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A variety of statistical approaches in nutritional epidemiology have been

developed to enhance the precision of dietary variables derived from

longitudinal questionnaires. Correlation with biomarkers is often used to

assess the relative validity of these different approaches, however, validated

biomarkers do not always exist and are costly and laborious to collect. We

present a novel high-throughput approach which utilizes the modest but

importantly non-zero influence of genetic variation on variation in dietary

intake to compare different statistical transformations of dietary variables.

Specifically, we compare the heritability of crude averages with Empirical

Bayes weighted averages for 302 correlated dietary variables from multiple

24-hour recall questionnaires in 177 K individuals in UK Biobank. Overall, the

crude averages for frequency of consumption are more heritable than their

Empirical Bayes counterparts only when the reliability of that item across

questionnaires is high (measured by intra-class correlation), otherwise, the

Empirical Bayes approach (for both unreliably measured frequencies and for

average quantities independent of reliability) leads to higher heritability

estimates. We also find that the more heritable versions of each dietary

variable lead to stronger underlying statistical associations with specific

genetic loci, many of which have well-known mechanisms, further

supporting heritability as an alternative metric for relative validity in

nutritional epidemiology and beyond.

KEYWORDS

heritability, nutrigenomics, nutritional epidemiology, 24-hour diet recall
questionnaires, relative validity, phenotyping, empirical bayes, longitudinal data

OPEN ACCESS

EDITED BY

Chao-Qiang Lai,
Tufts University, United States

REVIEWED BY

Dolores Corella,
University of Valencia, Spain
Yu-Chi Lee,
Tufts University, United States
Ju-Sheng Zheng,
Westlake University, China

*CORRESPONDENCE

Joanne B. Cole,
joanne.cole@cuanschutz.edu

SPECIALTY SECTION

This article was submitted
to Nutrigenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 14 October 2022
ACCEPTED 09 December 2022
PUBLISHED 04 January 2023

CITATION

Cole JB, Westerman KE, Manning AK,
Florez JC and Hirschhorn JN (2023),
Genetic heritability as a tool to evaluate
the precision of 24-hour recall dietary
questionnaire variables in UK Biobank.
Front. Genet. 13:1070511.
doi: 10.3389/fgene.2022.1070511

COPYRIGHT

© 2023 Cole, Westerman, Manning,
Florez and Hirschhorn. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Brief Research Report
PUBLISHED 04 January 2023
DOI 10.3389/fgene.2022.1070511

https://www.frontiersin.org/articles/10.3389/fgene.2022.1070511/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1070511/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1070511/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1070511/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1070511&domain=pdf&date_stamp=2023-01-04
mailto:joanne.cole@cuanschutz.edu
mailto:joanne.cole@cuanschutz.edu
https://doi.org/10.3389/fgene.2022.1070511
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1070511


Introduction

Dietary data are commonly collected longitudinally to

enhance precision of dietary intake estimates. A variety of

statistical approaches have been developed to best use this

type of data in nutritional epidemiology. The simplest

univariate approach is to collapse the data points per

individual into a single aggregate mean or median, most

appropriate when the variable is expected to be stable over

time (Schober and Vetter, 2018). However, usual dietary

intake is often estimated from unstable dietary questionnaire

data with high day-to-day variation, such as from the 24-hour

recall (24HR) questionnaire which records all foods and

beverages consumed in a single day. For foods and beverages

not consumed on a daily basis, the simple average approach over

a small number of days is typically not adequate for capturing

true habitual intake (Dodd et al., 2006). Nutritional

epidemiologists and statisticians have developed methods to

best handle this specific problem, most often applying

sophisticated methods that estimate the true distribution of

usual intake after accounting for within-person variability or

for the correlation between observations in a mixed effects model

(Dodd et al., 2006; Tooze et al., 2006). Extensions of these

approaches apply the regression calibration approach for

measurement error correction to estimate individual usual

intake as the estimated conditional expectation given the

empirically observed 24HR data [i.e., the Empirical Bayes (EB)

method], which then allows for downstream association with an

outcome of interest (Kipnis et al., 2009).

