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Lung squamous cell carcinoma (LUSC) is the second most common

histopathological subtype of lung cancer, and smoking is the leading cause

of this type of cancer. However, the critical factors that directly affect the

survival rate and sensitivity to immunotherapy of smoking LUSC patients are still

unknown. Previous studies have highlighted the role of N6-methyladenosine

(m6A) RNA modification, the most common epigenetic modification in

eukaryotic species, together with immune-related long non-coding RNAs

(lncRNAs) in promoting the development and progression of tumors. Thus,

elucidating m6A-modified immune lncRNAs in LUSC patients with smoking

history is vital. In this study, we described the expression and mutation features

of the 24 m6A-related regulators in the smoking-associated LUSC cohort from

The Cancer Genome Atlas (TCGA) database. Then, two distinct subtypes based

on the expression levels of the prognostic m6A-regulated immune lncRNAs

were defined, and differentially expressed genes (DEGs) between the subtypes

were identified. The distributions of clinical characteristics and the tumor

microenvironment (TME) between clusters were analyzed. Finally, we

established a lncRNA-associated risk model and exhaustively clarified the

clinical features, prognosis, immune landscape, and drug sensitivity on the

basis of this scoring system. Our findings give insight into potential mechanisms

of LUSC tumorigenesis and development and provide new ideas in offering

LUSC patients with individual and effective immunotherapies.
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Introduction

Lung cancer, one of the leading causes of cancer death all

over the world, also has a higher morbidity than other cancer

types, seriously imperiling people’s health and lives nowadays.

Many key issues have been identified and considered to be closely

related to the tumorigenesis of lung cancer, such as smoking,

environmental pollution, occupational exposure, and, especially,

some genetic factors (Goldstraw et al., 2011). Lung squamous cell

carcinoma (LUSC) is the most common histopathological

subtype after lung adenocarcinoma (LUAD), accounting for

nearly 30% of patients who are diagnosed with lung cancer

(Socinski et al., 2018). It is worth mentioning that smoking is

the leading cause of LUSC, and most patients with this kind of

cancer have a clear history of smoking (Alexandrov et al., 2016).

One research focusing on non-smoking lung cancer in Eastern

Asia revealed that smoking-related and non-smoking-related

lung cancers were quite different, and they were likely to

show different responses to targeted therapies (Chen et al.,

2020a). In addition, numerous studies have found that

smoking could profoundly influence the tumor

microenvironment (TME) and lung microbiome, promoting

the progression and metastasis of lung cancer (Desricha rd

et al., 2018). To have a better understanding of LUSC, much

research and clinical trials were dedicated to revealing the

molecular mechanisms of the cancer and putting forward

some effective measures to decrease the mortality of the

disease both in prevention and treatment aspects, including

early screening and some particular therapy methods like

immunotherapy (Pan et al., 2021). Although these measures

may achieve a certain effect in some degree, the 5-year overall

survival rate does not markedly improve, especially for these

advanced or poorly differentiated tumors. For these reasons, it is

necessary to build an effective and accurate risk model to predict

the prognosis of LUSC patients with smoking history.

N6-methyladenosine (m6A) RNA modification is a current

hotspot in the cancer research area. Although it was first

discovered as early as the 1970s, further research was

significantly limited by the detection and research techniques

those days, and studies on this kind of epigenetic modification

have been stagnant for a long time (Wang et al., 2014). With the

development of high-throughput sequencing, colorimetry, and

liquid chromatography–mass spectrometry techniques (specific

techniques including MeRIP-seq, miCLIP-seq, SCARLET, and

LC-MS/MS), RNA methylation attracted people’s attention

again, and it has now been shown that more than half of the

nucleic acid methylation modifications belong to m6A

modification. By interacting with various functional proteins,

m6A modification can affect the processing of almost all kinds of

RNA molecules in multiple species, such as messenger RNA

(mRNA; splicing, subcellular localization, polyadenylation,

translation, and degradation), small non-coding RNA, and

transporter RNA (tRNA) (Cantara et al., 2011; Liu and Jia,

2014; Alarcon et al., 2015; Zhang and Jia, 2018). In addition,

according to previous studies, many biological processes such as

tissue development, circadian rhythm regulation, DNA damage

response, gender determination, and the development and

progression of various diseases, especially of tumors, were

closely regulated by this sort of epigenetic modification (Lence

et al., 2016; Xiang et al., 2017; Zhao et al., 2017; Kasowitz et al.,

2018; Tong et al., 2018). Further studies have illuminated that

several enzymes or proteins were directly involved in the m6A

RNA modification process, and then, these proteins could be

divided into three categories based on their special structural

features and functions: 1. methyltransferase (writers): a complex

composed of multiple subunits to modify m6A methylation on

RNA, including a core complex consisting of METTL3 (catalytic

subunit) and METTL14 and several subunits that can increase

the activity and specificity of the complex, such as WTAP,

RBM15, KIAA1429, ZC3H13, and RBM15B; 2. m6A-binding

proteins (readers): playing a biological function by recognizing

and binding m6A methylation marks on RNA, including

YTHDF family of proteins (YTHDF1-3), YTHDC1, YTHDC2,

HNRNPC, HNRNPA2B1, EIF3A, and IGF2BPs; 3. demethylases:

only two demethylases, FTO and ALKBH5, have been identified

so far, which can remove the m6A methyl group from the

modulated RNA, although they may exhibit different

demethylation activities in a specific tissue or reaction

environment (Jiang et al., 2021).

