure
and developed breeds

Table 3 illustrates the partitioning of variation within breeds,

among breeds, and among breeds within the categories of (i)

ancestral breeds, (ii) composite breeds, and (iii) each composite

breed and its presumed ancestors. Within-population variation

was found to be 90% in the composite breeds and 84% within the

presumed ancestral breeds, whilst it was 83% within all breeds

(Table 3). A high level of molecular variation was observed within

populations in comparison to among populations and among

individuals within populations. In the category of a breed and its

presumed ancestors, the highest within-population variation was

observed in the AFR and its presumed ancestors (92%), followed

by the DM category (90%) and least in the Meatmaster category

(77%). Among-breed variation within groups was highest in the

Meatmaster (21%) and its presumed ancestors, followed by the

group of ancestral breeds (15%), and least in the AFR and its

presumed ancestors (6.4%). Within-breed variation was highest

in the category consisting of all eight breeds (17%) and least in the

category with ancestral breeds.

Analysis of population structure

The PCA results that explained the population structure

(i.e., PC1 and PC2) explained 43% of the total variance

(Figure 1). While PC1 (28% of the variation) separated the

Merino, SAM, SAMM, DM, and AFR from the Meatmaster,

Damara, Nguni, and Ronderib Afrikaner, PC2 (15% of the

variation) separated the Damara, Meatmaster, Merino, SAM,

and DM from the SAMM, Ronderib Afrikaner, and AFR. In PC1,

the AFR was on the same axis as its Merino ancestors, but

separated from the RDA. The DM clustered with the two

Merinos, while the Meatmaster, on the other hand, clustered

in the same axis with its Nguni and Damara presumed ancestors

separated from the Merinos.

PCAdmix-based analysis of co-ancestry

The PCAdmix results are illustrated in Figure 2. Using the

PCAdmix algorithm, the genome of each composite Merino-

derived breed was partitioned into segments of inferred ancestry

at a resolution of chromosomal level. The PCAdmix of the AFR

yielded tracts of ancestry consistent to predominantly SAMM
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(49.7%, 2.8 ± 0.03) followed by Merino (28.3%, 2.5 ± 0.03) and

RDA (21.9%, 2.3 ± 0.02) (Figure 2A), consistent with a targeted

ratio of 50:25:25 of the respective contributing breeds. The DM

that was developed from crossing SAMM and the SAM ewes was

predominantly Merino (37.4%, 2.4 ± 0.03) and SAMM (39.8%,

2.6 ± 0.03) and less of the SAM (22.8%, 2.4 ± 0.02) (Figure 2B).

TheMeatmaster, a composite of many breeds (Peters et al., 2010),

was largely Nguni (41.2%, 2.4 ± 0.04) and Damara (32.0%, 2.9 ±

0.03) and less of the Merino (26.8%, 1.8 ± 0.02) breeds

(Figure 2C).

Signatures of selection

The analysis of within-population iHS >3.0 identified

21 selection sweep regions distributed across

14 chromosomes (OAR 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15,

16, and 19) in the DM sheep (Figure 3; Table 4; Supplementary

Table S1). Using this method, fewer selection sweep regions in

the Afrino and Meatmaster were identified. Only nine

selection sweep regions distributed across eight

chromosomes (OAR 1, 2, 3, 4, 6, 8, 13, and 19) were

identified in the Afrino, while only four selection sweep

regions across four chromosomes (OAR 1, 2, 3, and 9)

were identified in the Meatmaster (Figure 3).

The analysis between the composite Merino-derived breed

and each of its presumed ancestors (Rsb and XP-EHH >3.0)
identified 25 selection sweep regions distributed across

15 chromosomes (OAR 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

16, and 19) (Figure 4; Table 4; Supplementary Table S2, 3). Of the

25 selection sweep regions, 18 were identified using the iHS

(>3.0) method. hapFLK results between the composite Merino-

derived breed and each of its presumed ancestors identified eight

selection sweep regions distributed across five chromosomes

(OAR 1, 5, 10, 13, and 25) (Figure 5; Table 4; Supplementary

Table S4). All five of the selection sweep regions identified using

hapFLK analyses were also identified using the Rsb and XP-EHH

methods (>3.0).
Numerous genes and QTLs were identified in selection sweep

regions. These included genes CAPN7, IFNAR1, IL10RB,

TABLE 2 Expected and observed heterozygosity in five sheep breeds of South Africa.