A key outstanding challenge addresses how best to evaluate

and compare the performance of these various methods in

increasing phenotype precision. The most common approach

in epidemiology to assess relative validity is to demonstrate an

improvement in the correlation of the processed phenotype

with a “gold standard” measurement. The correlation of total

energy intake or protein intake with doubly-labeled water

(International Atomic Energy Agency, 1990) or urine protein

levels (Greenwood et al., 2019), respectively, are classic

examples of evaluating the validity of dietary intake derived

from diet questionnaires. The EB method for estimating

individual usual intake along with the incorporation of key

covariates has also demonstrated improved phenotype

precision when specifically testing the association between

fish intake and blood mercury levels (Kipnis et al., 2009). In

principle, the strength of association becomes stronger when

noise andmeasurement error is reduced (Paeratakul et al., 1998;

Willett, 2012). However, these approaches are only viable when

a known gold standard measurement of the outcome of interest

exists; these gold-standard methods are often laborious and

time-intensive, and thus an alternative high-throughput

approach is needed.

Genetics, and in particular genetic heritability, can be used

as an unbiased and high-throughput metric to quantitatively

benchmark and compare different phenotyping approaches,

because nearly all human traits, including dietary intake, are

influenced by genetic variation, either directly or indirectly (Ge

et al., 2017a; Cole et al., 2020). This ubiquity of an underlying

biological association allows our approach to use a common

multi-variable human reference (i.e., the human genome) to

estimate a summary aggregate variable of association

(i.e., heritability) rather than rely on phenotype-specific

gold-standard correlates. Furthermore, unlike other

biological -omics datasets, genotypes also benefit from being

captured in an unbiased and accurate manner nearly evenly

throughout the genome, their easy accessibility, their increasing

affordability, and their stability through an individual’s lifetime

with their consequent robustness to environmental

confounders.

In this brief report we outline a preliminary investigation of

genetic heritability as an anchor to compare relative validity of

the same phenotypes derived using different statistical

transformations, and we test its use at scale on hundreds of

longitudinal 24HR questionnaire dietary variables from

approximately 176 K individuals in UK Biobank (UKB). A

flow chart of the study design is included in Supplementary

Figure S1. Specifically, we derive a set of EB food intake variables

over multiple 24HR questionnaires per person and compare

these EB weighted values to crude unweighted estimates of

either how often the food or beverage was consumed

(proportions: Number of times consumed/number of

questionnaires taken) or how much was consumed (averages:

average amount over multiple questionnaires) using heritability

analysis. Ultimately, we use heritability as a proxy for phenotype

quality to determine if and when the EB method outperforms its

crude counterpart across multiple variables simultaneously

without the need for known gold standard correlates.

Methods

UK Biobank sample

UK Biobank is a prospective cohort of 500 K adults ages

40–69 at baseline collected from 2006 to 2010 across the UK. This

large biomedical and research resource contains biological

samples used to derive genetics, metabolomics, proteomics,

and biomarkers as well as detailed phenotyping information

spanning physical measures, imaging, lifestyle questionnaires,

and health outcomes from multiple sources (self-reported, nurse

interviews, and linked medical records). Extensive details on the

genotyping, imputation, and quality control of this data, in

addition to methodological details on deriving a subset of

individuals of European ancestry (N = 455,146) used herein

have been described elsewhere (Bycroft et al., 2018; Cole et al.,

2020). All individual-level analyses were conducted under UKB
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application 11898 in compliance with UKB regulations and all

participants provided informed consent.