Long non-coding RNAs (lncRNAs), as one of the most

important kinds of non-coding RNAs, are longer than

200 nucleotides in length but are not translated into proteins

(Esteller, 2011). Although structurally similar to mRNAs,

lncRNAs still have some special and unique features such as

low conservation, high abundance, and timing specificity. With

the development of high-throughput sequencing technology, it is

believed that more lncRNAs will be discovered, and their

biological functions in diseases, especially in tumorigenesis,

will also be elucidated in a new way. Recent research studies

have shown that lncRNAs could also undergo m6A methylation

modification ultimately affecting their stability, subcellular

localization, and local structure, resulting in the alteration of

their biological regulatory functions (Chen et al., 2020b).

Moreover, lncRNAs were also reported to be involved in the

processes of immune response in multiple cancers (Hu et al.,

2019). Thus, whether immune-related lncRNAs could be

modulated by m6A modification and promote tumor

progression in LUSC needs further studies.

TME refers to the inner environment in which tumor cells

arise and live. A variety of cells including tumor cells, fibroblasts,

immune and inflammatory cells, along with the intercellular

substance, microvessels, and immune-associated biological

molecules infiltrating in this region, together make up the

TME (Liu et al., 2021). In recent years, increasing research

has concentrated on the impact of the dynamic changes and

related factors of the TME on tumorigenesis and progression of
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tumors, and multiple mechanisms underlying the TME-

promoting tumor development have been exhaustively

clarified (Ringquist et al., 2021). As the TME can profoundly

influence the progression and strategies of immune therapies for

cancer patients, several algorithms based on RNA-seq data to

evaluate the composition of immune-related cells in the TME

have been developed, including TIMER, CIBERSORT, EPIC,

MCP-counter, and ESTIMATE (Xu et al., 2021).

As presented earlier, m6A RNA modification, immune-

related lncRNA, and dynamic changes in TME components

occupy important positions in the development and

progression of tumors. Whether the immune-related lncRNAs

regulated bym6A regulators can significantly affect the prognosis

of smoking-associated LUSC patients in a coordinated manner

through the TMEmechanisms deserves further studies, although

several comprehensive and systematic studies have demonstrated

these complicated relationships in LUAD patients (Zhang et al.,

2021; Zheng et al., 2021; Zhou and Gao, 2021). Despite much

research existing in the field of LUAD, the study of LUSC in this

area has obviously not received enough attention. Although

surgery for early LUSC can achieve good therapeutic results,

advanced patients do not have many appropriate treatment

options on the grounds that this kind of tumor is particularly

resistant to radiochemotherapy. Owing to the reasons mentioned

earlier, immunotherapy combined with chemotherapy has

become the first-line treatment for advanced LUSC patients.

Thus, exploring the role of m6A RNA methylation in the

immune response of LUSC patients will help develop better

immunotherapy strategies.

In this study, we first described the expression profiles and

mutation characteristics of the 24 m6A-related proteins in the

smoking-associated LUSC cohort from The Cancer Genome

Atlas (TCGA) database. Second, lncRNAs that were closely

co-expressed with immune genes and m6A regulators were

identified. Then, these LUSC patients were classified into

different molecular subtypes based on the expression levels of

the selected lncRNAs. Gene subtypes were then set up according

to the differentially expressed genes (DEGs) of the previously

established molecular subtypes. Finally, we established a

lncRNA-associated signature as a prognostic model and

exhaustively clarified the immune landscape on the basis of

this scoring system, aiming to provide insight into the

potential immune mechanisms of LUSC tumorigenesis and

predicting the prognosis and response of immunotherapy for

smoking-associated LUSC patients.

Materials and methods

Patients and datasets

The LUSC patients with definite smoking history, including

reformed and current smokers in TCGA database, were

enrolled in this study. All patients’ information, including

RNA-seq data (exhibited as fragments per kilobase million,

FPKM), corresponding clinical information (age, gender, TNM

(tumor node metastasis classification) stage, T (tumor), N

(node), M (metastasis), smoking history, overall survival, and

survival state), and single nucleotide variation data, was

obtained from TCGA database website (https://portal.gdc.

cancer.gov/), totalizing 49 normal and 473 tumor samples.

LUSC samples with no complete follow-up information were

excluded to reduce the statistical bias. The copy number

variation (CNV) data on TCGA-LUSC samples were

collected from Xena functional genomics explorer (https://

xenabrowser.net/).

Identification of m6A-regulated immune
LncRNAs in the smoking-associated
TCGA-LUSC cohort

A total of 24 genes were found to act as, in light of previous

studies, m6A regulators, including eight writers (METTL3,

METTL14, METTL16, WTAP, VIRMA, ZC3H13, RBM15, and

RBM15B), 14 readers (YTHDC1, YTHDC2, YTHDF1, YTHDF2,

YTHDF3, HNRNPC, FMR1, LRPPRC, HNRNPA2B1, IGF2BP1,

IGF2BP2, IGF2BP3,RBMX, and EIF3A), and two erasers (FTO and

ALKBH5). For this reason, we extracted the expression matrix of

the 24 m6A-related genes and lncRNAs in the smoking-associated

TCGA-LUSC cohorts. The Pearson correlation coefficients were

calculated to access the co-expression correlation between the

24 m6A-related genes and lncRNAs. LncRNAs that met the

threshold of |Pearson correlation coefficients| > 0.30 and p <
0.001 were considered to be m6A-related lncRNAs. Furthermore,

immune-related genes were obtained from IMMPORT (https://

www.immport.org/home) and InnateDB (https://www.

innatedb.ca/) websites. The co-expression relationship

between the immune-related genes and lncRNAs was

calculated by Pearson analysis, and lncRNAs with |Pearson

correlation coefficients| > 0.40 and p < 0.001 were regarded as

immune-related lncRNAs. Intersections of the two lncRNA sets

were defined as m6A-regulated immune lncRNAs.