Breed Number of
animals

Number of
SNPs

HE±SD HO±SD FIS

Afrino 52 37,671 0.39 ± 0.00 0.36 ± 0.01 0.06 ± 0.02

Meatmaster 47 36,586 0.39 ± 0.00 0.37 ± 0.03 0.05 ± 0.07

Merino 46 37,686 0.39 ± 0.00 0.35 ± 0.01 0.07 ± 0.03

SA Merino 10 37,452 0.39 ± 0.00 0.37 ± 0.03 0.04 ± 0.08

SA Mutton Merino 8 37,614 0.39 ± 0.00 0.34 ± 0.02 0.12 ± 0.04

Dohne Merino 50 37,638 0.39 ± 0.00 0.39 ± 0.01 0.00 ± 0.02

Damara 20 37,626 0.39 ± 0.00 0.31 ± 0.02 0.19 ± 0.04

Ronderib Afrikaner 17 36,976 0.39 ± 0.00 0.33 ± 0.03 0.14 ± 0.07

Nguni 29 37,634 0.39 ± 0.00 0.28 ± 0.02 0.27 ± 0.05

All breeds 279 37,381 0.39 ± 0.00 0.35 ± 0.03 0.08 ± 0.09

TABLE 3 Analysis of molecular variation.

Dataset Variance component (%)

Among breeds (FCT) Among breeds within
groups (FSC)

Within breeds (FIS)

All eight breeds 10.62 (17.23%) - 91.52 (82.77%)

Ancestral breeds 0.011 (1.06%) 0.149 (14.77%) 0.158 (84.17%)

Composite breeds 0.029 (2.97%) 0.071 (6.91%) 0.099 (90.11%)

Afrino and presumed ancestors 0.014 (1.42%) 0.065 (6.43%) 0.079 (92.15%)

Meatmaster and presumed ancestors 0.021 (2.12%) 0.218 (21.38%) 0.235 (76.50%)

Dohne Merino and presumed ancestors 0.048 (90.21) 0.052 (4.95%) 0.098 (90.21%)
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SLC2A2, SLC5A3, SLC7A14, CRYZL1, FGF12, GPR171 GHSR,

and SPATA16 that were within the sweep on the OAR1 region

and HMGA, IL22, and IL26 on OAR3, while genes ICA1 and

NXPH1 were observed within the OAR4 sweep; FGF5 and

ANTXR2 on OAR6; RXFP2, Y2, SLITRK4, and GPC on

OAR10; MAP2K4, SPTSSB, PPMIL, and B3GALNT on

OAR11; BMP2 on OAR13; and the WNT5A gene on OAR19.

The associated genomic regions annotated using the Sheep QTL

database (release 48) (www.animalgenome.org/cgi-bin/QTLdb/

OA/summary) identified several QTLs associated with important

health and production traits. This included QTLs associated with

reproductive traits (e.g., reproductive seasonality, QTLID:16602,

QTLID:16603, and QTLID:195222 and total lambs born, QTL:

130451); skeletal morphology and body size (e.g., carcass bone

percentage, QTLID:14293), body weight at birth, QTLID:12934;

body weight at 20 weeks, QTLID:193069; muscle density,

QTLID:95864; carcass fat percentage, QTLID:14277; ear size,

QTL:159964); milk yield and quality traits (e.g., milk fat yield,

QTL:169583); horn size and type traits (e.g., horn circumference,

QTL:161397 and horn type, QTL:161480), and immune response

(e.g., Trichostrongylus colubriformis FEC, QTLID:12884 and

QTLID:4155; Haemonchus contortus FEC, QTLID:19803;

Trichostrongylus adult and larva count, QTLID:12899 and

QTLID:12900).

