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Polygenic risk scores (PRS) evaluate the individual genetic liability to a certain trait and
are expected to play an increasingly important role in clinical risk stratification. Most
often, PRS are estimated based on summary statistics of univariate effects derived
from genome-wide association studies. To improve the predictive performance of
PRS, it is desirable to fit multivariable models directly on the genetic data. Due to the
large and high-dimensional data, a direct application of existingmethods is often not
feasible and new efficient algorithms are required to overcome the computational
burden regarding efficiency and memory demands. We develop an adapted
component-wise L2-boosting algorithm to fit genotype data from large cohort
studies to continuous outcomes using linear base-learners for the genetic
variants. Similar to the snpnet approach implementing lasso regression, the
proposed snpboost approach iteratively works on smaller batches of variants. By
restricting the set of possible base-learners in each boosting step to variants most
correlated with the residuals from previous iterations, the computational efficiency
can be substantially increased without losing prediction accuracy. Furthermore, for
large-scale data based on various traits from the UK Biobank we show that our
method yields competitive prediction accuracy and computational efficiency
compared to the snpnet approach and further commonly used methods. Due to
the modular structure of boosting, our framework can be further extended to
construct PRS for different outcome data and effect types—we illustrate this for
the prediction of binary traits.
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1 Introduction

In times of next-generation sequencing and decreasing costs for whole genome sequencing,
the amount of available genotype data has increased dramatically in recent years, giving rise to
new genetic insights (Beesley et al., 2020; National Human Genome Research Institute, 2021).

Polygenic risk scores (PRS) measure the individual genetic liability to a certain trait and can
provide relevant information in the context of disease-risk stratification. In contrast to high-
impact monogenic variants, which are mostly rare and have a high effect size, PRS are derived
from common variants such as single-nucleotide polymorphisms (SNPs) with low or medium
effect sizes. Polygenic effects could also explain part of the incomplete penetrance seen in many
identified monogenic variants, as for example in the genes BRCA1 and BRCA2 both leading to a
highly increased risk of breast cancer (Kuchenbaecker et al., 2017). Recent studies on the UK
Biobank suggest that high-impact monogenic variants, PRS and family history could contribute
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additively to the risk of developing breast and prostate cancer
(Hassanin et al., 2021). Despite these findings, PRS still lack to
explain relevant parts of the estimated heritability of many traits.

PRS are typically derived as a sum of risk allele counts weighted by
univariate effect estimates of the measured variants based on summary
statistics from genome-wide association studies (GWAS) (Choi et al.,
2020). Despite several approaches to account for linkage
disequilibrium (LD, referring to the correlation structure between
variants) and for the selection of informative variants (Euesden et al.,
2014; Vilhjálmsson et al., 2015; Mak et al., 2017; Privé et al., 2021), the
univariate structure of the estimation cannot fully account for
interdependencies between the variants. For example, lassosum
(Mak et al., 2017) adopts an L1 penalty term and solves a lasso-like
problemwhile only using summary statistics and a LD reference panel.
However, as published summary statistics and LD reference panels are
most often based on different samples, lassosum can generally only
approximate the full lasso path. A natural extension of using effect
estimates from univariate models could hence be to fit a single
multivariable model. While this approach seems natural from a
methodological perspective, a direct application of existing methods
is typically infeasible due to the high dimensionality of the genotype
data, which can easily exceed the available computer memory.
Recently, some approaches have been proposed to overcome this
computational burden (Privé et al., 2018; Qian et al., 2020; Maj et al.,
2022). In particular, Qian et al. proposed the so-called batch screening
iterative lasso (BASIL) algorithm to fit the lasso on the complete
original genotype data (Tibshirani, 1996; Qian et al., 2020; Li et al.,
2022). The algorithm works on subsets of variants and computes the
complete lasso path in an iterative fashion. Apart from the lasso, the
algorithm can also be extended to other penalized regression methods
such as the relaxed lasso (Meinshausen, 2007) or the elastic net (Zou
and Hastie, 2005). In this context, Qian et al. were able to demonstrate
that multivariable regularized PRS models fitted via the BASIL
algorithm outperform the classical GWAS-based PRS for various
traits such as height and high cholesterol.

While penalized regression models like the lasso and the elastic
net impose explicit regularization, statistical boosting represents an
alternative approach by introducing an implicit algorithmic
regularization when combined with early stopping (Bühlmann
and Hothorn, 2007; Mayr and Hofner, 2018). Boosting algorithms
iteratively fit pre-defined base-learners to the gradient of the loss
function, selecting the most influential base-learner in each step. The
main tuning parameter of boosting algorithms is the number of
iterations, which enables implicit variable selection and leads to
sparse models. Due to its modular structure, boosting allows to
combine possible base-learners with any convex loss function. These
algorithms hence offer a great flexibility for statistical modelling,
including various response types and the estimation of non-linear or
other types of effects. A recent work has incorporated boosting into
PRS modelling via a three-step approach (Maj et al., 2022): First, a
marginal screening approach was applied on all variants to identify
potentially informative ones. Then, multivariable algorithms
including probing with boosting (Thomas et al., 2017) were
applied on blocks of variants in LD to select (“fine-map”) the
most informative variants. Finally, a statistical boosting model
was fitted on the variant set created by joining the selected
variants of all chunks. This approach yielded particularly sparse
and interpretable models, whose predictive performance was
superior to PRS derived by univariate methods like clumping and

thresholding (Euesden et al., 2014) and was outperformed by the
predictive performance achieved by the lasso via the BASIL
algorithm. However this approach includes pre-filtering of the
variants and is computationally demanding.

In this article we introduce a new framework to boost PRS, starting
with a new computational approach to build L2-boosting models on
large-scale genotype data for quantitative traits. Similar to the snpnet
approach for the lasso, our algorithm iteratively works on smaller
batches of variants. Yet, in contrast to recent boosting methods (Staerk
and Mayr, 2021; Maj et al., 2022), the variants do not need to be pre-
filtered in our snpboost approach and the batches are not pre-defined
or randomly sampled, but chosen iteratively and deterministically in a
data-driven way based on the correlations of the variants to the
remaining residuals. By restricting the set of available base-learners
in each step to those variants which were most correlated with
residuals from a previous iteration, we are able to reduce the
search space and decrease the computational time compared to a
classical component-wise boosting algorithm.

We conducted a simulation study to examine the performance of
our adapted boosting algorithm snpboost compared to the original L2-
boosting on a reduced but still high-dimensional data set, on which the
application of standard L2-boosting was still computationally feasible.
Furthermore, we simulated data of higher dimensionality and larger
sample size to investigate the influence of various hyperparameters
(including the batch size) on the prediction accuracy and
computational burden of the snpboost approach in a typical large-
scale setting. We discuss reasonable default values for the
hyperparameters which are incorporated in the provided R
implementation (https://github.com/hklinkhammer/snpboost).
Finally, we constructed multivariable PRS for various traits on data
from the UK Biobank via application of snpboost and compared the
performance of our approach to the lasso estimates from the BASIL
algorithm proposed by Qian et al. as well as to further commonly used
methods. On the examined phenotypes we found highly comparable
predictive performance while our adapted boosting approach had a
tendency to select sparser models compared to the lasso and the other
methods. Finally, we illustrate how the framework can be conveniently
extended to the classification of binary phenotypes by the
incorporation of different loss functions.