Unsupervised consensus clustering
analysis

To identify the molecular subgroups that were mediated by

the expression patterns of m6A-related immune lncRNAs or

DEGs in the smoking-associated LUSC cohort, the

“ConsensusClusterPlus” package of R software (version 3.6.2)

was utilized for unsupervised consensus clustering analysis

(50 repetitions and 0.8 pItem). The cumulative distribution

function (CDF) curve and consensus matrix were combined

to find the most suitable k value that could provide a more
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representative clustering model for LUSC patients. The

differences in gene expressions, clinical characteristics (age,

gender, TNM stage, T, N, and smoking history), and

prognosis between the classified subgroups were evaluated

using the Wilcoxon test, chi-squared test, and Kaplan–Meier

survival curves, respectively.

Tumor microenvironment analysis

To evaluate the degree of infiltration of immune cells in

different subgroups, we employed the ESTIMATE method to

calculate the immune and stromal scores and estimate scores for

each patient in the smoking-associated LUSC cohort with the

help of “estimate” R package. After the risk score model was

constructed, several common algorithms like EPIC, TIMER,

MCP-counter, and XCELL were performed to compare the

differences of infiltrating levels of immune cells between the

high- and low-risk groups. The immune infiltration data on the

TCGA-LUSC cohort were downloaded from the

TIMER2.0 database (http://timer.cistrome.org/). In addition,

we also estimated the expression of a series of immune

checkpoint molecules and IFN-related genes using the

Wilcoxon test in different subgroups as a necessary

supplement for the immune cell infiltration analysis. The

“maftools” R package was used to describe the mutation

information of the top 20 genes with the highest mutation

frequency in high- and low-risk groups.

Functional enrichment analysis for DEGs
between different clusters

The DEGs between the classified clusters were identified by

means of the “limma” R package (adjusted p-value < 0.001), and

the expression profile of these DEGs was then extracted from

previously downloaded RNA-seq data. To further explore the

involved biological processes and signal pathways of modules

that were most relevant to risk scores, Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses

were carried out utilizing the “clusterProfiler” package of R

software with the p-value < 0.05 as the significant threshold.

Hub gene identification

The protein–protein interaction (PPI) network of these

prognostic DEGs, which were identified by univariate Cox

regression analysis, was constructed with the help of the

STRING database (https://string-db.org/). Then, the network

was enrolled in Cytoscape software (version 3.7.2), and

cytoHubba plug-in was downloaded to calculate the top

10 hub genes by means of the “Degree” algorithm.

Construction of the risk scoremodel in the
smoking-associated TCGA-LUSC cohort

By virtue of the previously identified m6A-related lncRNAs,

a risk score model was constructed as follows. First, univariate

Cox regression analysis was utilized to screen lncRNAs that were

significantly associated with the overall survival (OS) of patients

from the smoking-associated TCGA-LUSC cohort. Then,

lncRNAs with the p-value < 0.05 in the univariate Cox

regression analysis were further subjected to multivariate Cox

regression analysis to identify the ones that could independently

affect the prognosis of LUSC patients. Finally, a 12-lncRNA

signature model for prognostic prediction in this cohort was

successfully established based on the expression levels and

corresponding coefficients of the selected lncRNAs. The risk

score of each patient in the cohort was calculated by the following

equation: risk score = ∑12
i�1 (βipExpi). In this formula, βi meant

the coefficient derived from multivariate Cox regression, and

Expi referred to the expression levels of the 12 lncRNAs in this

model. Furthermore, all samples in the cohort were assigned to

high- or low-risk groups according to their risk score with the

median value as the cutoff value.

Survival analysis and evaluation of the risk
model

As the patients in the smoking-associated TCGA-LUSC

cohort have been divided into high- and low-risk groups, we

drew the Kaplan–Meier survival curves of the two groups with

the help of “survival” and “survMiner” packages of R software,

and the log-rank test was used to evaluate the survival difference

between the two groups with p < 0.05 as the significant threshold.

To access the exactitude of the risk model we have built, the

receiver operating characteristic (ROC) curve was displayed and

the area under the curve (AUC) was calculated by means of the

“timeROC” R package. In addition, the “timeROC” package and

“compare” function were utilized to contrast the AUC of the risk

score with other clinical features at 1 year (p < 0.05 as significant).

Independence assessment and
stratification analysis of the risk model

The clinical characteristics and expression profiles of the

12 lncRNAs in high- and low-risk groups were exhibited as a heat

map by virtue of the “pheatmap” R package. In addition, to make

sure that the risk score of LUSC patients, which was calculated by

the 12 lncRNA-related signature in this study, could act as an

independent prognostic factor when compared to other

traditional clinical features, univariate and multivariate Cox

regression analyses were successively performed using OS as

the dependent variable, while five potential prognostic factors,
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namely, smoking history, age, gender, TNM stage, and risk score,

were incorporated in Cox regression analyses as independent

variables. Furthermore, based on the results of multivariate Cox

regression analysis, stratification analysis was carried out to

further investigate whether the risk model would also have

prognostic efficiency under the stratified clinical features that

had been proven to be significantly associated with OS and acted

as an independent prognostic factor for LUSC patients in this

cohort. Moreover, for the classified high- and low-risk groups,

gene set enrichment analysis (GSEA), which could provide a

better assistance in searching for the potential downstream

pathways and investigating the possible mechanisms

underlying the association between risk score and prognosis,

was performed by means of GSEA 4.0.3 software.