Dietary phenotype derivation

UKB contains data from two distinct dietary intake

questionnaires. The first is a brief modified food frequency

questionnaire (FFQ) of roughly 30 questions pertaining to

habitual intake and frequency of foods and beverages over the

previous year, asked of all participants in-person using a

touchscreen at their baseline assessment center visit. The

second, which is the sole dietary data source for this study, is

a detailed 24HR questionnaire in which a subset of participants

answered over 200 questions on specific foods and beverages

consumed (with quantities) in the preceding 24-hour day. The

24HR was implemented as a questionnaire for the final 70 K in-

person baseline assessment center participants from

2009–2010 and emailed four times to 320 K participants who

consented to re-contact via email between February 2011 and

April 2012. Approximately 200 K individuals have at least one

and up to five recorded 24HR questionnaires.

Each questionnaire was filtered for credible estimates of total

energy intake [≥1,000 kJ (UKB field 100002) and ≤20 MJ for

males and ≤18 MJ for females (UKB field 100026)], typical

dietary intake (UKB fields 100020 and 20085), completion

duration greater than or equal to 5 min (UKB field 20082),

and overall completion (UKB field 20081). Additionally, the

participant could not be pregnant within 1 year of taking the

24HR nor have a cancer diagnosis within the previous year (UKB

fields 3,140 and 40005). All 24HR questions were converted into

1/0 for yes/no to consumption; each categorical response was

coded similarly [e.g., UKB field 20086 for special diet was

converted into six binary variables for each response (gluten-

free, lactose-free, low calorie, vegetarian, vegan, and a combined

vegetarian or vegan field)]. 24HR questions pertaining to

quantity consumed were also included as continuous variables.

After individual questionnaire pre-processing, all available

data from all questionnaires were combined into two types of

phenotypes: “proportions” for all food items representing the

number of times consumed over the total number of

questionnaires taken, and “averages” of continuous items only

(i.e., quantities) which are simply averages over multiple

questionnaires taken. Each phenotype type (proportions and

averages) was derived using two approaches for comparison:

“crude,” representing the simple un-weighted derivations as

indicated above, and “Empirical Bayes (EB),” which applies

the EB method to weight individual responses based on the

number of questionnaires taken.

EB proportions were calculated by first estimating empirical

distribution parameters (alpha and beta) from a zero-one inflated

distribution fit using the gamlssInf0to1 function in the gamlss.inf

and gamlss R packages (Stasinopoulos et al., 2017), then

calculating an EB proportion as follows: (number of successes

+ alpha)/(total number of questionnaires + alpha + beta). Of

note, two nearly homogenous variables did not converge (UKB

field 100920 milk type: “any” and a combined total drinks

variable); for these we used parameters estimated from a

similar variable distribution (UKB field 100920 any dairy milk

type: “semiskimmed,” “skimmed,” and/or “whole”). EB averages

were calculated by first fitting a Dirichlet-multinomial mixture

model to all continuous variables as a matrix of possible

responses and counts for each response as implemented in the

DirichletMultinomial R package (Morgan, 2022) This fit model

empirically estimates an alpha parameter to update each

individual response based on the raw values and counts. Once

a weighted value is obtained for each possible response, each

individual’s EB average is obtained by summing their weighted

values over the total number of questionnaires plus the sum of

the alpha estimates. A detailed explanation with R code has been

described previously (Robinson, 2017).

Using genetics to benchmark phenotype
precision

To estimate heritability, we first conducted genome-wide

association study (GWAS) analysis on each phenotype using

REGENIE whole genome regression software (version1.0.6.7),

which allows for the inclusion of related individuals using a

model similar to a linear mixed model (Mbatchou et al., 2021).

Briefly, we first prepared a set of quality-controlled markers by

filtering to genotyped markers with minor allele

frequency >0.5%, minor allele count >10, and

missingness <10% in samples of genetically determined

European ancestry (see above) with less than 10% genotype

missingness (M = 784,256). We next conducted REGENIE as

directed in two steps, first fitting a whole genome regression

model capturing the phenotypic variance attributable to genetic

effects, followed by testing the association between each 24HR

diet phenotype and 58,299,817 imputed markers conditional

upon the model in step one. The resulting genetic variants

were filtered for imputation INFO score ≥0.6 and common

variants with minor allele frequency ≥0.5%, resulting in

genome-wide summary statistics for 11,006,968 variants across

1,288 total phenotypes.