2 Methods

For n ∈ N individuals, let y � (y1, . . . , yn)′ ∈ Rn denote a
particular continuous phenotype of interest. Furthermore, let
Xj correspond to the genetic variant j, for j = 1, . . ., p. The
observed dosage data of n individuals is given in the genotype
matrix X = (xi,j) ∈ [0, 2]n×p, where xj ∈ [0, 2]n corresponds to the jth
column of X. We consider a linear regression model

E yi|X( ) � β0 +∑p
j�1

βjxi,j, i � 1, . . . , n, (1)

With coefficients β0 ∈ R and β � (β1, . . . , βp)′ ∈ Rp. The aim is
to determine coefficients β̂0 ∈ R and β̂ ∈ Rp such that the estimator
ŷ � β̂0 + Xβ̂ minimizes the mean squared error of prediction on an
independent test set MSEP � 1

ntest
∑ntest

i�1 (ŷtest,i − ytest,i)2. Additionally,
one is often interested in relatively sparse models in the sense that
only a fraction of the coefficient vector β̂ ∈ Rp is non-zero.
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In high-dimensional settings with p > n it is not feasible to apply
classical estimation techniques like the ordinary least squares
estimator. A commonly-used solution is to consider further
constraints on the coefficient vector resulting in penalized
regression methods including the lasso (Tibshirani, 1996). The
lasso incorporates an L1-penalty on the coefficient vector such that
the lasso estimate β̂

lasso
is given by

β̂
lasso � argmin β0 ,β( ) ∑n

i�1
yi − β0 −∑p

j�1βjxi,j( )2

+ λ∑p
j�1

|βj|⎡⎢⎢⎣ ⎤⎥⎥⎦ (2)

for some λ ≥ 0. The explicit L1-penalization of the coefficient vector
leads to shrinkage of the coefficient estimates. In contrast to ridge
regression (Hoerl and Kennard, 2000), the use of the L1-penalty
enables to set some parameters exactly to zero corresponding to
sparse models. There has been extensive research on the theoretical
properties of the lasso including oracle inequalities in high-
dimensional settings (e.g., Fu and Knight (2000); Greenshtein and
Ritov (2004); Bunea et al. (2007); van de Geer (2008)). Nevertheless,
there are situations leading to variable selection problems of the lasso,
particularly in the presence of high correlations between signal and
noise variables (Hepp et al., 2016). When working with genotype data,
high correlations between signal and noise variables might often be
present as a result of LD, i.e., genetic variants that have close positions
on the DNA strand tend to be highly correlated.

An alternative to explicitly penalized regression methods such as
the lasso is statistical gradient boosting (Bühlmann and Hothorn,
2007; Mayr and Hofner, 2018). Gradient boosting requires the
specification of a loss function f(y, ŷ) and so-called base-learners
hj that are iteratively fitted to the response. In detail, the aim is again to
fit the linear regression model (1) which is performed in an iterative
fashion. Starting at iteration m = 0 with a starting value ŷ(0) � 0, the
following steps are repeated until a maximum number mstop of
boosting iterations is reached (Bühlmann and Hothorn, 2007):

1. Set m≔m+1 and compute the negative gradient vector of the loss
function:

u m( ) � −zf y, ŷ( )
zŷ

∣∣∣∣∣∣∣∣ŷ�ŷ m−1( )

2. Fit every base-learner hj separately to the negative gradient vector
u(m) and select the best fitting base-learner ĥ

(m)
j* (Xj).

3. Update the predictor with the learning rate 0 ≤ ] ≤ 1:
ŷ(m) � ŷ(m−1) + ]ĥ

(m)
j* (Xj)

4. Stop if m = mstop.

Stopping the algorithm before it converges (early stopping) leads
to implicit regularization and shrinkage of effect estimates. The
component-wise L2-boosting algorithm (Bühlmann and Yu, 2003;
Bühlmann and Hothorn, 2007) employs the squared error f(y, ŷ) �
‖y − ŷ‖22 as a loss function (Bühlmann and Yu, 2003) and separate
univariate linear regression models of the residuals on the jth genetic
variant as base-learners (i.e., hj (Xj) = β0 + βjXj, for j = 1, . . ., p). In low-
dimensional (p < n) settings this set-up mimics a classical Gaussian
linear model and converges to the least squares solution for large
values of mstop. The general boosting procedure can be interpreted as
gradient descent in function space, where the residual vector

represents the gradient of the L2 loss and the function space is
provided by the different base-learner solutions (Friedman, 2001;
Bühlmann and Yu, 2003; Mayr and Hofner, 2018). The previously
described steps transform therefore into the following procedure
(shown in grey in Figure 1): The best fitting base-learner in
boosting step m+1 corresponds to the variant j* with the highest
Pearson correlation ρ(xj*, r(m)) to the residuals r(m) � y − ŷ(m)

resulting from the previous boosting step m. We then fit a linear
regression model of the current residuals r(m) on the variant j* and
update the corresponding coefficient β̂

(m+1)
j* as well as the intercept

β̂
(m+1)
0 . This is repeated until a maximum number of boosting

iterations is reached or any other early stopping criterion is
fulfilled. If additional covariates apart from the genetic variants are
included in the model, they are treated as mandatory
covariates—similar to the intercept. The additional covariates are
included in each single base-learner and are hence updated in each
boosting step without competing with the genetic variants.

Hepp et al. (2016) investigated the commonalities and differences
between the lasso and statistical boosting: while there are (low-
dimensional) settings in which the gradient boosting approximates
the lasso coefficient paths arbitrarily close when the learning rate ] is
approaching 0, their results generally differ if the coefficient paths are
not monotone. The authors note that, in contrast to the lasso which
limits the sum of the absolute values of the coefficients for each penalty
parameter λ separately, boosting limits the total L1-arc-length of all
coefficient curves (Hepp et al., 2016). Interpreting this as the total
absolute distance “travelled” by all coefficients among the coefficient
paths through the iterationsm = 1, . . .,mstop, it becomes clear that the
solution in a certain iteration depends on all previous solutions of the
iterative algorithm. This might lead to more stable pathways
particularly in settings with high correlations between independent
variables, which is typical for genetic data. Hepp et al. conducted
several numerical experiments including high-dimensional settings in
which they found similar predictive performance of lasso and
boosting. In detail, boosting tended to yield slightly better
prediction results while the lasso tended to result in sparser models
with faster computations. On the other hand, the boosting algorithm
can be easily extended to different response types as well as to different
effects, including non-linear and interaction effects. In terms of genetic
data, interaction effects can be used to model and identify epistatic
effects and gene-environment interactions.