Building and assessment of the nomogram

Subsequently, a nomogram was successfully developed using

the independent risk factors derived from the multivariate Cox

regression analysis in this cohort. The survival possibility at 1, 3,

and 5 years from diagnosis of a given LUSC patient could be

concisely predicted by putting these concerned factors

independently affecting patients’ survival into this

FIGURE 1
Expression levels and mutation features of 24 m6A regulators in the smoking-associated LUSC cohort from TCGA database. (A) Expression
differences of 24 m6A regulators between normal (N) (n = 49) and tumor (T) (n = 473) samples (*p < 0.05; ***p < 0.001). (B) Expression correlation
analysis of 24 m6A regulators in the smoking-associated LUSC cohort. Red and blue refer to positive and negative correlation, respectively. (C)
Somaticmutation types and frequency of 24m6A regulators in 460 LUSC samples with smoking history. (D) Locations and CNV types of 24m6A
genes on 24 different chromosomes. Red and blue refer to the increased and decreased CNV types, respectively. (E) CNV frequency of 24 m6A
regulators in the smoking-associated LUSC cohort. Red and blue refer to the increased and decreased CNV types, respectively.

Frontiers in Genetics frontiersin.org05

Zhang et al. 10.3389/fgene.2022.887477

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.887477


comprehensive scoring system. In addition, in order to assess the

specificity, accuracy, and discriminative ability of the established

nomogram, we drew a calibration curve with those three time

points by making use of the “rms” package of R software.

Drug sensitivity analysis

To provide references for the treatment of LUSC patients

based on our established risk scoring system, we assessed the 50%

inhibitive concentration (IC50) of a series of common

chemotherapeutic drugs for patients in low- and high-risk

groups using “pRRophetic” R package. p < 0.05 was

considered to indicate significant differences between the two

groups.

Results

Expression and mutation features of
24 m6A regulators in the smoking-
associated LUSC cohort

The detailed workflow of the present study is shown in

Supplementary Figure S1. A total of 24 m6A regulators were

incorporated into this study, and the expression levels of most of

these proteins between the normal (49) and tumor (473) sample

groups showed significant differences. According to the heat map

(Figure 1A), 15 m6A regulators (YTHDF2, FMR1, METTL3,

EIF3A, WTAP, RBM15, VIRMA, IGF2BP2, RBMX, YTHDF1,

IGF2BP1, HNRNPA2B1, IGF2BP3, HNRNPC, and LRPPRC)

were upregulated, and only 4 regulators (METTL16, METTL14,

FTO, and ZC3H13) were downregulated in tumor samples

compared to controls. In addition, five proteins (YTHDC2,

YTHDC1, YTHDF3, RBM15B, and ALKBH5) had no

significant distinction between the two groups. This result

demonstrated that m6A regulators might play a vital role in

tumorigenesis and progression for LUSC patients with smoking

history. Furthermore, we observed that more than 80% of m6A

regulators displayed a positive correlation with each other,

suggesting that these proteins would have a common mode of

action in regulating this kind of epigenetic modification of RNA

(Figure 1B).

For the study of mutation characteristics, we first explored

the frequency and types of somatic mutations of the 24 m6A

regulators. During this analysis, 101 (21.96%) of the 460 samples

with mutation information were found to possess mutations and

18 (75%) out of the 24 m6A regulators were mutated with the

frequency varying from 1% to 2% (Figure 1C). Then, we analyzed

the CNV of the 24 m6A regulators in the LUSC cohort. The CNV

of the 24 m6A regulators and their positions on different

chromosomes were visualized as the circos plot (Figure 1D).

Figure 1E shows that IGF2BP2, YTHDC1, KIAA1429 (VIRMA),

and LRPPRC had the most notable increases in copy number

alterations, while RBM15, RBM15B, YTHCD2, YTHDF2, and

ZC3H13 owned the decreased CNV, which was basically

consistent with the expression changes between normal and

tumor sample groups. The expression levels of the 24 m6A

regulators between the TP53 wild and mutated groups were

further compared and nine of them (37.5%) showing higher

levels in the TP53 mutated group than that in the wild group,

implying that mutated TP53 might promote the expression of

these m6A-related genes (Supplementary Figure S2A).

The prognostic values of the 24 m6A regulators in this LUSC

cohort were estimated by univariate Cox regression analysis.

However, none of them had a significant effect on the overall

survival of patients, and the results suggested that m6A regulators

might play a role via their downstream modulated lncRNAs

(Supplementary Figure S2B).

Identification of m6A-related immune
lncRNAs

According to the criteria described previously, a total of

1,177 m6A-related lncRNAs and 2,885 immune-related

lncRNAs were screened out. The intersection of the

aforementioned two sets included 1,030 lncRNAs that were

finally defined as m6A-related immune ones (Figure 2A). To

further explore lncRNAs that could significantly affect the

prognosis of smoking-associated LUSC patients, univariate

Cox regression analysis was carried out, and 22 lncRNAs were

identified as exhibiting prognostic values. Forest plot further

revealed that eight of these prognostic lncRNAs were protective

factors, with patients with higher expression exhibiting better

prognosis (Supplementary Figure S3A). The expression profiles

of 22 lncRNAs were extracted from RNA-seq data for further

studies.

Identification of m6A clusters based on
m6A-related immune lncRNAs

To investigate whether the identified m6A-regulated

immune-related lncRNAs could influence the prognosis and

other clinical features of smoking-associated LUSC patients in

a coordinated way, we performed unsupervised consensus

clustering analysis by using the expression matrix of

22 prognostic lncRNAs previously identified by univariate Cox

regression. According to the consensus matrix, we selected k =

2 as the optimal clustering parameter and divided these patients

into two m6A clusters named cluster A (147 cases) and cluster B

(319 cases) (Figure 2B). The Kaplan–Meier survival curve

showed that the prognosis of patients in cluster A was

significantly better than that in cluster B (Figure 2C). We

further evaluated the differences in lncRNA expression levels
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and clinical features between the two clusters. According to the

heatmap, expression levels of the 22 m6A-regulated immune-

related lncRNAs were quite different between the two clusters. In

addition, the survival status also showed a distinct distribution

characteristic, which was consistent with the previous survival

analysis (Figure 2D).

