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As a multifaceted syndrome, sepsis leads to high risk of death worldwide. It is difficult to be
intervened due to insufficient biomarkers and potential targets. The reason is that
regulatory mechanisms during sepsis are poorly understood. In this study, expression
profiles of sepsis from GSE134347 were integrated to construct gene interaction network
through weighted gene co-expression network analysis (WGCNA). R package DiffCorr
was utilized to evaluate differential correlations and identify significant differences between
sepsis and healthy tissues. As a result, twenty-six modules were detected in the network,
among which blue and darkred modules exhibited the most significant associations with
sepsis. Finally, we identified some novel genes with opposite correlations including
ZNF366, ZMYND11, SVIP and UBE2H. Further biological analysis revealed their
promising roles in sepsis management. Hence, differential correlations-based algorithm
was firstly established for the discovery of appealing regulators in sepsis.
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INTRODUCTION

Sepsis and septic shock with subsequent multi-organ failure contribute to the leading causes of death
among patients in adult intensive care unit (ICU), which are due to massive inflammatory responses
to infection (Abe et al., 2020; Markwart et al., 2020). The incidence of sepsis is approximately
20 million cases each year with 30–50% high mortality in the United States (Fleischmann et al.,
2016). Advances in understanding pathophysiology of sepsis reveal that it occurs not only with
inflammation-related responses but also modifications in non-immunological pathways (Rello et al.,
2017; Yu et al., 2021). Despite great improvement in surgery, pharmacological approaches and serum
biomarkers including procalcitonin (PCT), C-reactive protein (CRP), lactate and cell-free DNA has
been made in initial detection and therapy of sepsis, the incidence and mortality rates are still rising
rapidly due to complexity of sepsis and lack of targeted drugs (Povoa et al., 2005; Saukkonen et al.,
2008; Riedel et al., 2011; Rhee et al., 2015). Thus, novel risk genes and related regulatory networks
need to be identified to illustrate sepsis etiology and direct researchers to develop effective therapeutic
strategies.

Accumulating studies have used transcriptome data comprised of cellular components contents
between disease and healthy tissues to decipher potential molecular mechanisms of sepsis (Zhang
et al., 2020a; Fang et al., 2021; Yu et al., 2021). Meanwhile, most of these studies incorporated
differentially expressed genes and gene correlation data to explore gene interaction networks,
followed by enrichment analysis to clarify function of unknown genes (Balamuth et al., 2020; Zhai
et al., 2020; Zhang et al., 2020b). Nevertheless, the biggest limitation is that the observed gene
correlations may be redundant because they appeared in both two states, adding difficulties in the
discovery of true causative genes. The solution to this problem comes to the identification of
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differential correlations referring to alterations of correlated
patterns under different conditions (Ideker and Krogan, 2012;
Li et al., 2015; Zhou et al., 2021). Currently, differential
correlations in sepsis have been poorly understood, hence it is
in urgent need to orchestrate network dynamics for identifying
novel candidate genes.

Here, an in silico framework was proposed to identify hub
genes with differential correlations in sepsis (Figure 1A). First,
the networks of gene expression were constructed using
weighted gene co-expression network analysis (WGCNA),
which found correlated genes based on gene connectivity
and formed gene modules (Ghazalpour et al., 2006; Yang
et al., 2018). Twenty-six modules were detected in the
network, among which blue and darkred modules exhibited
the most significant associations with sepsis. Next, differential
correlations of genes in these two modules were calculated and
significant differences between sepsis and healthy tissues
utilizing R package DiffCorr were identified. Finally, we
identified some novel genes including ZNF366, ZMYND11,
SVIP and UBE2H. Further biological analysis revealed their
promising roles in sepsis management.

METHODS

Sepsis Expression Profiles
The HTA2.0 microarray data of 156 patients with sepsis and 82
healthy subjects was downloaded from GEO with primary data
accession number GSE134347 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE134347). Patient characteristics
were described in (Scicluna et al., 2020).

Co-Expression Network Construction
Screening of correlated gene pairs was performed by an R package
WGCNA (Langfelder and Horvath, 2008). And step-by-step
calculation was as follows:

Step 1 The Pearson correlation coefficient between gene Xi and
Xj was calculated, andmatrixXwas converted into the correlation
matrix S between genes:

Sij �
∣∣∣∣∣cor(Xi,Xj)

∣∣∣∣∣ (1)
Step 2 Weighted adjacency matrix aij was constructed and

suitable soft-threshold power β was selected:

aij �
∣∣∣∣Sij

∣∣∣∣β (2)
Step 3 The degree of separation of nodes was calculated. The

adjacency matrix is converted into unsigned topological overlap
matrix (TOM) to calculate degree of intergenic dissimilarity
(Zhang and Horvath, 2005), based on which genes were
distributed in different modules:

TOMij � lij + aij
min(ki, kj) + 1 − aij

; lij � ∑
uaiuaju (3)

In the above formula, lij represented the sum of product of
adjacency coefficients of all common adjacent genes of gene i and
j. aij represented the adjacency coefficient between gene i and j. ki
represented synthesis of adjacency coefficients of gene i with all
neighboring nodes. If TOMijwas 0, it meant that gene i and jwere
isolated and not connected to all other genes. If TOMij was 1, it
meant that these two genes were adjacent to all surrounding genes
and were also connected to each other. In other words, TOM