When working on genetic data from large cohort studies we do not
only face a high-dimensional setting with p > n but also a large-scale
setting with large sample sizes n and large numbers of variants p.
Large-scale settings often lead to extended computational times as well
as memory issues. To overcome these and apply statistical boosting on
genotype data, we implemented an adapted component-wise L2-
boosting algorithm that is built on the snpnet framework (Qian
et al., 2020) and works on batches of variants. To do so, we
additionally incorporate a batch-building step before starting the
boosting iterations (shown in blue in Figure 1). In this step we
extract the pbatch variants (pbatch ≪ p) with the highest correlation
ρ(xj, r(m)) to the current residual vector and include them in the batch
Bk. A maximum number ofmbatch boosting iterations is performed on
batch Bk before the next batch is built based on the correlations of all p
variants to the updated residuals. In total, we fit a maximum of bmax

batches or stop early if an early stopping criterion is fulfilled. The
algorithm is summarised in Table 1 and Figure 1.

Frontiers in Genetics frontiersin.org03

Klinkhammer et al. 10.3389/fgene.2022.1076440

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1076440


By iteratively working on batches of variants we save
computational time and memory because only parts of the variants
have to be loaded into memory at once. Additionally, not every step

requires the calculation of all potential base-learner solutions and the
updated correlations for all variants. By this, we encourage additional
sparsity by restricting the search space in terms of the set of available
base-learners (as variants not included in the current batch cannot be
selected). To examine when a new set of base-learners should be
considered, which corresponds to the question when to stop the inner
loop (inside the batches) and create a new batch of variants, we
incorporated another step: we monitor the correlations of the variants
inside a batch to the residuals and compare them to the correlations of
variants outside of the batch. When creating a batch Bk we therefore
compute and store the highest outer correlation
cstop ≔ maxj∉Bk|ρ(r(m), xj)|. After each boosting step m we check if
the greatest absolute correlation of the variants inside the batch Bk to
the current residual vector r(m) is smaller than cstop:

cstop > max
j∈Bk

ρ r m( ), xj( )∣∣∣∣∣ ∣∣∣∣∣. (3)

If inequality Eq. 3 holds true, we stop the inner loop and create a
new batch since a variant outside the batch may provide a better fit to
the current residual vector. In the original L2-boosting without
batches, the variant with the highest correlation to the residuals
would be chosen in each boosting step. The incorporation of
batches in general limits this choice to the variants inside the
batch. However, the proposed stopping criterion provides an
indication to consider variants outside the batch which may be
higher correlated with the current residuals. Actually, if all variants
were independent, the proposed stopping criterion would lead to the
same choice of variants in each boosting step in snpboost as in the
original L2-boosting. Despite LD, our simulation results show that the

FIGURE 1
Illustration of the snpboost algorithm. The snpboost algorithm consists of an outer loop to create batches (shown in blue) and an inner loop representing
the boosting on one batch (shown in grey).

TABLE 1 Definition of the snpboost algorithm without additional covariates. If
additional covariates apart from the genetic variants should be included in the
model, they are treated as mandatory covariates—similar to the intercept. The
additional covariates are included in each single base-learner and are hence
updated in each boosting step without competing with the genetic variants.
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proposed stopping criterion yields reasonable variant choices and
results in a competitive predictive performance (Section 3.1.1).
Additionally, the inner loop is also stopped if the number of
updates inside the batch reaches mbatch.

Furthermore, we need to determine after how many batches the
algorithm should terminate. In classical statistical boosting the
number of boosting iterations is often selected by cross-validation
or resampling techniques—mimicking an additional data set to
validate the predictive performance of the resulting models.
However, if the data set is large enough, one can also directly
divide the data into training and validation set. As in Qian et al.
(2020), we hence simultaneously monitor the predictive performance
of our model on an independent validation set while fitting on the
training set. As a validation criterion for the predictive performance
we use theMSEP on the validation set. The outer loop consisting of the
batch-building step is stopped if the MSEP on the validation set has
not decreased for bstop batches or after a maximum number of bmax

batches have been processed.
The proposed method is implemented as an add-on to the snpnet

package by Qian et al. (2020) in the statistical computing environment
R (R Core Team (2021), https://github.com/hklinkhammer/
snpboost). While we are also incorporating PLINK 2.0 (Chang
et al., 2015) to compute the correlations and build the batches in
the outer loop, we replaced the fitting of the lasso by the adapted
component-wise L2-boosting algorithm on the resulting batches
(Table 1; Figure 1).

3 Empirical results

3.1 Simulation study

We conducted a simulation study to investigate the behaviour of
the proposed snpboost algorithm in various controlled data scenarios.
The simulation study aims at two main goals: first, to examine
potential differences in performance compared to the original
component-wise L2-boosting (Bühlmann and Yu, 2003) in smaller
settings and, second, to gain insights on how to choose the included
hyperparameters in practical situations.

Simulations are based on the UK Biobank genotype data (Bycroft
et al., 2018) obtained under application number 81202 combined with
simulated phenotypes. We restricted the individuals to white British
ancestry and used the PLINK 2.0 function–thin-indiv-count to
randomly sample n individuals, of which 50%, 20% and 30% were
assigned to the training, validation and test set, respectively (Chang
et al., 2015; Purcell and Chang, 2015). Then, p variants with minor
allele frequency not less than 1%were randomly sampled using PLINK
2.0’s–thin-count. Missing genotypes were replaced by the reference
allele using the R package bigsnpr (Privé et al., 2018).

Continuous phenotypes were simulated from a linear model with
Gaussian distributed noise and effect sizes using bigsnpr. To account
for different genetic architectures, we considered varying heritability
h2 and sparsity s, defined as the amount of variance explained by the
genetic liability and the proportion of causal variants, respectively. For
each setting of h2 and s, we simulated 100 different datasets. PRS
models were derived by snpboost and evaluated by using various
metrics regarding the predictive performance and the accuracy of the
estimated coefficients. In detail, the predictive performance was
measured by the MSEP and the R2 value defined as the squared

correlation between the predicted and the true phenotype on the
independent test set. To assess the computational efficiency we
measured the computation time of the algorithm. The accuracy of
the resulting estimates was evaluated by the number of included
variants in the final model and the mean squared error (MSE) of
the estimates as well as the true positive (TP) rates and precision
regarding variant selection. Additional results for all considered
settings as well as comparisons to snpnet can be found in the
Supplementary Material (Supplementary Figures S1–S6).