As the TME could directly or indirectly influence patient

survival by regulating immune infiltration, our study further

concentrated on investigating whether immune-related factors

play a crucial role in causing different clinical performance of the

two clusters. ESTIMATE analysis suggested that patients in

cluster B had higher immune and stromal scores than patients

in cluster A (Figure 2E). Much research has reported that high

infiltration of immune cells, especially adaptive immune cells like

activated CD4+ T cells and CD8+ T cells, could effectively

promote the ability of the immune system of eliminating

tumor cells, thereby inhibiting tumor growth (Tekpli et al.,

2019). In this study, we speculated that it was the high

stromal cell infiltration that counteracted the anti-cancer

effects of immune cells, accounting for the reasons why

patients in cluster B with higher immune scores exhibited

poorer prognosis. Another factor directly affecting patient’s

prognosis and sensitivity to immunotherapy is immune

checkpoint proteins. We evaluated the expression levels of

18 immune checkpoint molecules between the two clusters,

and the result showed that all these proteins, including

PDCD1 and CTLA4, had higher expression in cluster B

patients (Figure 2F).

FIGURE 2
Identification of two distinct m6A clusters and differences of their clinical and immune features. (A) Identification of immune-related lncRNAs
regulated by m6A regulators. (B) Two distinct m6A clusters were determined based on m6A-regulated immune-related lncRNAs via unsupervised
consensus clustering analysis. (C)Overall survival differences between m6A clusters A and B by Kaplan–Meier survival analysis. Log-rank p = 0.004.
(D) Differences of clinical features and expression profiles of m6A-regulated immune-related lncRNAs between clusters A and B (***p < 0.001)
(E) Differences of immune and stroma scores by ESTIMATE analysis of smoking-associated LUSC samples between m6A clusters A and B. (F)
Differences of expression levels of immune checkpoint molecules between m6A clusters A and B (*p < 0.05, **p < 0.01, and ***p < 0.001).
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Identification of gene clusters based on
DEGs

As the aforementioned categorized clusters have been

evidenced to be closely associated with patient prognosis, we

further explored the potential mechanisms by functional

enrichment analysis using DEGs between the two clusters. By

means of the “limma” R package, a total of 1814 DEGs were

identified, and their expression profiles combined with relevant

clinical information were extracted from original data. GO

analysis revealed that DEGs were more likely to be enriched

in adhesion- and metabolism-related processes or pathways,

FIGURE 3
Identification of three distinct gene clusters based onDEGs ofm6A clusters A and B. (A) Enrichment analysis of 1814 DEGs ofm6A clusters A and
B by GO. (B) Identification of three distinct gene clusters based on 230 prognostic DEGs of m6A clusters A and B via unsupervised consensus
clustering analysis. (C) Overall survival differences among m6A clusters A, B, and C by Kaplan–Meier survival analysis. Log-rank p = 0.019. (D)
Differences in clinical characteristics and m6A clusters among gene clusters A, B, and C. (E) Differences in expression levels of 24 m6A
regulators among gene clusters A, B, and C (*p < 0.05, **p < 0.01, and ***p < 0.001). (F)Hub gene identification among DEGs by Cytoscape software
and the Degree algorithm. The top 10 hub genes are marked from pale yellow to deep red, and the darker the color, the more important it is. The
other related genes are labeled blue. (G) Overall survival differences between high and low expression levels of CHEK2 in the smoking-associated
LUSC cohort by Kaplan–Meier analysis. Log-rank p = 0.019.
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which were previously deemed to be closely correlated with

tumor progression (Figure 3A).

To get a better understanding of how these DEGs could have

an impact on prognosis, we conducted unsupervised consensus

clustering analysis based on the expression profiles of

230 prognostic DEGs singled out by univariate Cox

regression, and three distinct gene clusters, A, B, and C, were

finally identified (Figure 3B). The prognosis of patients in cluster

C was better than that of those in clusters A and B, according to

the Kaplan–Meier survival curve (Figure 3C). Furthermore, the

distributions of clinical characteristics, including the m6A

cluster, among these three clusters were further analyzed. The

result showed that the m6A cluster, but not other clinical

characteristics, differed among these three gene clusters

(Figure 3D). By evaluating the expression levels of the

24 m6A regulators, we found that 17 of them (70.8%) were

differentially expressed among the three gene clusters, and most

of these differentially expressed regulators had higher expression

levels in cluster C than that in the other two clusters (Figure 3E).

Hub gene identification

The top 10 hub genes among these DEGs were identified by

means of Cytoscape software, and CHEK2 was ranked as the

most important one using the “Degree” algorithm (Figure 3F).

We further explored the prognostic value of CHEK2 in this

smoking-associated LUSC cohort, and the result showed that

patients with a higher CHEK2 expression were more likely to

exhibit better overall survival (Figure 3G).