FIGURE 1 | Clustering dendrogram of sepsis and healthy tissues. (A) The workflow of this study. (B) Clustering dendrogram of 156 patients with sepsis and 82
healthy subjects and trait heatmap. (C) The relationship between soft threshold (power) and network properties. Left panel: The relationship between soft-threshold
(power) and scale-free topology. Right panel: The relationship between soft threshold (power) and mean connectivity.
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represented the similarity of genes, so the dissimilarity between
genes could be calculated:

DistTOMij � 1 − TOMij (4)
Step 4 DistTOMij was used for hierarchical clustering, and

genes were divided into different co-expression modules (Li and
Horvath, 2007). WGCNA adopted Dynamic Tree Cut Method to
construct the cluster tree, which was a top-down merging
algorithm. Through iteration and decomposition of gene
clusters, stable gene clusters were eventually achieved
(Langfelder et al., 2008). Here, the minimum module size was
set as 30 to identify modules and draw dendrogram.

Step 5 Identify trait-related modules. Herein, trait was defined
as disease. We defined gene significance (GS) as relationship
between gene expression levels and disease. Moreover, module
membership (MM) represented the degree of relationship
between module feature genes and disease. The higher MM

represented the higher correlation between modules and
disease. At last, we identified two modules most relevant to
disease. One module exhibited positive correlation and another
negative correlation.

Differential Correlation Evaluation
R package DiffCorr was utilized for the visualization and
identification of differential correlations in biological networks.
This package was based on Fisher’s z-test and details were
explained in (Fukushima, 2013; Zhou et al., 2021).

Gene Enrichment Analysis
R package clusterProfiler was implemented to conduct enrichment
analysis of clustered genes in blue and darkred modules. We used a
hypergeometric distribution test for the classification of enrichment
terms. And p values were adjusted by false discovery rate (FDR)
method, the cutoff of which was set to be 0.05 (Yu et al., 2012).

FIGURE 2 | Identification of modules associated with the clinical traits of sepsis. Heatmap of the correlation between the module eigengenes and clinical traits of
sepsis. All genes were clustered into twenty-six modules, of which each was labeled with one color.
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Gene Network Visualization
Cytoscape (3.9.0) was used to realize visualization of networks
(Doncheva et al., 2019).

Statistical Analysis
We applied Student’s t-test to identify genes differentially
expressed between sepsis and healthy samples. p values were
adjusted by the Benjamini–Hochberg method (Hochberg and
Benjamini, 1990). Differentially expressed genes were defined as
adjusted p value less than 0.05. We employed Fisher’s z-test to
evaluate differential correlations of gene pairs between sepsis and
healthy patients. And lfdr less than 0.05 was regarded as
significant differential correlations.

RESULTS AND DISCUSSION

Co-Expression Network Construction
Pearson’s correlation coefficient was applied to cluster samples
from GSE134347. After removing outliers, a sample clustering

tree was drawn (Figure 1B). Co-expression network was
constructed from 25,245 coding and non-coding genes
through WGCNA approach. We set soft-thresholding power
five for satisfying scale-free topology of network, in which the
corresponding R2 was 0.81 (Figure 1C). And we detected twenty-
six modules in the network, as shown in a cluster dendrogram
(Supplementary Material S1). The members in each module
were listed in Supplementary Material S2. Apart from the grey
module consisted of many un-classified members, orange module
contained the minimum 33 genes, while the maximum 10,821
genes were included in turquoise module.

Next, we quantifiedmodule-trait associations (Figure 2), in which
the blue and darkred modules exhibited the most significant
associations with sepsis. The corresponding correlation coefficients
of blue and darkredmoduleswere 0.88 (p= 2× 10–78) and−0.77 (p=
2 × 10–48), respectively. In addition, GS and MM analysis
demonstrated that genes highly significantly associated with sepsis
were also the most crucial factors of modules associated with sepsis
(Supplementary Material S3).

FIGURE 3 | Functional enrichment analysis of genes in the blue and darkred modules. (A) Left panel: GO analysis showed top ten enriched biological processes in
bluemodule. Right panel: KEGG analysis showed top ten enriched pathways in bluemodule. (B) Left panel: GO analysis showed top ten enriched biological processes in
darkred module. Right panel: KEGG analysis showed top ten enriched pathways in darkred module.
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Module Genes Enrichment
Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis of these two modules
were performed. As shown in Figure 3A, genes in the blue
module were significantly enriched in ncRNA metabolic
process, Herpes simplex virus 1 infection, and Th17 cell
differentiation. Notably, as a less well studied subset of CD4+

Th cells, reduced Th17 cell responses have been observed in sepsis
on account of low expression levels of involved transcription
factors, bringing about increased susceptibility of patients to
secondary fungal infections (Monneret et al., 2011; Hotchkiss

et al., 2013). Our study provided additional evidence on the
pivotal roles of Th17 cell function in sepsis. As shown in
Figure 3B, genes in the darkred module were enriched in
neutrophil activation involved in immune response and
neutrophil degranulation. Consistent with previous studies,
abnormal behaviors of neutrophil including delayed apoptosis
have been witnessed during the early stage of sepsis (Drifte et al.,
2013). Meanwhile, the most severely reduced neutrophil function
has been investigated in patients with the highest risk of acquiring
nosocomial infections (Nedeva, 2021), bestowing the importance
of neutrophil responses on sepsis occurrence and progression.