Discussion

In conducting this study, we made use of available sheep

genotypes from previous projects to make inferences on genetic

diversity, breed relations, and divergence amongst the Merino-

derived breeds and their presumed ancestors. Our data were

drawn from previous studies reported for the SAMM, SAM, DM,

Meatmaster, and AFR (Dzomba et al., 2020); for the Damara

sheep (Nxumalo et al., 2018); and for the Ronderib Afrikaner and

Merino sheep (Kijas et al., 2012). These Merino and Merino-

derived sheep breeds dominate the South African sheep industry,

contributing to mutton, wool, and other sheep by-products.

Merino sheep originate from Spain and are primarily useful

and highly prized for their wool. In South Africa, their use in

livestock farming can be traced to the late 18th century when few

founder ewes and rams were donated by the Dutch government

for experimental purposes to the Cape Town government

(merinosa.co.za/history/).

The current study focused to make inferences on genetic

diversity. Observed and expected heterozygosity values together

with the inbreeding coefficient were used to explain genetic

diversity within the studied sheep breeds. The highest genetic

diversity (HE) was observed in the DM followed by the

Meatmaster, SAM, and AFR. The DM, AFR, and Meatmaster

FIGURE 1
PCA-based clustering of Merino, Merino-derived breeds, and non-Merino presumed ancestors.
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are the three Merino-derived composite breeds and are of high

genetic diversity, similar to that reported in Spanish and

Australian Merino breeds by Ciani et al. (2015). The Nguni,

Damara, and Ronderib Afrikaner, which are the indigenous

ancestral populations, are raised by few fragmented

communities (Qwabe, 2011; Nxumalo et al., 2018; Selepe

et al., 2018), which would explain the low levels of within-

population genetic diversity. Although the founding

populations of the Nguni, Damara, and Ronderib Afrikaner

had low genetic diversity, crossbreeding them with Merino

breeds to develop composite breeds resulted in increased

diversity observed in the AFR and Meatmaster breeds, which

can be attributed to the combination of two or more genetic

pools. The results of this study clearly demonstrated that

FIGURE 2
PCAmix of Merino-derived breeds [Afrino, (A); Dohne Merino, (B); and Meatmaster, (C)] and their presumed ancestors.
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significant genetic variation is maintained in the composite

Merino-derived sheep breeds.

To gain an insight into the genetic structure of breeds,

analysis of molecular variation (AMOVA) was used to

determine the portioning of variance within and between

populations and within populations amongst groups. In

panmictic populations, the variance is expected to come

from within samples (Excoffer and Lischer, 2009). If the

variance occurs among samples within the population or

comes from among populations, this would be regarded as

evidence of the existence of population structure (Excoffer and

Lischer, 2009). As expected, within-population variation was

high in the composite breeds. The AFR and DM were

established from predominantly well-managed commercial

breeds of SAMM, Merino, and SAM and, to a small extent,

the Ronderib Afrikaner in the case of the AFR. These breeds

have moderate-to-high genetic diversity (Table 2), which

explains the high within-population genetic variation in this

category. The Meatmaster, on the other hand, is based on the

small and less diverse breeds of the Damara and the Nguni,

which is reflected in the relatively lower (77%) within-

population diversity in this group. Significant population

substructure was, therefore, evident in the Meatmaster and

its presumed ancestors’ category, with an among-breed

diversity of 21%. These Merino-derived sheep breeds that

exist as widely distributed admixed populations represent

economically and historically important genetic resources

(Ciani et al., 2015).

PCAdmix confirmed the presumed ancestry of the Merino-

derived breeds of AFR, DM, and Meatmaster (Ciani et al., 2015).

PC1 separated the Merino breeds from non-Merino breeds, with

the exception of Meatmaster. While the Meatmaster was bred

from fat-tailed sheep, there is intensive and directional selection

against fat localisation and long tails in the breed (www.

meatmasters.co.za). Coupled to this, part of the breed

standards for the Meatmaster is that it should be 50%

Damara (Synman, 2014c-d). These selection criteria explain its

clustering with the Damara, Nguni, and Ronderib Afrikaner

away from the Merinos and other Merino-derived breeds

under PC1. In PC2 (15% of variation), the AFR clustered with

the SAMM was separated from the DM, Merino, and SAM.