Establishment and validation of a risk
score model

As described earlier, 22 of these m6A-related lncRNAs in the

smoking-associated TCGA-LUSC cohort were significantly

associated with survival prognosis. Subsequently, multivariate

Cox regression analysis was performed for these prognosis-

related lncRNAs. As a result, 12 lncRNAs were selected to

construct a risk signature for LUSC patients. The risk score of

each patient could be calculated by the linear combination of the

expression value of 12 lncRNAs weighted by their coefficients as

follows: risk score = (−0.2264 × expression value of SNHG21) +

(0.0458 × expression value of AL591686.1) + (0.8498 ×

expression value of SMG7-AS1) + (0.4858 × expression value

of AC018809.1) + (1.3643 × expression value of AC008734.1) +

(0.3552 × expression value of AP005899.1) + (0.1272 ×

expression value of LINC02600) + (−1.3126 × expression

value of AC130651.1) + (−0.7355 × expression value of

AC107884.1) + (−0.3529 × expression value of AL122125.1) +

(1.2541 × expression value of AC010530.1) + (−0.7161 ×

expression value of AC010422.4). According to the formula,

AL591686.1, SMG7-AS1, AC018809.1, AC008734.1,

AP005899.1, AC010530.1, and LINC02600, which exhibited

positive coefficients in the risk signature, would predict a poor

prognostic ending for those with high expression levels of these

lncRNAs. Meanwhile, the other lncRNAs with negative

coefficients were regarded as protective factors and higher

expression levels of these lncRNAs often indicated a longer

overall survival. Patients were assigned to high- or low-risk

groups based on the median value of risk scores. According to

the risk plot, the risk score model could effectively separate

patients with unique survival status into different risk groups,

in which the high-risk group hadmore deceased patients than the

low-risk group. Moreover, seven lncRNAs featured with positive

coefficients had low expression levels in high-risk group patients,

while the remaining five lncRNAs showed opposite expression

patterns (Figure 4A). The Kaplan–Meier survival curve suggested

that the overall survival of patients in the high-risk group was

significantly worse than those in the low-risk group (p-value <
0.05) (Figure 4B). In order to validate the specificity and

sensitivity of the established risk model, we depicted the ROC

curve and calculated the AUC under different conditions.

Figure 4C shows that the risk score had a higher AUC value

than other clinical features like age, gender, and TNM stage at

1 year (p-value < 0.05), indicating that this scoring system was

superior to others in assessing the prognosis of patients.

Moreover, the AUC values under 1, 2 and 3 years were 0.686,

0.670, and 0.699, respectively (Figure 4D). Finally, a Sankey

diagram was drawn to describe the relationship of patients in

distinct m6A clusters with gene clusters, risk scores, and survival

status (Figure 4E).

To have a better understanding of the expression features of

the 12 lncRNAs involved in the risk model and their correlation

with m6A regulators, we first evaluated their expression levels

between normal and tumor sample groups, and all of them were

abnormally expressed according to the heatmap (Supplementary

Figure S3B). Further analysis demonstrated that there were

significant correlations between m6A regulators and the

expression of 12 lncRNAs (Supplementary Figure S3C).

Another Sankey diagram was depicted to clarify the

relationship of the 12 lncRNAs with distinct m6A regulators

and risk types (Supplementary Figure S3D).

Independent prognostic and stratified
analysis of the risk model

For the sake of evaluating whether the constructed risk

scoring system could predict the prognosis as an independent

factor, we performed univariate and multivariate Cox regression

analyses by putting risk scores together with other clinical

features, including smoking history (reformed smoking vs.

current smoking), age (≤ 65 years vs. > 65 years), gender

(female vs. male), and TNM stage (I vs. II vs. III vs. IV) into
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each analysis. The result suggested that risk score, age and

smoking history, but not gender and TNM stage, are risk

factors that could independently affect patient prognosis

(Figures 5A,B). Furthermore, for age and smoking status,

which have been proven to be independent risk factors via

multivariate Cox regression analysis, we performed stratified

analysis by dividing them into two diverse subgroups. Patients

with high scores under all these stratified conditions, including

age (≤ 65 and >65 years old) and smoking history (reformed

smoking and current smoking), presented poorer prognosis than

low-score patients (Figures 5C,D).

For the constructed risk score model, we explored the

relationship of risk scores with two different kinds of

categorized clusters and clinical features, including smoking

history, age, gender, TNM stage, T, N, and survival status.

Among these factors, the m6A cluster, gene cluster, survival

status, and age were distributed differently between low- and

high-risk groups (Figure 5E). In detail, patients with features of

m6A cluster A, gene cluster C, and age ≤ 65 years old were more

likely to exhibit lower risk scores (Figure 5F).

GSEA analysis of the risk score groups

GSEA analysis was performed to explore potentially activated

pathways in low- and high-risk groups. In the high-risk group,

we found many enriched immune-related pathways such as

“antigen processing and presentation,” “cytokine–cytokine

receptor interaction,” “leukocyte transendothelial migration,”

“chemokine signaling pathway,” “natural killer cell-mediated

FIGURE 4
Construction and validation of a risk model using m6A-regulated immune-related lncRNAs for smoking-associated LUSC patients. (A)
Distribution of the risk score and survival status and the expression levels of m6A-regulated immune-related lncRNAs between high- and low-risk
groups. (B) Overall survival differences between high- and low-risk groups by Kaplan–Meier analysis. Log-rank p < 0.001 (C) ROC curves and AUC
values of the risk score to compare the sensitivity and specificity of the risk score and other clinical features at 1 year. (D) ROC curves and AUC
values of the risk score at 1, 2, and 3 years. (E) Sankey diagram of patients in distinctm6A clusters corresponding to different gene clusters, risk groups,
and survival status.
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cytotoxicity,” and “toll-like receptor signaling pathway.”

However, there were only five pathways that were enriched in

the low-risk group, like “basal transcription factors” and “RNA

degradation” (Supplementary Figure S4).