FIGURE 4 | Module networks. The blue (A) and darkred (B) module networks from GSE134347 were shown. Each node represented one module. Each edge
represented module correlation.
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Differential Correlations Identification
We further chose genes in the blue and darkred modules to
estimate differential correlations, which were grouped based
on expression patterns in each subtype (sepsis or healthy)
under the cluster. molecule function of DiffCorr package. We
utilized (1-correlation coefficient) as a distance measure based
on cutree function. Two functions named get. eigen.molecule
and get. eigen.molecule.graph were applied for module
networks visualization (Figure 4). The comp.2. cc.fdr
function offered the resultant pair-wise differential
correlations among blue and darkred modules.

R package DiffCorr also identified oppositely correlated
pairs. For example, two genes positively correlated in sepsis
tissues and negatively correlated in healthy tissues, or vice
versa. These switched gene pairs were worthy noticed for their
crucial roles in understanding molecular mechanisms in the
progression of sepsis. Totally one hundred and seventy-four

oppositely correlated gene pairs from the blue module and
forty-nine from the darkred module were obtained
(Supplementary Material S4), whose interaction networks
were presented in Figure 5. The top ten significant
differentially correlated gene pairs between sepsis and
healthy tissues from blue and darkred modules were shown
in Table 1.

Biological Analysis of Hub Genes With
Differential Correlations
Lastly, we focused on four hub genes acting as master
regulators due to possessing most links with other genes.
Zinc finger protein 366 (ZNF366), also known as DC-
SCRIPT, belongs to the zinc ring finger protein family and
has recently been reported to regulate dendritic cell
development (Søndergaard et al., 2015; Wang et al., 2018).

FIGURE 5 | Differential co-expressed gene networks in the blue (A) and darkred (B) modules from GSE134347. Each node represented one gene. Each edge
represented correlation between two genes, in which red meant positive correlation and green negative correlation. The thicker edge represented the stronger
correlation coefficient.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8765146

Sheng et al. Hub Genes in Sepsis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


TABLE 1 | Top ten significant differentially correlated gene pairs from blue and darkred modules between healthy and sepsis tissues.

Molecule X Molecule Y r1 (Sepsis) r2 (Healthy) lfdra (Difference) Module color

ZMYM6NB FAM20A 0.406621495 −0.728163034 0 Blue
ZNF366 GOLGA1 0.410168886 −0.681188564 0 Blue
ZNF609 FAM20A 0.42304016 −0.680428116 0 Blue
ZNF366 WDR37 0.443006043 −0.647605336 0 Blue
ZNF366 FBXW2 0.401904401 −0.643995081 0 Blue
ZNF282 ATP11B 0.422093972 −0.63235805 0 Blue
ZNF366 SDHC 0.418454554 −0.626207078 0 Blue
ZNF366 PAG1 0.436699597 −0.610998009 0 Blue
ZNF366 MAP2K6 0.427097546 −0.609906763 0 Blue
ZNF282 AGTPBP1 0.512056621 −0.592121258 0 Blue
ZDHHC3 C14orf159 −0.709976288 0.51884098 0 Darkred
TRMT6 BTN3A1 −0.57700653 0.498814377 0 Darkred
TRMT6 OSCAR 0.519497637 −0.537521238 0 Darkred
TRMT6 CA4 0.564335391 −0.491940678 0 Darkred
TSPO TRMT6 0.570633674 −0.551005684 0 Darkred
ZDHHC19 UBE2H 0.584905223 −.452219991 0 Darkred
ZDHHC19 TRMT6 0.586845831 −0.641186062 0 Darkred
SVIP CKAP4 0.603948148 −0.440800517 0 Darkred
SVIP CMTM4 0.632331442 −0.468788719 0 Darkred
ZDHHC3 IL10 0.635678135 −0.408650989 0 Darkred

aLocal FDR.

FIGURE 6 | The expression levels of ZNF366 (A), ZMYND11(B), SVIP (C) and UBE2H (D) in sepsis and healthy samples from GSE134347. These four hub genes
were all differentially expressed. ***p < 0.001.
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ZNF366 has been shown to suppress toll like receptor-
mediated expression of IL-10 through modulating NF-
κBp65 activation (Søndergaard et al., 2015). Decreased
numbers and disabilities of dendritic cells have been widely
observed in sepsis followed by immune responses alterations
(Roquilly and Villadangos, 2015; Venet and Monneret, 2017;
Wang et al., 2020). Additionally, sepsis-induced dendritic cell
blockade has been reported to prevent mice from sepsis-
induced death (Meng et al., 2017). We also observed its
elevated levels in sepsis compared to healthy samples
(Figure 6A). Given the great importance of ZNF366 in
coordinating dendritic cell function, our study expanded its
roles in sepsis progression which needed further validations.