3.1.1 Comparison to original L2-boosting in smaller
settings

To analyse the performance of snpboost compared to the original
component-wise L2-boosting algorithm (Bühlmann and Yu, 2003), we
used a single large batch with batch size pbatch = p in the snpboost
algorithm on simulated data with reduced dimensionality. We then
compared the results to the ones derived by using smaller batches in
terms of predictive performance, computation time, mean squared
errors of the estimated coefficients as well as true positive rates and
precision regarding variant selection. The simulations were conducted
for n = 20,000 observations (10,000 training set, 4,000 validation set,
6,000 test set) and p = 20,000 variants as well as for varying degrees of
heritability and sparsity. To obtain comparable results we chose a fixed
number of boosting iterations independent of the batch size pbatch and
a fixed learning rate ] = 0.1. For each simulation, 10 CPUs with 1 GB
memory each were used.

Figure 2 displays the boxplots of each metric obtained after
1,500 boosting iterations for heritability h2 = 50% and sparsity s =
0.1%, i.e., 20 influential variants. Incorporating batches did not largely
affect the predictive performance in terms of R2 and MSEP nor the
MSE of the coefficient estimates (MSE results not shown). However,
different batch sizes do not always yield the same models as L2-
boosting as can be observed from the number of variants
included in the final models. The models resulting from a batch
size of pbatch = 1,000 tend to contain less variants than the ones from
the original L2-boosting (batch size pbatch = 20,000). This could be
explained by the reduced search space in each boosting step and a
trade-off between exploration (genome-wide search) and exploitation
(search inside the batch). As a consequence, variants within the batch
that are already in the model are more often updated instead of
including new variants outside of the batch. The same holds true when
comparing the number of chosen variants for batch size pbatch = 1,000
to smaller batch sizes (i.e., pbatch = 10 and pbatch = 100). As all models
tend to overestimate the number of influential variants, the lower
number of selected variants for batch size pbatch = 1,000 corresponds to
a higher precision since less false positives are included. The fact that
the other metrics remain almost constant suggests that either only
variants with very small effects are not included when using a larger
batch size or the variants that are updated are highly correlated with
the ones not included. Furthermore, incorporating batches in the
algorithm has a major effect on the computation time. To interpret the
results shown in Figure 2 it is important to understand the two drivers
of the computation time. On the one hand, it increases with the
number of correlations that have to be calculated in each boosting step
which explains the increased computation time of the original L2-
boosting (i.e., a batch size of pbatch = 20,000 and 20,000 computed
correlations in each boosting step) compared to smaller batch sizes
such as pbatch = 100 and pbatch = 1,000. On the other hand, reading the
genotype data from disk when building the batches also increases the
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computation time leading to a higher computation time for smaller
batches with pbatch = 10 for which more reads-from-disk have to be
carried out. The varying computation times therefore reflect a trade-
off between the number of correlations computed in each boosting
step and the number of created batches.

In summary, the incorporation of batches in the boosting
algorithm did not affect the predictive performance of the model in
our scenarios, while computation time was substantially reduced.
However, snpboost does not always lead to the same models as the
original L2-boosting algorithm, in particular in terms of the included
variants and sparsity. The results for further settings with different
heritability and sparsity were comparable and can be found in the
Supplementary Material.

3.1.2 Choice of hyperparameters for large-scale
applications

The proposed snpboost algorithm includes various
hyperparameters, namely the batch size pbatch, the learning rate ],
the maximum number of boosting iterations per batch mbatch, the
maximum number of processed batches bmax and the stopping lag for
the outer early stopping criterion bstop. In this section we discuss
default values for the hyperparameters to facilitate the applicability of
the algorithm in practice. The majority of these parameters do not
need to be tuned but can be specified with reasonable default values,

e.g., based on results from the literature and experience with the
original boosting algorithm. For the remaining ones (pbatch and bstop)
we examine how they influence the computational and predictive
performance of snpboost in a simulation study.

The choice of the learning rate ] can be leaned on widely-used
boosting algorithms. A rather small learning rate prevents boosting
algorithms from overfitting on single base-learners and is therefore
favorable regarding predictive performance. Nevertheless, a smaller
learning rate will increase the number of needed boosting iterations to
fit the full effect of the base-learners and simultaneously increase the
algorithm’s computation time. Widely used R packages such as
mboost (Bühlmann and Hothorn, 2007; Hothorn et al., 2010) and
xgboost (Chen and Guestrin, 2016) use default learning rates of
0.1 and 0.3, respectively. As the effect of the learning rate will be
comparable in the proposed adapted boosting algorithm, we decided
to specify a fixed default value of ] = 0.1 in all our simulations. For the
batch-related hyperparameters we varied the batch size pbatch over a
range of possible values namely pbatch ∈ {10, 100, 1,000, 5,000} to
analyse its effect. For each batch we allow a maximum number of
boosting iterations mbatch equivalent to the batch size pbatch. Since we
specified the learning rate with a rather small fixed value and due to the
correlation-based early stopping criterion, this choice should prevent
the algorithm from overfitting on one batch. If one or more variants
inside the batch are still among the most influential ones out of all

FIGURE 2
Comparison to original L2-boosting. Results of 100 simulated phenotypes with heritability h2 = 50% and sparsity s = 0.1% for p = 20,000 variants and n =
20,000 individuals (divided into 50% training, 20% validation and 30% test set). Boxplots of the evaluation metrics obtained after 1,500 boosting iterations are
shown depending on the batch size. Batch size pbatch = 20,000 corresponds to the original L2-boosting (shown in grey).
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variants they will also be included in the next batch. For the outer
stopping criterion we specified a large maximum number of batches
bmax = 20,000 to ensure that the algorithm terminates even in case the
MSEP on the validation set has not decreased for bstop batches. Since
we do not want the algorithm to stop too early and simultaneously
minimize the computation time, in our simulations we consider the
choices bstop = 2 and bstop = 10. We then fitted PRS models using
snpboost with the previously described hyperparameters. For the
computations we used 10 CPUs with 2 GB RAM each.

The results for simulated phenotypes with 10% and 50%
heritability are shown in Figure 3 and Figure 4. Results for further
degrees of heritability can be found in the supplement. Independently

of the heritability and the sparsity of the simulated data, the predictive
performance was not affected in our settings by varying batch sizes in
terms of R2 and MSEP. However, the computation time differed
crucially, resulting in considerably higher values for rather small
(pbatch = 10) or rather large (pbatch = 5,000) batches. Furthermore,
larger batches led to a higher number of included variants in the final
model. This effect was stronger for phenotypes which have a less
sparse genetic architecture and associated with a later stopping of the
algorithm, i.e., more boosting steps were required to derive the final
model. A higher number of variants in the final model was associated
with a slightly higher MSE of the coefficients as well as higher true
positive rates on the one hand but also smaller precision on the other

FIGURE 3
Predictive performance for varying batch size and stopping criteria. Results of 100 simulated phenotypes with heritability h2 ∈ {10%, 50%}, sparsity s ∈
{0.1%, 1%} and bstop ∈ {2, 10} for p = 100, 000 variants and n = 100, 000 individuals (divided into 50% training, 20% validation and 30% test set). Mean and
standard deviation of the evaluation metrics are shown depending on the batch size.
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hand. As expected, a higher mstop increased the computation time of
the fitting process for all batch sizes. In contrast, there was
no considerable effect on the predictive performance. However,
bstop = 2 and bstop = 10 had an impact on the coefficient estimates
as can be seen in Figure 4, e.g., by a tendency to include more variants
in the model when choosing bstop = 10. This tendency was only
apparent for batch sizes pbatch < 1,000, suggesting that for larger
batches the choice of bstop is only of minor importance for both,
prediction performance and coefficient estimates. The results clearly
indicate that a more favorable signal-to-noise ratio (i.e., a higher
heritability) and less influential variants (i.e., a higher sparsity) are in
general beneficial for the performance of our approach. For

phenotypes with a sparser genetic architecture, the considered
evaluation metrics tended to show less variability.