According to the breed standards (http://www.afrino.org.za),

80% of the income from AFR is generated through meat

production and 20% through wool production. This would be

regarded as a biased selection objective towards growth and meat

production traits, which explains why the AFR clustered with the

SAMM. The Ronderib Afrikaner sheep are an improved form of

the Namaqua Afrikaner sheep (Epstein, 1960), and together with

the Damara and Nguni sheep are fat-tailed sheep (Peters et al.,

2010), which could have formed the basis of their clustering

FIGURE 3
iHS scores of (A) Afrino, (B) Meatmaster, and (C) Dohne Merino.
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TABLE 4 iHS-based selection sweep regions and associated genes in Afrino, Dohne Merino, and Meatmaster sheep breeds and Rsb, XP-EHH and
hapFLK-based selection sweep regions for Afrino, Dohne Merino, Meatmaster sheep breeds and their presumed ancestors.

Start Stop Method QTL trait
(QTLID)*

Candidate gene

1 119.6 138.1 iHSDM; iHSAfrino Muscle weight in carcass (14276), carcass fat
percentage (14277, 14251, and 14277), lean meat
yield percentage (14278), and bone weight in
carcass (14275)

SLC5A3; MRPS6; IFNGR2; IFNAR1; IL10RB,
PAXBP1; SYNJ1; MIS1BA; HUNK; SCAF4,
S15; CHODL; BTG3; CXADR

1 168.6 201.5 iHSDM; iHSAfrino; Rsb_DM/SAMM;
Rsb_Afrino/SAMM

Lean meat yield percentage (14278 and 14252),
carcass fat percentage (14277 and 14251),
reproductive seasonality (16602), and muscle
weight in carcass (14320, 14270, and 14250)

ALCAM; CBLB; HEG1; ZNF148; LRCH3;
SLC49A4; SLC51A; AP; FGF12; GMNC;
PLAAT1; IL1RAP; TPRG1; ATP13A4

1 212.1 244.1 iHSMM; iHSDM; Rsb_DM/Merino; XP-
EHH_DM/Merino; Rsb_Afrino/Merino;
Rsb_Afrino/RDA; XP-EHH_DM/Merino; XP-
EHH_Afrino/Merino; XP-EHH_MM/Merino

Carcass fat percentage (14277), lean meat yield
percentage (14252), and reproductive
seasonality (16603)

SPATA16; ECT2; GHSR; SLC2A2; SLC7A14;
SHOX2; VEPH1; PTX3; CCNL1

1 263.4 285.0 Rsb_DM/Merino; XP-EHH_DM/Merino;
Rsb_MM/Nguni; XP-EHH_MM/Nguni;
Rsb_MM/Merino; XP-EHH_MM/Merino; XP-
EHH_Afrino/Merino hapFLK

Carcass fat percentage (14277), reproductive
seasonality (16603), average daily gain (13948,
13955, and 13964) , and Trichostrongylus
colubriformis FEC (12884)

IGSF10; P2RY12; P2RY14; WWTR1; RNF13;
GPR171; DIPK2A; SLC9A9; CH5T2; SETD4;
CBR3; CAPN7

2 6.2 26.0 iHSMM; iHSDM; Rsb_Afrino/RDA; XP-
EHH_DM/Merino; XP-EHH_Afrino/Merino;
XP-EHH_Afrino/SAMM; XP-EHH_MM/
Merino

Body weight (57659, 14171, and 14280), average
daily gain (57776), hot carcass weight (14279),
hindquarter weight (14161), subcutaneous fat
thickness (13722), loin fat weight (13732); and
meat color (14163, 14167, and 14165)

TMC1; ALDH1A1; FAM189A2; HPF1; CLCN3;
NEK1

2 62.0 109.5 iHSMM; iHSDM; XP-EHH_Afrino/RDA No hit

2 130.9 168.6 iHSDM; iHSAfrino XP-EHH_DM/Merino; XP-
EHH_DM/SAMerino; XP-EHH_Afrino/
Merino