Our specific analysis presented here was computationally

intense and required a high-performance computing

environment. REGENIE linear mixed model GWAS for

1,288 phenotypes in ~200 K individuals required splitting the

data into six sets, each requiring approximately 30 GB of memory

and 10 days of compute time. For more information on

performance, please see the REGENIE documentation (https://

rgcgithub.github.io/regenie/). Several factors would improve the

computational cost of this approach including more heritable
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phenotypes in smaller sample sizes and the use of traditional (and

not mixed) linear or logistic GWAS models.

The following covariates were included in the genetic model:

sex, average age in months, average age in months squared,

assessment center (UKB field 54 as a factor), birthplace (UKB

field 1,647 as a factor), self-reported ethnicity (UKB field

21000 as a factor), proportion of questionnaires taken on a

weekend (Friday, Saturday, or Sunday; UKB field 20080),

duration of questionnaire in minutes winsorized at 25 min

(UKB field 20082), the proportion of questionnaires taken

with a duration ≥25 min (UKB field 20082), average hour of

the day completed (UKB field 20081), total number of

questionnaires taken, ten genetic principal components

derived previously (Cole et al., 2020), and genotyping array.

We used LD score regression software (version1.0.0) and LD

scores computed using 1,000 Genomes European data to extract

heritability estimates of each 24HR dietary phenotype. A

Bonferroni heritability significance threshold was obtained by

dividing 0.05 by the number of effectively independent

phenotypes (N = 46.1) as estimated by the “eigenvalue

formula” (Bretherton et al., 1999) on eigenvalues obtained

from a principal components analysis on all covariate-adjusted

dietary variables.

Intra-class correlation, a measurement of consistency across

measures (e.g., across multiple 24HR questionnaires), was

calculated as the between-subject variance/(between-subject

variance + within-subject variance) from individuals of

European ancestry that took the questionnaire all 5 times

(N = 2,066) in R with the “irr” package. The clump command

within the PLINK2 software (Chang et al., 2015) and the

1000 Genomes Project phase 3 European reference (Auton

et al., 2015) was used to determine the number of

independent genome-wide significant loci (P < 5 × 10−8) in

500 kb windows in each GWAS, followed by collapsing signals

across all GWAS together to leave only one lead SNP-phenotype

association per window.

Results

The 24HR questionnaire contains over 200 questions on

foods and beverages consumed in the previous 24-hour day.

After individual 24HR questionnaire quality control and filtering,

there were 176,858 individuals remaining for all downstream

analysis. Among these individuals, over half took the

questionnaire at least twice (N = 95,777; 54%) with

46,893 completing two, 31,818 completing three,

15,000 completing four, and 2,066 completing all five 24HR

questionnaires (Supplementary Figure S2).

From 264 UKB 24HR questionnaire fields, many with

multiple categorical responses, we derived 158 binary variables

(yes/no to consumption) and 243 continuous variables

(quantities). All variables were converted to proportions (how

often a food/beverage was consumed over questionnaires taken)

and all continuous quantities were also averaged over

questionnaires taken. Finally, all variables underwent an EB

transformation as described in the Methods section, resulting

in both a crude and EB version for each phenotype, for a total of

1,288 phenotypes tested for downstream analysis

(Supplementary Table S1; Figure 1; Supplementary Figure S3).

Note, averages were calculated from all questionnaires taken for

each individual, even when that food or beverage was not

consumed (i.e., a quantity of 0). Therefore, the accuracy of

average quantities of foods and beverages that are episodically

consumed on an irregular basis will likely be lower than the

accuracy of average quantities of foods and beverages that are

more regularly consumed. An alternative averaging approach,

which was not taken in this study, would be to average quantities

of foods only from questionnaires in which the food was

consumed or apply more sophisticated approaches for

episodic foods as previously developed (Kipnis et al., 2009).