Another zinc finger protein that takes the central position in the
differentially co-expressed gene network is MYND-type containing
11 (ZMYND11), which is the negative regulator of NF-κB signaling
and vastly impacts the replication of various viruses includingHendra
virus and Epstein-Barr virus (Ikeda et al., 2010; Stewart et al., 2013).
As previously described, numerous patients with sepsis witnessed the
activation of NF-κB pathway initiated by pathogen-associated
molecular pattern or danger-associated molecular pattern,
emphasizing its great contributions during sepsis (Hayden et al.,
2006; Chen et al., 2019; Wang et al., 2019). In line with it, significant
lower levels of ZMYND11were detected in sepsis than healthy
samples (Figure 6B). Also, impaired NF-kB activation has been
correlated with sepsis-induced acute lung injury (Chen et al., 2021).
Thus, it could be inferred that ZMYND11 participated in sepsis
progression through NF-κB signaling and further mechanisms
needed to be explored.

Small p97/VCP-interacting protein (SVIP), localized to the ER
membrane by myristoylation, is highly expressed in central
nervous system and related to autophagy modulation (Wu
et al., 2013; Jia et al., 2019). Further mechanisms have
demonstrated that overexpression of SVIP protected
hepatocytes from the toxicity of CCL4 through enhancing LC3
lipidation and activating autophagy (Jia et al., 2019). Prior studies
have also found its essential roles in lysosomal dynamic stability
and autophagosomal-lysosomal fusion (Johnson et al., 2021).
Autophagy dysregulation has been observed in organ injury
induced by sepsis, in which autophagy exerted vital effects on
programmed cell death pathway and inflammation (Lo et al.,
2013; Qiu et al., 2018; Zhao et al., 2019). Meanwhile, animal
experiments have endowed autophagy with protective roles in
septic brain injury (Su et al., 2015). Also, higher levels of SVIP
were observed in sepsis compared to healthy samples
(Figure 6C). Based on the above evidence, our study firstly
illustrated the underlying roles of SVIP in sepsis through
autophagy-related pathways.

Firstly identified in yeast and human placenta, ubiquitin
conjugating enzyme E2 H (UBE2H) belongs to the structurally
and functionally conserved family of E2s and is involved in
ubiquitination and proteasome-mediated protein degradation and
regulated by TNF-α signaling (Kaiser et al., 1994; Li et al., 2003;
Clague et al., 2015). Increasing evidence has indicated the potential
roles of UBE2H in human brain diseases such as amyotrophic lateral
sclerosis, Alzheimer’s disease and autistic disorder (Martin et al., 2009;

Sokolowski et al., 2018; Lim and Joo, 2020). Nevertheless, there is scant
report on the links between UBE2H and sepsis. Previous data has
shown that body protein loss during sepsis was caused by upregulation
of ubiquitin genes and ubiquitin-proteasome pathway (Hasselgren
and Fischer, 1997). Moreover, as a hypoxia-mediated gene, UBE2H
may be speculated to participate in tissue hypoxia in septic shock
(Rello et al., 2017). Here, we also found elevated levels of UBE2H in
sepsis compared to healthy samples (Figure 6D). Therefore, our study
firstly revealed the function of UBE2H in sepsis, offering experimental
clues for further investigations.

CONCLUSION

As the preliminary steps toward genetic regulatory networks, gene
correlation approaches offered clues about uncovering function of
mysterious genes. In this study, WGCNA and DiffCorr were
employed to find out novel hub genes including ZNF366,
ZMYND11, SVIP and UBE2H, and we proposed for the first time
their causative factors during sepsis progression. Although biological
analysis proved their vital roles in understanding pathogenesis of
sepsis, these genes were not confirmed experimentally. Next we plan
to integrate more datasets and conduct functional experiments
including loss-of-function to underline mechanisms explaining
their ability to trigger abnormal host response to infection.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

YZ and QF conceived the study. LS conducted the database search
and analysis. YT conducted the network construction. LS and QF
wrote themanuscript. All authors contributed to interpretation of the
results, read, and approved the final version of the manuscript.

FUNDING

The present study was supported by the National Natural Science
Foundation of China (81873874).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.876514/
full#supplementary-material

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8765148

Sheng et al. Hub Genes in Sepsis

https://www.frontiersin.org/articles/10.3389/fgene.2022.876514/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.876514/full#supplementary-material
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


REFERENCES

Abe, T., Yamakawa, K., Ogura, H., Kushimoto, S., Saitoh, D., Fujishima, S., et al.
(2020). Epidemiology of Sepsis and Septic Shock in Intensive Care Units
between Sepsis-2 and Sepsis-3 Populations: Sepsis Prognostication in
Intensive Care Unit and Emergency Room (SPICE-ICU). j intensive care 8
(1). doi:10.1186/S40560-020-00465-0

Balamuth, F., Alpern, E. R., Kan, M., Shumyatcher, M., Hayes, K., Lautenbach, E.,
et al. (2020). Gene Expression Profiles in Children with Suspected Sepsis. Ann.
Emerg. Med. 75 (6), 744–754. doi:10.1016/j.annemergmed.2019.09.020

Chen, X., Sun, Z., Zhang, H., and Wang, L. (2021). Correlation of Impaired NF-kB
Activation in Sepsis-Induced Acute Lung Injury (ALI) in Diabetic Rats.
J. Healthc. Eng. 2021, 1–6. doi:10.1155/2021/5657284