Hot carcass weight (14279), meat color (14163,
14165, 14169, 14164, and 14168), longissimus
muscle area/width/weight (13728, 13726,
13729), loin fat thickness (13730), and
subcutaneous fat weight (13731 and 13738)

LRP1B

3 15.4 17.2 Rsb_DM/SAMerino; XP-EHH_DM/SAMerino Trichostrongylus colubriformis FEC (14155), and
body weight (56 weeks) (13927)

SOX11; RSAD2; RNF144A

3 45.9 74.3 Rsb_Afrino/RDA; Rsb_DM/Merino; XP-
EHH_DM/Merino; XP-EHH_MM/Merino;
XP-EHH_Afrino/Merino

Internal fat amount (14281) and body weight
(56 weeks) (13927)

LRRTM4; XPO1; FAM161A; NRXN1; U6

3 114.5 153.3 iHSAfrino; iHSDM;
iHSMM

Internal fat amount (14281 and 14255),
Trichostrongylus colubriformis FEC (12885) ,
meat-conjugated linoleic acid content (17220),
and body weight at birth (17230)

SYT1; PPP1R12A; ZNF641; PFKM; SLC48A1;
COL2A1; HDAC7; SLC38A4; SLS38A2;
SLC38A1; ARID2; YEATS4; LYZ; KCNMB4;
SLC35E3; RAP1B; CCT2; MYRFL; IL22; IL26

4 16.1 63.5 iHSAfrino; iHSDM Body weight (17232), Haemonchus contortus
FEC (19803)

ICA1; NXPH1; AVL9; NT5C3A; FKBP9;
PDE1C

5 23.8 85.5 iHSDM; Rsb_MM/Merino; hapFLK< Body weight (birth) (12934) and body weight
(20 weeks) (193069)

SLC12A2; MEGF10; PHAX; TEX43; PRSS57;
PLPPR3; RNF126; STK11; REDX01

6 26.1 38.5 iHSDM; Rsb_Afrino/RDA; XP-EHH_Afrino/
RDA; XP-EHH_Afrino/Merino; XP-
EHH_DM/Merino; XP-EHH_MM/Damara

Fat weight in carcass (95819 and 95820), total fat
area (95836, 95837, 95826, 95827, and 95828),
fat density (95850), and body weight (14261,
14284, 193062, 193068, and 193063)

STPG2, CCSER1; MMRNA1; SNCA; FAM13A;
ABCG2; SPP1; LCORl

6 41.3 64.4 iHSAfrino; Rsb_Afrino/RDA; XP-
EHH_Afrino/RDA XP-EHH_DM/Merino; XP-
EHH_MM/Nguni

Fat weight in carcass (95822 and 95823), total fat
area (95838, 95839, and 95841), fat density
(95840 and 95842), and muscle density (95864)

GBA3; PPARGC1A; DHX15; SOD3; LG12

6 93.5 102.3 iHSAfrino; iHSDM Body weight (slaughter) (14284),
Trichostrongylus colubriformis FEC (12887),
reproductive seasonality (195222), and lean
meat yield percentage (14286)

GUF1; YIPF7; GNPDA2; GABRA4; ANTXR2;
FGF5; GK2; FGFS; SLC10A6; PTPN13;
MAPK10

7 37.2 93.0 XP-EHH_MM/Damara; XP-EHH_DM/
Merino

No hit

8 47.4 51.8 iHSAfrino; iHSDM; XP-EHH_DM/Merino Trichostrongylus adult and larva count
(12899 and 12900) and internal fat amount
(14288)

LYRM2; BACH2; GJA10; GABRR1; RARS2;
SLC35A; SPACA1

(Continued on following page)
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together in PC1. Even though PCA is a statistical method

commonly used in population genetics to identify structure in

the distribution of genetic variation across populations, PCA

projections are strongly influenced by uneven sampling

(McVean, 2009), which might have been the case in this

study. Despite the uneven sample sizes, the PCA clustering

observed in this study resembles that observed in a prior

study (Dzomba et al., 2020) that included more populations

and sample sizes from which the investigated data set was sub-

sampled, which validates the results. Similar clustering of

Merino-type and non-Merino-type breeds was reported in

other studies (Gifford-Gonzalez and Hanotte, 2011; Kijas et al.