After limiting to phenotypes in which at least one approach

(crude or EB) had a significant heritability estimate based on a

multiple testing threshold corrected for effectively independent

phenotypes (p < .05/46.1 = 0.00108; see Methods),

200 proportion and 102 average quantity phenotypes

remained. The EB approach led to higher heritability for well

over half the phenotypes (209/302 = 69%), and the improvement

in heritability was much more prominent in the average quantity

(91/102 = 89%) compared with the proportion phenotypes (118/

200 = 59%; Figure 2).

Upon closer examination of the dietary proportion

phenotypes, we noticed that the EB approach led to higher

heritability estimates at the lower end of the heritability

spectrum, while the crude proportions led to higher

heritability estimates at the higher end of the spectrum. We

hypothesized that foods and beverages that are consumed on a

more regular basis and have less questionnaire-to-questionnaire

variability would have the highest heritability estimates and

benefit the least from our version of the EB approach. To test

this, we calculated intra-class correlation, a measure of reliability

across multiple measures, on all raw dietary variables from a

subset of individuals that took all five 24HR questionnaires (N =

2,066; Supplementary Table S1). Not surprisingly, there is a

strong correlation between the ICC (i.e., the reliability from

questionnaire to questionnaire) and the estimated crude SNP

heritability (overall correlation = 0.61, proportions = 0.54,

averages = 0.74; Figure 3), with the highest heritability among

the most reliable phenotypes.

Furthermore, as seen in Figure 3A and Supplementary Table

S1, the crude approach consistently leads to higher heritability

estimates than the EB approach among the most reliable

phenotypes such as coffee intake, and vice versa among the

least reliable phenotypes, such as chocolate intake. Specifically,

for the proportions with ICC in the top quartile (ICC ≥ 0.513),

the crude proportion leads to higher heritability 86% of the time
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(43/50 phenotypes), whereas for those derived from the least

reliably reported foods and beverages in the bottom quartile

(ICC ≤ 0.178), the EB proportion leads to higher heritability 84%

of the time (42/50 phenotype comparisons). On the other hand,

average quantities of foods and beverages, whether reliably

reported from questionnaire to questionnaire or not, have

consistently higher heritability estimates using the EB

approach: 91% (21/26) in the top quartile (ICC ≥ 0.458) and

92% (24/26) in the bottom quartile (ICC ≤ 0.188) (Figure 3B).

Habitually consumed beverages (e.g., coffee, water, tea, and

alcohol) are among the most reliable (i.e., high ICC) and

heritable phenotypes, and demonstrate this phenomenon well

(Supplementary Figure S4). Although crude proportions of

habitually consumed beverages have higher heritabilities, the

EB version leads to higher heritability among the average

quantity phenotypes, and even more so when the ICC is low.

Although gold standards are typically not available for most

dietary phenotypes, some dietary phenotypes have strong

associations at genetic loci with well-established mechanisms,

which can serve as “genetic gold standards” for this subset of

phenotypes. More broadly, if heritability were an appropriate

metric to confidently assign and rank phenotype quality among

different processing approaches, we would expect the more

heritable version to have a stronger statistical association at

genetic loci, particularly those with established biological

mechanisms. To evaluate this question, we investigated the top

associations from our GWAS data. Overall, we find that 208/379

(55%) of our independent loci associated with dietary intake (See

Methods) are more strongly associated with the more heritable

phenotype version (164 crude and 214 EB). Notably, these loci

include well-known genetic gold standard associations such as SNP

rs2472297 near the CYP1A2 caffeine metabolism gene associated

with coffee intake (Faber et al., 2005) and SNP rs2708381 in the

TAS2R46 bitter taste receptor gene (Andres-Barquin and Conte,

2004) associated with adding sugar or artificial sweetener to

different beverages and foods. When filtering to dietary traits

with the largest percent difference in heritability between the two

versions (top 25% and top 10%), this concordance increases to 67%

and 77%, respectively. This suggests that heritability may need to be

substantially different to increase GWAS association strength.