Chen, Y., Liu, W., Xu, H., Liu, J., Deng, Y., Cheng, H., et al. (2019). Gga-miR-19b-
3p Inhibits Newcastle Disease Virus Replication by Suppressing Inflammatory
Response via Targeting RNF11 and ZMYND11. Front. Microbiol. 10, 2006.
doi:10.3389/fmicb.2019.02006

Clague, M. J., Heride, C., and Urbé, S. (2015). The Demographics of the Ubiquitin
System. Trends Cel Biol. 25 (7), 417–426. doi:10.1016/j.tcb.2015.03.002

Doncheva, N. T., Morris, J. H., Gorodkin, J., and Jensen, L. J. (2019). Cytoscape
StringApp: Network Analysis and Visualization of Proteomics Data.
J. Proteome Res. 18 (2), 623–632. doi:10.1021/acs.jproteome.8b00702

Drifte, G., Dunn-Siegrist, I., Tissières, P., and Pugin, J. (2013). Innate Immune
Functions of Immature Neutrophils in Patients with Sepsis and Severe Systemic
Inflammatory Response Syndrome*. Crit. Care Med. 41 (3), 820–832. doi:10.
1097/CCM.0b013e318274647d

Fang, Q., Wang, Q., Zhou, Z., and Xie, A. (2021). Consensus Analysis via Weighted
Gene Co-expression Network Analysis (WGCNA) Reveals Genes Participating
in Early Phase of Acute Respiratory Distress Syndrome (ARDS) Induced by
Sepsis. Bioengineered 12 (1), 1161–1172. doi:10.1080/21655979.2021.1909961

Fleischmann, C., Scherag, A., Adhikari, N. K. J., Hartog, C. S., Tsaganos, T.,
Schlattmann, P., et al. (2016). Assessment of Global Incidence and Mortality of
Hospital-Treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit.
Care Med. 193 (3), 259–272. doi:10.1164/rccm.201504-0781OC

Fukushima, A. (2013). DiffCorr: An R Package to Analyze and Visualize
Differential Correlations in Biological Networks. Gene 518 (1), 209–214.
doi:10.1016/j.gene.2012.11.028

Ghazalpour, A., Doss, S., Zhang, B., Wang, S., Plaisier, C., Castellanos, R., et al.
(2006). Integrating Genetic and Network Analysis to Characterize Genes
Related to Mouse Weight. Plos Genet. 2 (8), e130–1192. doi:10.1371/journal.
pgen.0020130

Hasselgren, P.-O., and Fischer, J. E. (1997). The Ubiquitin-Proteasome Pathway.
Ann. Surg. 225 (3), 307–316. doi:10.1097/00000658-199703000-00011

Hayden, M. S., West, A. P., and Ghosh, S. (2006). NF-κB and the Immune
Response. Oncogene 25 (51), 6758–6780. doi:10.1038/sj.onc.1209943

Hochberg, Y., and Benjamini, Y. (1990). More Powerful Procedures for Multiple
Significance Testing. Statist. Med. 9 (7), 811–818. doi:10.1002/sim.4780090710

Hotchkiss, R. S., Monneret, G., and Payen, D. (2013). Sepsis-induced
Immunosuppression: from Cellular Dysfunctions to Immunotherapy. Nat.
Rev. Immunol. 13 (12), 862–874. doi:10.1038/nri3552

Ideker, T., and Krogan, N. J. (2012). Differential Network Biology.Mol. Syst. Biol. 8,
565. doi:10.1038/Msb.2011.99

Ikeda, O., Sekine, Y., Mizushima, A., Oritani, K., Yasui, T., Fujimuro, M., et al.
(2009). BS69 Negatively Regulates the Canonical NF-Κb Activation Induced by
Epstein-Barr Virus-Derived LMP1. Faseb J. 583, 1567–1574. doi:10.1016/j.
febslet.2009.04.022

Jia, D., Wang, Y. Y., Wang, P., Huang, Y., Liang, D. Y., Wang, D., et al. (2019). SVIP
Alleviates CCl4-Induced Liver Fibrosis via Activating Autophagy and
Protecting Hepatocytes. Cell Death Dis 10 (2). doi:10.1038/s41419-019-
1311-0

Johnson, A. E., Orr, B. O., Fetter, R. D., Moughamian, A. J., Primeaux, L. A., Geier,
E. G., et al. (2021). SVIP Is a Molecular Determinant of Lysosomal Dynamic
Stability, Neurodegeneration and Lifespan. Nat. Commun. 12 (1). doi:10.1038/
s41467-020-20796-8

Kaiser, P., Seufert, W., Höfferer, L., Kofler, B., Sachsenmaier, C., Herzog, H., et al.
(1994). A Human Ubiquitin-Conjugating Enzyme Homologous to Yeast UBC8.
J. Biol. Chem. 269 (12), 8797–8802. doi:10.1016/s0021-9258(17)37039-4

Langfelder, P., and Horvath, S. (2008). WGCNA: an R Package for Weighted
Correlation Network Analysis. BMC Bioinformatics 9, 559. doi:10.1186/1471-
2105-9-559

Langfelder, P., Zhang, B., and Horvath, S. (2008). Defining Clusters from a
Hierarchical Cluster Tree: the Dynamic Tree Cut Package for R.
Bioinformatics 24 (5), 719–720. doi:10.1093/bioinformatics/btm563