, 2012). In spite of the importance of these breeds, there is limited

information on the genomic influence of either Merino or other

indigenous sheep on the different composite Merino-derived

breeds. Results of this study that increase our knowledge

regarding Merino-based breeds will, therefore, inform and

guide future breed improvement programs and management

and conservation efforts.

iHS analysis is used to infer recent and generally segregating

selection sweeps (Voight et al., 2006) and has been used in

humans (Liu et al., 2013) and a number of livestock studies

TABLE 4 (Continued) iHS-based selection sweep regions and associated genes in Afrino, DohneMerino, andMeatmaster sheep breeds and Rsb, XP-EHH
and hapFLK-based selection sweep regions for Afrino, Dohne Merino, Meatmaster sheep breeds and their presumed ancestors.

Start Stop Method QTL trait
(QTLID)*

Candidate gene

9 31.8 40.7 iHSMM; iHSDM; XP-EHH_MM/Nguni Hot carcass weight (14290) and longissimus
muscle area (14323)

SPIDR; PRKDC;MCM4, RGS20; SOX17; TGS1;
TCEA1;

10 14.5 32.5 Rsb_MM/Nguni; XP-EHH_MM/Nguni;
Rsb_DM/Merino; XP-EHH_DM/Merino;
Rsb_MM/Merino; XP-EHH_MM/Merino; XP-
EHH_DM/SAMerino; XP-EHH_Afrino/
Merino

Tail fat deposition (127009), milk fat yield (QTL:
169583), ear size (QTL:159964), total lambs born
(QTL:130451), horn circumference (QTL:
161397), and horn type (QTL:161480)

RXFP2; RXFP2; FRY; BSGLCT

10 34.5 59.4 iHSDM; Rsb_Afrino/RDA; Rsb_MM/Nguni;
Rsb_DM/SAMM; Rsb_Afrino/SAMM; XP-
EHH_DM/SAMM XP-EHH_MM/SAMM;
P-EHH_Afrino/SAMM XP-EHH_Afrino/
Merino; XP-EHH_MM/SAMerino; XP-
EHH_Afrino/RDA; XP-EHH_MM/Damara
XP-EHH_MM/Nguni

Fat weight in carcass (14292), carcass bone
percentage (14293), carcass fat percentage
(14294), and lean meat yield percentage (14295)

SPRY2; SLITRK4; SLITRK5; SLC16A9; BORA;
PIBF1; MZT1

10 59.6 72.1 iHSDM; Rsb_Afrino/RDA; XP-EHH_Afrino/
RDA; Rsb_MM/Nguni; XP-EHH_MM/Nguni;
XP-EHH_Afrino/Merino XP-EHH_Afrino/
SAMM XP-EHH_MM/Damara XP-
EHH_MM/SAMM; hapFLK

Body weight (57656), fat weight in carcass
(14292), carcass bone percentage (14293),
carcass fat percentage (14294), and lean meat
yield percentage (14295)

GPC5; SLITRK5; SLC16A9; GPR180; GPC5;
TGDS; DCT; CTNNA3; GCD; TGDS; RUFY2;
SLC25A16; COX20P

10 78.6 81.7 Rsb_DM/Merino XP-EHH_DM/Merino
Rsb_MM/Merino XP-EHH_MM/Merino XP-
EHH_Afrino/Merino

Fat weight in carcass (14264), carcass fat
percentage (14265), and lean meat yield
percentage (14266)

POGLUT2; SLC10A2

11 21.5 38.2 Rsb_Afrino/SAMM; XP-EHH_Afrino/Merino;
Rsb_DM/Merino; XP-EHH_DM/Merino;
Rsb_DM/SAMerino; Rsb_DM/SAMM; XP-
EHH_DM/SAMM; Rsb_MM/Merino; XP-
EHH_MM/Merino

Internal fat amount (14298), body weight
(14297), average daily gain (13945 and 13966),
and hot carcass weight (14296)