In summary, the choice of the hyperparameters had no major
influence on the predictive performance measures R2 and MSEP but
on the computation time, which was lowest for medium size batches
(100 ≤ pbatch ≤ 1,000). The accuracy of the coefficient estimates
measured via MSE, TP and TN rate varied with the batch size, as
larger batches tended to lead to more (true positive) variants included
in the final model, but also to a slightly higher MSE and a smaller TN
rate. While the differences in MSE, TP, and TN rate were only small,
smaller batches yielded sparser models in particular for phenotypes
with a high heritability.

FIGURE 4
Evaluation metrics of the estimated coefficients for varying batch size and stopping criteria. Results of 100 simulated phenotypes with heritability h2 ∈
{10%, 50%}, sparsity s ∈ {0.1%, 1%} and bstop ∈ {2, 10} for p= 100,000 variants and n= 100,000 individuals (divided into 50% training, 20% validation and 30% test
set). Mean and standard deviation of the evaluation metrics are shown depending on the batch size.
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To conclude, batch sizes of 100 ≤ pbatch ≤ 1,000 seem to be the
most favorable regarding the computation time and the other
evaluation metrics. We propose a batch size of pbatch = 1,000 as
the default value because the results suggest less dependency on the
bstop parameter than for a batch size of 100 variants. Accordingly, we
recommend a default value of bstop = 2 to keep the computation time
as low as possible. In practice, genotype data most often contain
more than 100,000 variants, which further supports the choice of
pbatch = 1,000 with regard to the computation time. Although our
simulation study suggests that those default values should provide
reasonable results in most cases, it is recommendable to take the
genetic architecture of the examined phenotype as well as the main
aim of the analysis into account. Phenotypes with a high expected
heritability might be better fitted by using smaller batches, while for
phenotypes with many causal variants larger batches might be
favorable to increase the TP rate. If one is interested in extremely
sparse models identifying only the most-informative variants one
could also try to use smaller batches to avoid an overestimation of the
number of causal variants.

3.2 Application to the UK Biobank

We applied our proposed method on data from the UK Biobank
resource under Application Number 81202. Besides the validation of
the results from the previous section, we compared our boosting
models fitted via the proposed snpboost approach to the ones derived
by fitting the lasso via the BASIL algorithm implemented in the snpnet
package, which have already been shown to outperform commonly-
used PRS models for various traits (Qian et al., 2020). Furthermore, we
compared our results to PRScs (Ge et al., 2019), LDpred2 (Privé et al.,
2021) and SBayesR (Lloyd-Jones et al., 2019), which are based on
summary statistics, as well as to multivariable methods via LDAK
(Zhang et al., 2021) based on Bolt-LMM (Loh et al., 2015), Ridge
Regression (Henderson, 1950) and BayesR (Moser et al., 2015).The
UK Biobank (UKBB, Bycroft et al., 2018) is a large-scale prospective
cohort study including more than half a million participants from the
United Kingdom aged between 40 and 69 years when recruited. The
database comprises genome-wide genotype data of each individual as
well as various in-depth phenotypic information such as biological
measurements as well as blood and urine biomarkers. The data have
been collected since 2006 and are continually updated with follow-
up data.

Our aim is to estimate PRS for various phenotypes, covering
several heritability and sparsity levels. The heritability of a trait is an
upper bound for the predictive performance based on genotype
information. Thus, we used the analyses of Tanigawa et al. (2022)
as a proxy and specifically considered five appropriate continuous
phenotypes: standing height in cm (UKBB field 50), LDL-cholesterol
in mmol/l (UKBB field 30780), blood glucose level in mmol/L (UKBB
field 30740), lipoprotein A in nmol/L (UKBB field 30790) and BMI in
kg/m2 (UKBB field 21001).

Height and BMI are quantitative traits with a relatively high
heritability and a rather polygenic structure. Twin-studies estimated a
heritability of approximately 69% for height and 42% for BMI after
adjusting for covariates (Hemani et al., 2013). For a long time, genetic
models could not explain this estimated heritability, a phenomenon
known as “missing heritability” (Maher, 2008; Gibson, 2010). More
recent studies have indicated that this may be primarily due to many

influential common variants with small effect sizes (Yang et al., 2010;
Wood et al., 2014; Yang et al., 2015) underlining the high polygenicity of
those traits. In contrast to this, the distribution of the biomarker
lipoprotein A, which is a strong risk factor for coronary heart disease,
is mainly explained by variants in the LPA gene on chromosome 6
(Kronenberg and Utermann, 2013). Thus, we expect a sparse PRS with a
relatively high prediction accuracy for this trait. For LDL-cholesterol it is
known that it is associated with several genes such as LDLR and PCSK9
(Sanna et al., 2011; Sabatine, 2019). Therefore, we expect signal in several
genomic regions. Recent studies compared different approaches including
the lasso to derive PRS, and found that multivariable methods can reach a
predictive performance of up to 20% (Maj et al., 2022; Tanigawa et al.,
2022). As in previous works (Sinnott-Armstrong et al., 2021), we adjusted
the measured LDL-cholesterol value by a factor of 0.684 for individuals
taking statins lowering the blood lipid. For blood glucose we are not aware
of a genetic impact and also Tanigawa et al. (2022) found the genetic
background only explaining a small fraction (less than 2%) of the
biomarker’s variance.

Out of the over 500,000 individuals from UK Biobank we filtered
for unrelated (based on UKBB resource 668) individuals with self-
reported white British ancestry (UKBB field 21000) and available data
for all chosen phenotypes, resulting in n = 262,171 observations.
Additionally, the covariates age and sex as well as the first ten principal
components of the genotype matrix are available. We randomly
divided the data set into training (ntrain = 157,204), validation
(nval = 52,416) and test set (ntest = 52,551). We used genome-wide
genotype data and filtered for variants with a genotyped rate of
at least 90% and a minor allele frequency of at least 0.1%, resulting
in p = 562,723 genetic variants. Missing genotypes are imputed by the
corresponding mean of the complete observations.