Li, A., and Horvath, S. (2007). Network Neighborhood Analysis with the Multi-
Node Topological Overlap Measure. Bioinformatics 23 (2), 222–231. doi:10.
1093/bioinformatics/btl581

Li, Y.-P., Lecker, S. H., Chen, Y., Waddell, I. D., Goldberg, A. L., and Reid, M. B.
(2003). TNF-α Increases Ubiquitin-conjugating Activity in Skeletal Muscle by
Up-regulating UbcH2/E220k. FASEB j. 17 (9), 1048–1057. doi:10.1096/fj.02-
0759com

Li, Y., Jin, S., Lei, L., Pan, Z., and Zou, X. (2015). Deciphering Deterioration
Mechanisms of Complex Diseases Based on the Construction of Dynamic
Networks and Systems Analysis. Sci. Rep. 5. doi:10.1038/Srep09283

Lim, K.-H., and Joo, J.-Y. (2020). Predictive Potential of Circulating Ube2h mRNA
as an E2 Ubiquitin-Conjugating Enzyme for Diagnosis or Treatment of
Alzheimer’s Disease. Ijms 21 (9), 3398. doi:10.3390/ijms21093398

Lo, S., Yuan, S.-S. F., Hsu, C., Cheng, Y.-J., Chang, Y.-F., Hsueh, H.-W., et al.
(2013). Lc3 Over-expression Improves Survival and Attenuates Lung Injury
through Increasing Autophagosomal Clearance in Septic Mice. Ann. Surg. 257
(2), 352–363. doi:10.1097/SLA.0b013e318269d0e2

Markwart, R., Saito, H., Harder, T., Tomczyk, S., Cassini, A., Fleischmann-Struzek,
C., et al. (2020). Epidemiology and burden of Sepsis Acquired in Hospitals and
Intensive Care Units: a Systematic Review and Meta-Analysis. Intensive Care
Med. 46 (8), 1536–1551. doi:10.1007/s00134-020-06106-2

Martin, I., Vourc’h, P., Mahé, M., Thépault, R.-A., Antar, C., Védrine, S., et al.
(2009). Association Study of the Ubiquitin Conjugating Enzyme Gene UBE2H
in Sporadic ALS. Amyotroph. Lateral Scler. 10 (5-6), 432–435. doi:10.3109/
17482960802444972

Meng, Y., Zhao, Z., Zhu, W., Yang, T., Deng, X., and Bao, R. (2017). CD155
Blockade Improves Survival in Experimental Sepsis by Reversing Dendritic Cell
Dysfunction. Biochem. Biophysical Res. Commun. 490 (2), 283–289. doi:10.
1016/j.bbrc.2017.06.037

Monneret, G., Venet, F., Kullberg, B.-J., and Netea, M. G. (2011). ICU-acquired
Immunosuppression and the Risk for Secondary Fungal Infections.Med. Mycol.
49 (S1), S17–S23. doi:10.3109/13693786.2010.509744

Nedeva, C. (2021). Inflammation and Cell Death of the Innate and Adaptive
Immune System during Sepsis. Biomolecules 11 (7), 1011. doi:10.3390/
Biom11071011

Póvoa, P., Coelho, L., Almeida, E., Fernandes, A., Mealha, R., Moreira, P., et al.
(2005). C-reactive Protein as aMarker of Infection in Critically Ill Patients. Clin.
Microbiol. Infect. 11 (2), 101–108. doi:10.1111/j.1469-0691.2004.01044.x

Qiu, P., Liu, Y., and Zhang, J. (2018). Review: the Role and Mechanisms of
Macrophage Autophagy in Sepsis. Inflammation 42 (1), 6–19. doi:10.1007/
s10753-018-0890-8

Rello, J., Valenzuela-Sánchez, F., Ruiz-Rodriguez, M., and Moyano, S. (2017).
Sepsis: A Review of Advances in Management. Adv. Ther. 34 (11), 2393–2411.
doi:10.1007/s12325-017-0622-8

Rhee, C., Murphy, M. V., Li, L., Platt, R., Klompas, M., and Prevention, C. D. C.
(2015). Lactate Testing in Suspected Sepsis. Crit. Care Med. 43 (8), 1669–1676.
doi:10.1097/Ccm.0000000000001087

Riedel, S., Melendez, J. H., An, A. T., Rosenbaum, J. E., and Zenilman, J. M. (2011).
Procalcitonin as a Marker for the Detection of Bacteremia and Sepsis in the
Emergency Department. Am. J. Clin. Pathol. 135 (2), 182–189. doi:10.1309/
Ajcp1mfyinqlecv2

Roquilly, A., and Villadangos, J. A. (2015). The Role of Dendritic Cell Alterations in
Susceptibility to Hospital-Acquired Infections during Critical-Illness Related
Immunosuppression. Mol. Immunol. 68 (2), 120–123. doi:10.1016/j.molimm.
2015.06.030

Saukkonen, K., Lakkisto, P., Pettila, V., Varpula, M., Karlsson, S., Ruokonen, E.,
et al. (2008). Cell-free Plasma DNA as a Predictor of Outcome in Severe Sepsis
and Septic Shock. Clin. Chem. 54 (6), 1000–1007. doi:10.1373/clinchem.2007.
101030