MAP2K4; DNAH9; MYH3; MYH4; MYH8;
NCOR1; ZNF624; SLC47A2; SLC5A12;
MAPK7; FSHB; SOX15; SAT2; SNORA62;
SOX; SLC13A5; TEKT1

12 28.3 78.1 iHSDM; XP-EHH_Afrino/Merino; XP-
EHH_DM/Merino

Body weight (yearling) (213860) VAMP4; FMO4; TNFSF18; ACOT7; NOL9;
HES3; RNF207

13 36.5 53.7 iHSAfrino; iHSDM;
Rsb_Afrino/RDA; XP-EHH_ Afrino/RDA; XP-
EHH_Afrino/Merino; hapFLK

Muscle weight in carcass (14301); tail fat
deposition (127011)

BFSP1; RRBP1; DSTN; SNX5; KAT14;
OVOL2; RASSF2; SLC23A2; BMP2

14 27 30.9 Rsb_MM/Nguni; XP-EHH_MM/Nguni Dressing percentage (14304 and 14270), bone
weight in carcass (14302), and fat weight in
carcass (14269)

CDH8

16 33.5 45.8 iHSDM; XP-EHH_DM/SAMerino Subcutaneous fat thickness/area (14309/14308),
body weight (slaughter) (14306), and Dressing
percentage (14305)

19 25.8 27.3 iHSDM XP-EHH_DM/SAMerino Average daily gain (193081)

19 41.2 48.8 iHSAfrino; iHS|DM; Rsb_MM/Nguni; XP-
EHH_MM/Nguni

Entropion (193397, 193378, and 193385) FAM3D; FAM107A; C3or167; ACOX2;
WNT5A; IL17RD; IL17RB; ACTR8; DCP1A;
SELENOK; CACNA1D; NEK4; SPCS1

*The associated genomic regions were annotated using the Sheep QTL database (www.animalgenome.org/cgi-bin/QTLdb/OA/summary).
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for dairy cattle (Cheruiyot et al., 2018), pigs (Chen et al.,

2016),etc. For AFR, FGF12, a candidate gene for hair follicle

development (Lv et al., 2020) and reproductive traits (An et al.,

2018), and ICA1 and NXPH1, associated with metabolic

pathways (Akanno et al., 2018), were some of the key

candidate genes identified. Although the AFR is

predominantly selected or weighted for meat quality traits, the

breed was established as a white-woolen breed for use as a

terminal sire when crossed with Merino ewes (Synman, 2014)

in response to the presence of kemp (coloured fibre) in crosses of

Merino ewes with mutton breeds. The signature for hair follicle

development might be a reflection of this selection. ICA1 and

NXPH1, on the other hand, are signatures of the

intensive selection weight put on the AFR for meat traits

(Synman, 2014).

The four selection sweep regions identified in theMeatmaster

breed corresponded to GPR171 on chromosome 1 which is

associated with feed and metabolism (Ruiz-Larranaga et al.,

2018). The HMGA gene on chromosome 3 was also observed

as a selection signature in Sardinian ancestral black sheep (Kijas

et al., 2012) and in Spanish breeds (Manunza et al., 2016).

HMGA2 is involved in skeletal morphology and body size

(Kijas et al., 2012) and has been shown to be under selection

in dogs with divergent stature (Jones et al., 2008; Akey et al.,

2010). According to the breed society standards (www.

meatmastersa.co.za/Breed-Standard.htm), Meatmaster sheep

must be of average size and have a functional, efficient body

conformation and well-placed legs with excellent walking ability.