For both the boosting and lasso approaches, we first estimated a
PRS using only the genotyped variants as predictors. We used the
training set to fit the model and the validation set to simultaneously
monitor the predictive performance for choosing the main tuning
parameters of the algorithms (i.e., the number of iterations for
boosting and the penalty parameter for the lasso). To fit the lasso
we used the R package snpnet (Qian et al., 2020) with the
provided default hyperparameters. Following the results of our
simulation study, for the snpboost algorithm we chose a batch size
of pbatch = 1,000 variants, a learning rate of ] = 0.1 and an outer
stopping lag of bstop = 2 batches. Using the resulting estimated P̂RS we
fitted two linear models on the combined training and validation set,
namely the first one (MPRS) incorporating only the PRS as a single
predictor variable:

MPRS: Y � γ0 + γPRSP̂RS (4)
and the second one (Mf) including the first ten principal components,
sex and age as additional covariates:

Mf: Y � γ0 + γPRSP̂RS + γ1PC1 +/ + γ10PC10 + γsexsex + γageage.

(5)
To measure the actual benefit in accuracy of including a PRS in the
prediction model, we also fitted a model including only
covariates (Mc):

Mc: Y � γ0 + γ1PC1 +/ + γ10PC10 + γsexsex + γageage. (6)

Finally, we also included the covariates in the fitting process to derive
the PRS, corresponding to the model MPRS,c:
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FIGURE 5
Comparison of predictive performance of snpnet and snpboost for five continuous phenotypes from the UKBB. Results of the covariate-only model (Mc;
grey bars) and multivariable polygenic models with and without inclusion of the covariates derived by lasso (snpnet; petrol-colored bars) and statistical
boosting (snpboost; red bars) for the prediction of five phenotypes from the UKBB. The barplots show the predictive performance (R2) on the test set of
52,551 unrelatedwhite British individuals.MPRS corresponds to a linearmodel incorporating the PRS as a single predictor variable andMf to a linearmodel
incorporation sex, age and the first ten principal components as additional covariates.MPRS,c includes the covariates already in the fitting process of the PRS.
Bootstrapped 95% confidence intervals are indicated by error bars. Furthermore, information on the number of selected genetic variants (# variants) and the
number of additionally included covariates (# covariates) is given.
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MPRS,c: Y � β0 + βPC1PC1 +/ + βPC10PC10 + βsexsex + βageage

+∑p
j�1

βjXj. (7)

All models were evaluated on the independent test set and
compared with respect to their predictive performance,
computational efficiency and sparsity. To measure the predictive
performance we used the R2 value on the test set given by the
squared correlation between the observed and predicted
phenotypes as well as the root mean squared error of prediction
(RMSEP). The computational efficiency was measured as the
computation time in minutes of the respective algorithm and the
sparsity is given by the number of included variants in the final PRS.
All computations were conducted on a computer cluster with 16 CPUs
and 2 GB RAM each. The derivation of the PRS by the use of further
methods (namely PRScs, LDpred2, SBayesR, Bolt-LMM, Ridge
Regression and BayesR) was based on the same training and
validation data and is described in the Supplementary Material. All
models were tested on the same independent test set.

The results of snpboost as well as of snpnet for all phenotypes are
given in Figure 5 and Table 2. The resulting RMSEP is shown in
Supplementary Figure S7. Overall, snpnet and snpboost yield
comparable results regarding the predictive performance, without
one approach being consistently superior to the other. Both the

resulting R2 and RMSEP are very close. Furthermore, the shown R2

values are in line with previously reported R2 resulting from snpnet,
which has been shown to be highly competitive to various other
(univariate) PRS methods (Qian et al., 2020; Li et al., 2022; Tanigawa
et al., 2022). The PRS estimated via snpnet and snpboost both clearly
increase the predictive performance compared to the covariates-only
model Mc for all shown phenotypes. With respect to sparsity, our
boosting approach tends to select less variants (on average 26% less
variants compared to the lasso). The computation time of both
approaches is highly dependent on the genetic architecture, i.e., the
heritability and sparsity of the phenotype. In particular, a higher and
more polygenic signal tends to lead to longer computation times. In
case of fitting the PRS based solely on the genotype data and
including the covariates in a subsequent linear model, snpboost
tends to be faster than snpnet; however, the computation times for
snpboost increase substantially when including covariates in the
fitting process for LDL-cholesterol and height. This is partly due to
more coefficients being fitted and updated in each boosting step and
partly due to larger PRS models resulting from more boosting steps.
Nevertheless, the models are still fitted in reasonable time using our
batch-based approach. As described in Hepp et al. (2016), boosting is
generally expected to be slower than the lasso, which can only be
observed for less sparse models in the examined phenotypes. In
general, the model MPRS,c outperforms the model Mf regarding the
predictive performance, implying that including the covariates
already in the fitting of the PRS is favorable regarding the
detection of the genetic signal. However, the effect is only
substantial for phenotypes with a high association to covariates
(i.e., height). Furthermore, the model MPRS,c tends to select more
variables than estimating the PRS based only on the genotypes
(MPRS) and the computation time is considerably increased when
using the snpboost approach. Therefore, it might be advisable to only
consider the covariates in the fitting process if there is a large
association already in the covariates-only model.

Figure 6 displays the absolute values of the resulting estimated
non-zero coefficients for LDL-cholesterol for the boosting and lasso
approaches. Both tend to detect variants with higher effect sizes in the
same genetic regions, e.g., at chromosome 2 and chromosome 19. In
total, there are 3,030 genetic variants that are present in both PRS, out
of 7,163 variants selected by snpboost and 8,924 variants selected by
snpnet. While snpboost results in less variants, the included variants
have larger effect sizes and less variants with very small effect sizes
close to zero are included in the model. Supplementary Figure S8
displays the coefficients again with shared variants marked in black.
All SNPs with comparably high effect sizes in the snpnet PRS are
included in both models but the snpboost PRS incorporates further
SNPs with stronger effects. The results are similar for the other
phenotypes and included in the Supplementary Material. In
conclusion, the snpboost PRS tends to include less variants in total,
but more variants with comparably high effect sizes corresponding to
less shrinkage for the variants included in the model compared to the
lasso.

The Supplementary Material comprises results for comparisons to
further commonly usedmethods to derive PRS (Supplementary Tables
S1, S2). Our proposed algorithm yielded consistently higher prediction
performance compared to the summary statistics based PRScs and
LDpred2 methods; furthermore, it yielded competitive results
compared to summary statistics based SBayesR and four different
multivariable approaches, while tending to select the sparsest models.

TABLE 2 Comparison of computational efficiency of snpnet and snpboost on
eight phenotypes from the UKBB. Computational times of the algorithms snpnet
and snpboost for multivariable polygenic models with and without inclusion of
the covariates for the prediction of eight phenotypes from the UKBB. MPRS

corresponds to the application of the algorithms without including covariates
and MPRS,c to the inclusion of the covariates sex, age and the first ten principal
components. The experiments were run on 16 CPUs with 2 GB RAM each.