Scicluna, B. P., Uhel, F., Van Vught, L. A., Wiewel, M. A., Hoogendijk, A. J.,
Baessman, I., et al. (2020). The Leukocyte Non-coding RNA Landscape in
Critically Ill Patients with Sepsis. eLife 9. doi:10.7554/eLife.58597

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8765149

Sheng et al. Hub Genes in Sepsis

https://doi.org/10.1186/S40560-020-00465-0
https://doi.org/10.1016/j.annemergmed.2019.09.020
https://doi.org/10.1155/2021/5657284
https://doi.org/10.3389/fmicb.2019.02006
https://doi.org/10.1016/j.tcb.2015.03.002
https://doi.org/10.1021/acs.jproteome.8b00702
https://doi.org/10.1097/CCM.0b013e318274647d
https://doi.org/10.1097/CCM.0b013e318274647d
https://doi.org/10.1080/21655979.2021.1909961
https://doi.org/10.1164/rccm.201504-0781OC
https://doi.org/10.1016/j.gene.2012.11.028
https://doi.org/10.1371/journal.pgen.0020130
https://doi.org/10.1371/journal.pgen.0020130
https://doi.org/10.1097/00000658-199703000-00011
https://doi.org/10.1038/sj.onc.1209943
https://doi.org/10.1002/sim.4780090710
https://doi.org/10.1038/nri3552
https://doi.org/10.1038/Msb.2011.99
https://doi.org/10.1016/j.febslet.2009.04.022
https://doi.org/10.1016/j.febslet.2009.04.022
https://doi.org/10.1038/s41419-019-1311-0
https://doi.org/10.1038/s41419-019-1311-0
https://doi.org/10.1038/s41467-020-20796-8
https://doi.org/10.1038/s41467-020-20796-8
https://doi.org/10.1016/s0021-9258(17)37039-4
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1093/bioinformatics/btm563
https://doi.org/10.1093/bioinformatics/btl581
https://doi.org/10.1093/bioinformatics/btl581
https://doi.org/10.1096/fj.02-0759com
https://doi.org/10.1096/fj.02-0759com
https://doi.org/10.1038/Srep09283
https://doi.org/10.3390/ijms21093398
https://doi.org/10.1097/SLA.0b013e318269d0e2
https://doi.org/10.1007/s00134-020-06106-2
https://doi.org/10.3109/17482960802444972
https://doi.org/10.3109/17482960802444972
https://doi.org/10.1016/j.bbrc.2017.06.037
https://doi.org/10.1016/j.bbrc.2017.06.037
https://doi.org/10.3109/13693786.2010.509744
https://doi.org/10.3390/Biom11071011
https://doi.org/10.3390/Biom11071011
https://doi.org/10.1111/j.1469-0691.2004.01044.x
https://doi.org/10.1007/s10753-018-0890-8
https://doi.org/10.1007/s10753-018-0890-8
https://doi.org/10.1007/s12325-017-0622-8
https://doi.org/10.1097/Ccm.0000000000001087
https://doi.org/10.1309/Ajcp1mfyinqlecv2
https://doi.org/10.1309/Ajcp1mfyinqlecv2
https://doi.org/10.1016/j.molimm.2015.06.030
https://doi.org/10.1016/j.molimm.2015.06.030
https://doi.org/10.1373/clinchem.2007.101030
https://doi.org/10.1373/clinchem.2007.101030
https://doi.org/10.7554/eLife.58597
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Sokolowski, M., Wasserman, J., and Wasserman, D. (2018). Gene-level
Associations in Suicide Attempter Families Show Overrepresentation of
Synaptic Genes and Genes Differentially Expressed in Brain Development.
Am. J. Med. Genet. 177 (8), 774–784. doi:10.1002/ajmg.b.32694

Søndergaard, J. N., Poghosyan, S., Hontelez, S., Louche, P., Looman, M. W. G.,
Ansems, M., et al. (2015). DC-SCRIPT Regulates IL-10 Production in Human
Dendritic Cells by Modulating NF-κBp65 Activation. J.I. 195 (4), 1498–1505.
doi:10.4049/jimmunol.1402924

Stewart, C. R., Marsh, G. A., Jenkins, K. A., Gantier, M. P., Tizard, M. L., Middleton,
D., et al. (2013). Promotion of Hendra Virus Replication by MicroRNA 146a.
J. Virol. 87 (7), 3782–3791. doi:10.1128/Jvi.01342-12

Su, Y., Qu, Y., Zhao, F., Li, H., Mu, D., and Li, X. (2015). Regulation of Autophagy
by the Nuclear Factor κB Signaling Pathway in the hippocampus of Rats with
Sepsis. J. Neuroinflammation 12. doi:10.1186/S12974-015-0336-2

Venet, F., and Monneret, G. (2017). Advances in the Understanding and
Treatment of Sepsis-Induced Immunosuppression. Nat. Rev. Nephrol. 14
(2), 121–137. doi:10.1038/nrneph.2017.165

Wang, G., Li, X., Zhang, L., Elgaili Abdalla, A., Teng, T., and Li, Y. (2020). Crosstalk
between Dendritic Cells and Immune Modulatory Agents against Sepsis. Genes
11 (3), 323. doi:10.3390/genes11030323