Correlation analysis of risk scores with
immune infiltration and immunotherapy

Three different algorithms, including TIMER, xCell, and

MCP-counter, were utilized to assess and compare the

immune infiltration levels in high- and low-risk groups. These

algorithms suggested that the infiltration levels of immune cells

like CD4+ T cells, CD8+ T cells, NK cells, andmacrophage cells, as

well as some kinds of stromal cells such as endothelial cells and

cancer-associated fibroblasts, were positively correlated with risk

scores (Figure 6A). Moreover, an analysis aiming to explore the

correlation of risk scores with immune checkpoints was

performed, and the result showed that patients in the high-

risk score group had elevated expression levels of most of these

important biomarkers in spite of no significant expression

difference of PDL1 between the two groups (Figure 6B,

FIGURE 5
Independent prognostic and stratified analyses of the risk model. (A) Univariate and (B) multivariate Cox regression analyses of risk score and
other clinical features. (C) Kaplan–Meier curves of high- and low-risk groups with stratified smoking history. (D) Kaplan–Meier curves of high- and
low-risk groups with stratified age. (E)Differences in clinical characteristics, m6A clusters, and gene clusters between high- and low-risk groups (*p <
0.05; ***p < 0.001) (F) Distribution of the risk score between age, m6A cluster, and gene cluster subgroups (*p < 0.05; ***p < 0.001).
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Supplementary Figure S5A). Then, we evaluated the survival

prognosis of patients under the different infiltration levels of

stromal and immune T cells. The high infiltration levels of both

the endothelial cells and cancer-associated fibroblasts usingMCP-

counter and xCell algorithms indicated poor prognosis

(Figure 6C, Supplementary Figure S5B). However, patients

with high CD4+ T-cell infiltration had worse overall survival

than those with low infiltration (Figure 6C). As interferon

(IFN) has been proven to be crucial in regulating tumor

progression, we compared the expression levels of seven IFN-

related genes between the high- and low-risk groups. Most of

these IFN-related genes showed higher levels in the high-risk

group than in the low-risk group (Figure 6D). In addition, the

mutation information of the top 20 genes with the highest

alteration frequencies in the two risk groups was visualized as

the waterfall plot (Supplementary Figure S5C,D).

Given that the two risk groups had distinct immune

characteristics, Tumor Immune Dysfunction and Exclusion

(TIDE) was analyzed to compare the sensitivity of high- and low-

score patients to immunotherapy. The result demonstrated that the

high-risk group with higher TIDE scores was more likely to resist

immunotherapy compared to the low-risk group (Figure 6E).

FIGURE 6
Correlation analysis of risk scores with the TME and immunotherapy (A) Correlation analysis of the risk score with infiltration levels of immune
cells by three different algorithms. (B) Differences in expression levels of immune checkpoint molecules between high- and low-risk groups (*p <
0.05, **p < 0.01, and ***p < 0.001). (C) Kaplan–Meier analysis of cancer-associated fibroblasts, endothelial cells (MCP), and CD4+ T cells (TIMER)
between high- and low-risk groups. (D) Differences in expression levels of seven IFN-related genes between high- and low-risk groups (*p <
0.05, **p < 0.01, and ***p < 0.001). (E) Tumor immune dysfunction and exclusion (TIDE) analysis to predict the sensitivity of patients in high- and low-
risk groups to immunotherapy (***p < 0.001).
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Drug sensitivity analysis based on the risk
score model

As chemotherapy and targeted therapy have become the

most important treatment for LUSC patients, identifying the

subgroup of patients that was sensitive to specific drugs could

promote their therapeutic effectiveness. Sixteen commonly used

anti-tumor drugs were incorporated into this study to be

evaluated in each risk group. According to Figure 7, the low-

risk group was more likely to respond to ATRA, bortezomib,

erlotinib, JNK.9L, MG.132, NSC.87877, rapamycin, sorafenib,

and vinorelbine, while the high-risk group was more sensitive to

A.770041, CI.1040, FTI.277, GDC0449, LFM. A13, nilotinib, and

pazopanib.

Construction and evaluation of the
nomogram

In order to conveniently predict the survival prognosis of

LUSC patients, we constructed a nomogram by incorporating the

risk score and two other prognostic risk factors, namely, age and

smoking history, into this predictor (Figure 8A). By means of this

nomogram, the survival possibility of a specific patient under 1, 3,

FIGURE 7
Drug sensitivity comparison for smoking-associated LUSC patients between low- and high-risk groups (*p < 0.05; ***p < 0.001).
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and 5-years could be forecasted. The calibration curve revealed

that the predicted overall survival of patients was basically the

same as the observed outcome, indicating the high precision of

this prediction model (Figure 8B).

Discussion

m6A RNA methylation, which is considered to be the

most common epigenetic modification in eukaryotic species,

participates in the occurrence and progression of tumors in

multiple ways (Jiang et al., 2021). In the present study, we

first described the expression profiles and mutation features

of 24 m6A regulators in LUSC patients with smoking history.

As none of them could significantly affect the prognosis, we

speculated that these regulators might act in a coordinated

manner via modulating methylation levels on downstream

RNA molecules, and the results were further verified by their

expression correlation analysis. Until now, only one research

concerning m6A regulators in LUSC has reported that the

hypoxia-mediated high expression of YTHDF2, an

important m6A reader, could predict a worse prognosis of

LUSC, which was basically consistent with our conclusion

(Xu et al., 2022).

To better understand whether m6A-regulated downstream

lncRNAs could affect prognosis of patients with LUSC through

immune regulatory mechanisms, we picked out m6A-regulated

immune-related lncRNAs for further studies. Interestingly,

87.51% (1,030/1,177) of m6A-regulated lncRNAs were

considered immune-related, which further validated our

hypothesis that m6A RNA modification is deeply involved in

immune-related processes. Accumulating evidence suggested

that lncRNAs could directly or indirectly regulate the immune

response and facilitate the occurrence of immune escape of

cancer cells via a variety of mechanisms. Peng et al. (2022) have

reported that lipopolysaccharides could effectively facilitate

immune escape of hepatocellular carcinoma cells by

regulating m6A modification on MIR155HG lncRNA to

upregulate the PDL1 expression. However, the impact of

m6A modification of lncRNAs on immune response in

LUSC and the associated mechanisms have not yet been

reported by experimental studies.