Computation time in minutes

Phenotype Model snpnet snpboost

Height MPRS 132.44 116.65

Height MPRS,c 97.49 299.98

BMI MPRS 54.36 94.34

BMI MPRS,c 54.81 156.49

LDL MPRS 37.92 50.64

LDL MPRS,c 45.61 64.27

glucose MPRS 14.86 11.38

glucose MPRS,c 14.71 16.33

lipoprotein A MPRS 28.99 25.08

lipoprotein A MPRS,c 33.67 30.14

asthma MPRS 3.97 5.31

asthma MPRS,c 4.21 6.63

coeliac MPRS 3.11 5.46

coeliac MPRS,c 5.00 6.69

HBP MPRS 46.63 90.27

HBP MPRS,c 30.07 181.23
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4 Extension to binary data

While traits like blood biomarkers or physical measurements are
often quantitative, it is, for example, also of interest to predict the
probability of the occurrence of a disease for a particular patient. In
this case we deal with binary data yi ∈ {0, 1} and proceed as in a logistic
regression by modelling the logit of the expected value as a linear
model

logit P yi � 1|X( )( ) � ln
P yi � 1|X( )

1 − P yi � 1|X( )( ) � β0 +∑p
j�1

βjxi,j,

i � 1, . . . , n. (8)
The estimated probability p̂i(X) � P(yi � 1|X) is then given by

p̂i X( ) � P yi � 1|X( ) � exp β̂0 +∑p
j�1β̂jxi,j( )

1 + exp β̂0 +∑p
j�1β̂jxi,j( ). (9)

To fit binary outcomes via boosting we replace the L2 loss by the
log loss

fln y, p̂( ) � −1
n
∑n
i�1

yi ln p̂i( ) + 1 − yi( )ln 1 − p̂i( ). (10)

Note that following this new loss function, the gradient is no
longer represented by the residuals. The base-learners are hence fitted
now to the first derivative of the loss function in Eq. 10. Consequently,
batches are built out of the pbatch variants with the highest absolute
correlation to the first derivative of the loss in Eq. 10 instead of the
residual. However, the other components of the algorithm including
the base learners remain unchanged. We also keep the
hyperparameters derived in Section 3.1.2 fixed. We applied the
extended algorithm on data of the UKBB for three binary

phenotypes: the occurrence of asthma (UKBB field 22127), coeliac
disease (UKBB field 21068) and high blood pressure (UKBB field
6150). All three traits are associated to many environmental factors
but also have a genetic component (Arora and Newton-Cheh, 2010;
Trynka et al., 2010; Yang et al., 2017; El-Husseini et al., 2020).
Tanigawa et al. (2022) estimated high blood pressure to be a rather
polygenic trait while the genetic component of asthma and coeliac
disease is determined by fewer common variants.

We incorporated unrelated individuals of white British ancestry in
our analysis and divided the samples randomly into training,
validation and test sets. In total we used 8,397 cases (ntrain = 4,266,
nval = 1,709 and ntest = 2,522) and 58,428 controls (ntrain = 29,079,
nval = 11,707, ntest = 17,642) for asthma, 1,793 cases (ntrain = 882, nval =
361 and ntest = 550) and 92,646 controls (ntrain = 46,234, nval = 18,449,
ntest = 27,963) for coeliac disease and 71,235 cases (ntrain = 35,720,
nval = 14,210 and ntest = 21,305) and 190,422 controls (ntrain = 94,740,
nval = 38,246, ntest = 57,436) for high blood pressure.

The applicability to binary traits was also one of the first extension
of snpnet and Qian et al. (2020) showed impressive results for a
number of binary traits. Due to that, we again also apply snpnet to the
same data to evaluate the quality of our results.

We evaluated the accuracy of the resulting predictions on the test
set using both the log loss as well as the AUC. Results are shown in
Figure 7 and in Supplementary Figure S17. The overall predictive
performance is comparable for all three phenotypes. For high blood
pressure with a polygenic genetic component snpboost yields a sparse
model with a high predictive performance. For sparse binary
phenotypes as asthma and coeliac disease, snpboost and snpnet
yield similar sparse models. The result for coeliac disease, which
appears to be rather oliogenic than polygenic, for snpnet is
outstanding, but in line with the results of Tanigawa et al. (2022).
Nevertheless, also snpboost also estimates a very sparse PRS with a

FIGURE 6
Absolute values of coefficient estimates for PRS models for LDL-cholesterol derived by boosting (snpboost) and lasso (snpnet) in dependence of the
genomic position of the variants.
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high predictive performance. Table 2 illustrates the computation time
for binary data of snpnet and snpboost on a computer cluster with
16 CPUs and 2 GB RAM each. Both, snpboost and snpnet yield very
limited computation times, with snpnet being faster.

In summary, this illustrates how easily and conveniently the
snpboost framework can be extended to different data types by
incorporating different loss functions. Even though we simply
plugged in the log loss and did not optimize the hyperparameters
such as the batch size or the learning rate of our algorithm for binary
data, snpboost yields a competitive predictive performance compared
to the BASIL algorithm.

5 Discussion

In this work we have proposed a new methodological framework
to derive multivariable PRS models via applying a statistical boosting

approach directly on genotype data. Currently, PRS are most often
built based on summary statistics from GWAS that were estimated by
simple and univariate linear regression models (Choi et al., 2020). This
methodologically simple approach is mainly justified by the
computational hurdle resulting from the ultra-high-dimensionality
of the genotype data. For example, in the past it had been unfeasible to
fit a lasso model on the complete genotype data due to the high
computational complexity. To overcome this, Mak et al. (2017)
developed lassosum, an approach to approximate the lasso path by
only using summary statistics and LD reference panels. However,
recently published works provided methods to enable statistical
modelling by penalized multivariable regression approaches on
genotype data (Privé et al., 2018; Qian et al., 2020). Qian et al.
demonstrated that lasso-based PRS were able to outperform several
PRS derived by methods based on univariate summary statistics (Qian
et al., 2020). First approaches to apply statistical boosting on genotype
data employed a three-step-approach to fit multivariable PRS (Maj

FIGURE 7
Comparison of predictive performance of snpnet and snpboost for three binary phenotypes from the UKBB. Results of the covariate-only model (Mc;
grey bars) and multivariable polygenic models with and without inclusion of the covariates derived by lasso (snpnet; petrol-coloured bars) and statistical
boosting (snpboost; red bars) for the prediction of three binary phenotypes from the UKBB. The barplots show the AUC on the test set of 20,164 (asthma),
28,513 (coeliac disease) and 78,741 (high blood pressure) unrelated white British individuals. MPRS corresponds to a logistic regression model
incorporating the PRS as a single predictor variable and Mf to a logistic regression model incorporating sex, age and the first ten principal components as
additional covariates.MPRS,c includes the covariates already in the fitting process of the PRS. Bootstrapped 95% confidence intervals are indicated by error bars.
Furthermore, information on the number of selected genetic variants (# variants) and the number of additionally included covariates (# covariates) is given.
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et al., 2022): first, variants are pre-filtered based on their univariate
associations with the examined phenotype. Second, statistical
modelling and variable selection approaches such as AdaSub
(Staerk et al., 2021) and boosting with probing (Thomas et al.,
2017) are used to identify the informative variants on blocks of
variants in LD. Finally, a multivariable PRS based on the selected
variants is constructed via component-wise L2-boosting (Bühlmann
and Hothorn, 2007). While this approach yielded particularly sparse
models and could compete with common methods like clumping and
thresholding (Euesden et al., 2014), lasso via snpnet yielded more
accurate results regarding the predictive performance which is usually
the main objective of PRS modelling.