Wang, J., Wang, T., Benedicenti, O., Collins, C., Wang, K., Secombes, C. J., et al.
(2018). Characterisation of ZBTB46 and DC-SCRIPT/ZNF366 in Rainbow
trout, Transcription Factors Potentially Involved in Dendritic Cell Maturation
and Activation in Fish. Developmental Comp. Immunol. 80, 2–14. doi:10.1016/j.
dci.2016.11.007

Wang, Y.-M., Ji, R., Chen, W.-W., Huang, S.-W., Zheng, Y.-J., Yang, Z.-T., et al.
(2019). Paclitaxel Alleviated Sepsis-Induced Acute Lung Injury by Activating
MUC1 and Suppressing TLR-4/nf-Κb Pathway. Dddt 13, 3391–3404. doi:10.
2147/dddt.s222296<

Wu, J., Peng, D., Voehler, M., Sanders, C. R., and Li, J. (2013). Structure and
Expression of a Novel Compact Myelin Protein - Small VCP-Interacting
Protein (SVIP). Biochem. Biophysical Res. Commun. 440 (1), 173–178.
doi:10.1016/j.bbrc.2013.09.056

Yang, L., Li, Y., Wei, Z., and Chang, X. (2018). Coexpression Network Analysis
Identifies Transcriptional Modules Associated with Genomic Alterations in
Neuroblastoma. Biochim. Biophys. Acta (Bba) - Mol. Basis Dis. 1864 (6 Pt B),
2341–2348. doi:10.1016/j.bbadis.2017.12.020

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R Package
for Comparing Biological Themes Among Gene Clusters. OMICS: A J. Integr.
Biol. 16 (5), 284–287. doi:10.1089/omi.2011.0118

Yu, X., Qu, C., Ke, L., Tong, Z., and Li, W. (2021). Step-by-Step Construction of Gene
Co-expression Network Analysis for Identifying Novel Biomarkers of Sepsis
Occurrence and Progression. Ijgm 14, 6047–6057. doi:10.2147/IJGM.S328076

Zhai, J., Qi, A., Zhang, Y., Jiao, L., Liu, Y., and Shou, S. (2020). Bioinformatics
Analysis for Multiple Gene Expression Profiles in Sepsis. Med. Sci. Monit. 26.
doi:10.12659/msm.920818

Zhang, B., and Horvath, S. (2005). A General Framework for Weighted Gene Co-
expression Network Analysis. Stat. Appl. Genet. Mol. Biol. 4. 1. Article17. doi:10.
2202/1544-6115.1128

Zhang, Z., Chen, L., Xu, P., Xing, L., Hong, Y., and Chen, P. (2020a). Gene
Correlation Network Analysis to Identify Regulatory Factors in Sepsis. J. Transl
Med. 18 (1), 381. doi:10.1186/s12967-020-02561-z

Zhang, Z., Pan, Q., Ge, H., Xing, L., Hong, Y., and Chen, P. (2020b). Deep
Learning-Based Clustering Robustly Identified Two Classes of Sepsis with Both
Prognostic and Predictive Values. eBioMedicine 62, 103081. doi:10.1016/j.
ebiom.2020.103081

Zhao, H., Chen, H., Xiaoyin, M., Yang, G., Hu, Y., Xie, K., et al. (2019). Autophagy
Activation Improves Lung Injury and Inflammation in Sepsis. Inflammation 42
(2), 426–439. doi:10.1007/s10753-018-00952-5

Zhou, Y., Xu, B., Zhou, Y., Liu, J., Zheng, X., Liu, Y., et al. (2021). Identification of
Key Genes with Differential Correlations in Lung Adenocarcinoma. Front. Cel
Dev. Biol. 9, 675438. doi:10.3389/fcell.2021.675438

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Sheng, Tong, Zhang and Feng. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 87651410

Sheng et al. Hub Genes in Sepsis

https://doi.org/10.1002/ajmg.b.32694
https://doi.org/10.4049/jimmunol.1402924
https://doi.org/10.1128/Jvi.01342-12
https://doi.org/10.1186/S12974-015-0336-2
https://doi.org/10.1038/nrneph.2017.165
https://doi.org/10.3390/genes11030323
https://doi.org/10.1016/j.dci.2016.11.007
https://doi.org/10.1016/j.dci.2016.11.007
https://doi.org/10.2147/dddt.s222296
https://doi.org/10.2147/dddt.s222296
https://doi.org/10.1016/j.bbrc.2013.09.056
https://doi.org/10.1016/j.bbadis.2017.12.020
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.2147/IJGM.S328076
https://doi.org/10.12659/msm.920818
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.1186/s12967-020-02561-z
https://doi.org/10.1016/j.ebiom.2020.103081
https://doi.org/10.1016/j.ebiom.2020.103081
https://doi.org/10.1007/s10753-018-00952-5
https://doi.org/10.3389/fcell.2021.675438
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Identification of Hub Genes With Differential Correlations in Sepsis
	Introduction
	Methods
	Sepsis Expression Profiles
	Co-Expression Network Construction
	Differential Correlation Evaluation
	Gene Enrichment Analysis
	Gene Network Visualization
	Statistical Analysis

	Results and Discussion
	Co-Expression Network Construction
	Module Genes Enrichment
	Differential Correlations Identification
	Biological Analysis of Hub Genes With Differential Correlations

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