Unsupervised consensus clustering has become a routine

method to divide samples into several typical molecular

subgroups based on the expression levels of genes of interest.

Gu et al. (2021) classified LUSC samples into different groups

by directly incorporating m6A regulators into this clustering

model. However, the research did not provide details on the

differences of prognosis, immune landscape, and other

information among those three distinct groups. In this study,

we found that clusters categorized on the basis of m6A-

regulated immune-related lncRNAs not only had different

distributions of clinical outcomes and features but also

represented diverse tumor microenvironment landscapes.

Furthermore, we also demonstrated that m6A-regulated

immune-related lncRNAs may have profound influence on

clinical characteristics of LUSC patients, and the underlying

mechanisms might involve changes in the tumor

microenvironment. In particular, we also found that patients

in the cluster featured with poor prognosis had high levels of

immune and stromal scores and overexpressed immune

checkpoint molecules. Thus, m6A-regulated immune-related

lncRNAs could cooperate and be used as predictors of

prognosis and immune response of patients with LUSC.

The risk model is a common method for predicting clinical

outcomes of cancer patients. When previous studies concerning

FIGURE 8
Establishment and evaluation of the clinical nomogram. (A) Nomogram to predict the survival possibility of smoking-associated LUSC patients
at 1, 3, and 5 years. (B) Calibration curves to validate the prediction efficiency of the nomogram at 1, 3, and 5 years.

Frontiers in Genetics frontiersin.org14

Zhang et al. 10.3389/fgene.2022.887477

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.887477


to LUSC directly brought m6A regulators into the model, the

predictive effects were often unsatisfactory (Li and Zhan, 2020).

In the present study, we established a risk model by means of

12 m6A-regulated immune-related lncRNAs selected by

univariate and multivariate Cox regression analyses. In

particular, all the lncRNA expression levels, clinical features,

prognosis, TME landscapes, and drug sensitivities varied between

the two risk groups. Thus, our risk model not only had a certain

degree of clinical prediction significance but also provided

guidance for personalized treatment in terms of immune-

related mechanisms.

We noticed that the infiltration levels of CD4+ T cells, CD8+

T cells, NK cells, cancer-associated fibroblasts, and endothelial

cells increased with the elevation of risk scores. Growing evidence

has accumulated that CD4+ and CD8+ T cells are important in

proinflammatory response and anticancer immunity, leading to a

more favorable clinical outcome (Schneider et al., 2021).

However, we did not observe such prognosis in patients with

high risk scores because of the following possible reasons. First,

most infiltrating T cells in tumors might stay in a dysfunctional

state, and these “exhausted” T effectors may have lost their

inhibitory control of cancers in spite of high infiltration levels

(Chen and Mellman, 2017). Second, existing evidence indicated

that the stroma cells, like cancer-associated fibroblasts, could

directly interact with T cells, suppressing the immune response

via immune checkpoint activation (Lakins et al., 2018).

Previous studies have categorized tumors into three different

immune subtypes including the inflamed phenotype, immune-

excluded phenotype, and immune-desert phenotype based on

infiltration levels of immune cells and expression degrees of

checkpoint proteins (Chen and Mellman, 2017). Although we

could not draw a conclusion as to which kind of immune

phenotype that the cluster or risk group belongs to, we could

still get some enlightenment from this classification system for

giving patients individual immunotherapy strategies on the basis

of our risk model. According to the TIDE analysis, patients in the

high-risk score group were more likely to resist the

immunotherapy of checkpoint inhibitors. As only fresh

“exhausted” T cells were partly sensitive to PD1/

PDL1 inhibitors and “hyperexhausted” T cells might be totally

unrecoverable under immunotherapies, PD1/PDL1 blockade

combined with other methods that enhanced the efficiency of

immunotherapy would be important for this group of patients.

Moreover, according to the KEYNOTE-407 study, patients with

advanced LUSC could still benefit from pembrolizumab

combined with chemotherapy, regardless of positive or

negative PDL1 expression (Zhao and Wang, 2020). Our study

revealed that there was no significant difference in the

PDL1 expression level between high- and low-risk groups.

There were some limitations to our research. First, we only

included TCGA-LUSC cohort into the present study. As most

expression profiles of LUSC patients published in the GEO

database were derived from a microarray, we could not get all

the expression data on lncRNAs. Thus, additional retrospective

studies with complete lncRNA information and large-scale

prospective studies are needed to validate the efficiency of

our risk model. Second, as all the information on these

prognostic lncRNAs involved in our risk model was obtained

from a public database, it is necessary to determine their

expression and mutation in newly collected clinical samples

and further validate their biological functions through in vitro

and in vivo experiments. Third, lncRNAs have been reported to

be involved in tumor immunosuppression through multiple

mechanisms and both endogenous and exosome-carried

lncRNAs could play an important role in such a process.

The present risk model incorporated 12 m6A-regulated

immune-related lncRNAs and whether these prognostic

lncRNAs could be specially targeted and thus reverse the

suppressive TME need further research. Finally, the specific

molecular mechanisms of how the risk model could predict the

TME remain unclear and need further studies.

In conclusion, the present study comprehensively analyzed

the value of m6A-regulated immune-related lncRNAs in

predicting clinical features, prognosis, and the tumor

microenvironment for LUSC patients with a clear smoking

history. Thus, our findings could provide new ideas in giving

better clinical decisions and personalized immunotherapy for

these patients.
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