Such selection for body size and skeletal morphology could be the

signature presented through the HMGA2 gene, which, together

with the GPR171 gene associated with feed and metabolism,

could ensure optimal performance for mutton production. Also,

IL22 and IL26 on chromosome 3 are immune response genes that

have been reported as under selection in some studies, including

FIGURE 4
Genome-wide XP-EHH and Rsb scores of Merino-derived breeds and against their presumedancestors. Afrino and Merino (A), Afrino and RDA
(B), Afrino and SAMuttonMerino (C), Dohne Merino and Merino (D), Dohne Merino and SAMerino (E), Dohne Merino and SAMuttonMerino (F),
Meatmaster and Damara (G), Meatmaster and Nguni (H), Meatmaster and SAMerino (I) and Meatmaster and SAMuttonMerino (J).
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FIGURE 5
XP-EHH scores of Merino-derived breeds against presumed ancestors. Genome-wide XPGenome-wide XP-EHH scores of Merino-derived
breeds and against ancestors. Afrino and Merino (A), Afrino and RDA (B), Afrino and (C), Dohne Merino and Merino (D), Dohne Merino and SAMerino
Dohne Merino and SAMuttonMerino (F), Meatmaster and Damara Meatmaster and Nguni (H), Meatmaster and SAMerino (I) and Meatmaster and
SAMuttonMerino (J).

FIGURE 6
hapFLK scores of Merino-derived breeds against presumed ancestors.
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Fariello et al. (2014). Detection of immune response genes is

especially expected in breeds raised in arid environments with

harsh and compromised production systems (Mdladla et al.,

2018).

Interestingly, more selection sweep regions were identified in

the DM sheep relative to the AFR and Meatmaster. DM shared two

sweeps with AFR, one on chromosome 1 in regions 119, 0–121, and

0Mbs, which harbours IFNAR1, IL10RB, SLC5A3, and CRYZL1

associated with anti-inflammatory and immune response (Uemoto

et al., 2020) and reproductive traits such as implantation of the

conceptus to the uterus (Zhang et al., 2013), and one on

chromosome 19 position in regions 46, 7–48, and 1Mbs, which

harbours the gene WNT5A (45 and 5Mb), important in

morphology, particularly the development of limbs and skeleton

(Fariello et al., 2014) and reproductive traits (including mammary

gland development) (Hao et al., 2019). Other sweeps on

chromosome 6 (93, 5–95, and 2Mb) associated with the FGF5

gene are reported as a signature of selection in worldwide sheep

breeds by Kijas et al. (2012) and Fariello et al. (2014), and the

ANTXR2 gene is associated with adaptation to variation in climatic

conditions (Lv et al., 2020). A selection sweep on chromosome 13 on

regions 46, 5–48, and 1Mb in the AFR and 49, 1–50, and 9Mb in

the DM was associated with the gene BMP2, which has been

reported as a signature of selection by Kijas et al. (2012) and

Fariello et al. (2014) and is strongly selected in both fat-tailed

and thin-tailed sheep (Dong et al., 2020).

Rsb, XP-EHH, and hapFLK results presented selection sweeps

between a composite Merino-derived breed and each of its

presumed ancestors. Sweeps on OAR 1 yielded genes such as the

GHSR important for growth and carcass traits in sheep (Bahrami

et al., 2012); SPATA16 is associated with environmental variables in

goats (Mdladla et al., 2018) and male fertility in cattle (Wang et al.,

2014); and the SLC7A14 and SLC2A2 are involved in nutrient

transport and absorption (Wiedemar et al., 2015). The selection

sweep on chromosome 10 in regions 28, 6–30, and 3Mb is

associated with the RXFP2 gene associated with polledness

(Wang et al., 2014; Wiedemar and Drogenmuller, 2015). The

region carried other genes such as the FRY gene, which is

associated with lambing percentage, ear size, and coat phenotypes

(Wei et al., 2015), and the BSGLCT gene, which is associated with

wool traits. Zhang et al. (2013) suggested the role of FRY in sheep

wool development. Overall, the Rsb, XP-EHH, and hapFLK analyses

revealed the direction of selection when these breeds were selected,

which focused on meat and wool production and robustness of

breed through body confirmation, disease resistance, and

adaptability to the harsh production conditions in South Africa

(Kim et al., 2016; Molotsi et al., 2017).

Although fairly documented, there is limited information

on the genomic influence of either Merino or other

indigenous sheep on the different composite Merino-

derived breeds. This study provided requisite information

on the evolution of these composite breeds from their

founding populations, which will inform and guide future

breed improvement programs and management and

conservation efforts.
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