In the present article we introduced the boosting algorithm
snpboost that works on smaller batches of variants similar to the
BASIL algorithm. Our framework enables the application of statistical
boosting directly on the complete original genotype data. In a smaller
but still high-dimensional simulation setting, we were able to show
that the adapted boosting algorithm yields similar performance to the
original component-wise L2-boosting, indicating that we do not lose
predictive performance due to the incorporation of batches. In a
further setting with more realistic dimensionality we have derived
appropriate default values for the application of snpboost on large-
scale data. We were able to show that the specified default values
resulted in models with good performance in most cases but also gave
advice on how to adapt them based on the genetic architecture of the
examined phenotype and the specific research questions.

We applied the newly proposed snpboost algorithm on large-scale
genotype data of the UKBB. In particular, we have compared the
performance of snpboost to the one achieved by the lasso via snpnet,
which has been shown to outperform many classical PRS (Qian et al.,
2020). Our results indicate that the snpboost algorithm leads to PRS
models that are highly competitive to lasso-based PRS models in both
predictive performance and computation time. Although it might have
been expected that the computation time would be higher for
statistical boosting than for the lasso (Hepp et al., 2016), our
approach had a tendency to result in sparser models. These sparser
models correspond to an earlier stopping of the algorithm which
reduces the computation time of boosting. The incorporation of
further covariates such as age, sex and principal components in the
fitting process of the PRS resulted in increased computation times for
some phenotypes, particularly for height. However, in such cases, the
boosting algorithm yielded an improved predictive performance with
larger numbers of included variants. This illustrates that sparsity is not
always favorable in regards of predictive performance. Additionally,
we compared the performance of snpboost to further predictive PRS
tools, which are either summary statistics based as PRScs,
LDpred2 and SBayesR or multivariable approaches via the LDAK
implementation of BayesR, Ridge Regression and Bolt-LMM (Zhang
et al., 2021). While these methods do not apply variable selection, the
predictive performance of snpboost was still highly competitive.

Our analyses show that there is a large overlap of the chosen
variants by lasso and boosting, in particular regarding the variants
with high estimated effect sizes. However, boosting has been found to
include less variants in the final model and to induce less shrinkage on
the effect estimates compared to the lasso. In clinical practice, a sparser
PRS model might be of particular interest if the aim is not only
prediction but also the identification of risk loci in the genome. In fact,
functional annotations of the selected variants can better elucidate the
underlying biological mechanisms influencing the analyzed trait.

Thus, statistical boosting might be one way to yield more
biologically interpretable PRS models.

Despite the presented promising results, the proposed method also
inherited some limitations from statistical boosting. In contrast to classical
regression methods, boosting does not provide closed formulas for
standard errors of effect estimates or confidence intervals that could
be used for inference. Furthermore, as mentioned before, statistical
boosting is in general associated with a slightly higher computational
complexity compared tomethods such as the lasso (Hepp et al., 2016) and
has a known tendency to include too many variables in low-dimensional
settings (Staerk and Mayr, 2021; Strömer et al., 2022). Our results suggest
that the incorporation of batches substantially reduced the computational
time. Additionally, the reduction of the search space in each boosting step
might partially prevent the algorithm from selecting too many variables.
However, the implementation of the batch-based statistical boosting in
snpboost is currently limited to linear base-learners, each corresponding
to one genetic variant.

Apart from those technical limitations, using individual-level data
raises ethical and logistical questions: While summary statistics are
easily shared and do not allow for identification of unique individuals,
individual-level data involve the risk of identification. It is therefore
crucial, that providers as well as researchers using individual-level data
follow ethical standards. Furthermore, the storage and transfer of
individual-level data require more capacities which might not be at
everyone’s disposal in the complete research community. However,
the resulting PRS can be published by sharing only the included
variants, alleles and coefficients—exactly like summary statistics
(Lambert et al., 2021). To make use of available summary statistics
and to avoid the limitations associated with individual-level data, it
might be of interest to develop an approximation of a component-wise
boosting algorithm based on summary statistics and LD panels,
analogously as lassosum for the lasso. From a computational
perspective, this is not necessary as snpboost only requires limited
resources (e.g., our analysis of the UKBB data was run with only 32 GB
RAM in total).

By incorporating the log loss we made our framework applicable
also to binary traits and demonstrated the convenience of further
extensions of the snpboost framework beyond the case of continuous
phenotypes. Without re-specifying our hyperparameters we were able
to yield similar results as the snpnet framework.

In future research we want to further exploit the modular structure of
boosting to model more complex biological phenomena. We will
incorporate different loss functions to extend the snpboost framework
to be applicable also to count and time-to-event data. To account for the
uncertainty in the prediction, one could also construct subject-specific
prediction intervals based on quantile regression (Mayr et al., 2012).
Besides extending the approach via new loss functions, one could also
change the base-learners in various ways. For example, base-learners
could be adapted to take into account different models of inheritance
beside the classical additive component typically used in the polygenic
models, such as dominant and recessive hereditary schemes. Further
possibilities for future research include the extension of the set of possible
base-learners, e.g., to model gene-environment interactions as well as
epistatic effects across variants which can play a relevant role in biological
phenotypes (Li and Lehner, 2020). To do so, base-learners including
interactions between variants and variant-covariate interactions could be
incorporated. Apart from that, biological knowledge can also be used a
priori. Márquez-Luna et al. (2021) have shown that the incorporation of
functional annotations of the genetic variants contribute to a rise in
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prediction accuracy. Previous works in the field of penalized regression
and boosting have proposed to make use of biologically meaningful
groups of genomic variants such as genes or pathways as described by
Luan and Li (2008), Wei and Li (2007) as well as Liu et al. (2013). While
those previous methods were computationally limited to smaller datasets
our framework opens the possibility to include those ideas in the
multivariable modelling of PRS. Besides those methodological
extensions of our proposed snpboost framework, future research will
also focus on the practical application of PRS derived by our framework.
An important aspect of PRS research is the transferability of PRS models
to different ethnicities, as PRS are often derived on cohorts of European
ancestry and a substantial loss of predictive performance is observedwhen
applied on further cohorts with different ethnicities (Landry et al., 2018;
Evans et al., 2022). Previous studies have indicated that sparser models
may contribute to overcome this issue (Maj et al., 2022) and it is of
particular interest to examine the transferability of PRS derived by
statistical boosting.
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