Discussion

The overall goal of our study was to apply an EB approach to

account for variability in number of repeated measures in dietary

data and use an unbiased metric for assessing its utility in a high-

throughput manner. While gold standard measurements are

FIGURE 1
Empirical Bayes Proportion and Average Transformations: Coffee Intake. These example visualizations of coffee intake depict the shrinking of
raw values for individuals with fewer total questionnaires. (A) Histogram of Empirical Bayes proportion colored and stacked by the crude proportion
(number of times an individual reported drinking coffee out of how many total questionnaires that individual took). (B) Scatter plot of the crude
average (x-axis) vs. the Empirical Bayes Average (y-axis) of cups of coffee per day, colored by total number of questionnaires taken. The red line
is the line of identity, and the density plots are depicted on the top and right borders. See Supplementary Figure S3 for more examples.
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often used in epidemiology to assess validity, they are often

limited, unknown, or unmeasured in practice. Heritability

provides a simple and broadly applicable extension of this

approach that capitalizes on the measurable, non-zero

heritability of the great majority of phenotypes (Ge et al.,

2017a), meaning that a portion of their phenotypic variance is

explained by genetic variance. Even if this heritability derives

from a different, heritable mediator phenotype (as is often the

case with largely environmentally-driven traits like dietary

intake), increased precision in phenotypic measurement will

result in reduced observed phenotypic variance and hence

increased estimated heritability. Here, we use heritability

estimates as an unbiased metric to compare the relative

validity of phenotype processing approaches, and apply this

standard simultaneously across hundreds of dietary variables.

Unlike the dietary data in UKB, typical nutritional

epidemiology-focused cohorts capture dietary intake more

often, at regularly spaced intervals, and validate with multiple

different questionnaires (WILLETT et al., 1985; Ocké et al.,

1997). Still, previous work has found that dietary variables

derived from the 24HR questionnaire in UKB have ICC and

correlations with biomarkers comparable to those derived from

the more burdensome conventional studies (Carter et al., 2019;

Greenwood et al., 2019). Furthermore, although dietary intake is

a behavioral trait that is influenced by many external health and

socio-cultural factors, we find that 302 of our overlapping derived

dietary phenotypes have significant, albeit modest, heritabilities.

Together, these findings support the utility of the UKB 24HR

questionnaire data for capturing meaningful information for

future studies, potentially in combination with the UKB FFQ,

which alone does not contain enough information to estimate

energy and nutrient intake.

We apply a Bayesian approach using the empirical data at hand

to estimate distribution parameters and update individual estimates

of proportion and average quantity phenotypes, representing how

often and how much a food or beverage is consumed, respectively.

The EB approach leads to higher heritability estimates more often

than its crude counterpart, most often when considering average

quantities consumed, and least often when examining yes/no

questionnaire variables for foods and beverages that are

FIGURE 2
Heritability comparison between crude and Empirical Bayes approaches. Scatter plots of SNP heritability estimates comparing crude (x-axis)
and Empirical Bayes (y-axis) for proportion phenotypes (A) and average phenotypes (B). The black line is the line of identity.
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consumed habitually with high reproducibility. There is a wide array

of research and literature on accounting for measurement error in

24HR questionnaires, and future work could expand upon this brief

report to compare these additional approaches to each other under

different circumstances, such as among different dietary intake

classes (e.g., foods, food groups, nutrients, and dietary patterns)

or underlying frequency (e.g., habitual and episodic) (Kipnis et al.,

2009; Bennett et al., 2017). We speculate, based on the findings

within, that themore stable and reliable the dietary trait, such as with

macronutrient levels, the less of a noise reduction and power gain

would be seen using the Empirical Bayes and other measurement

error correction methods.

In summary, we provide support for using heritability estimates

as a novel tool for assessing phenotype quality in a high throughput

manner, leveraging relationships with genetic variation on

thousands of individuals as a common reference for hundreds of

traits. A key feature that makes this type of analysis a viable and

scalable approach is the stable and consistent genetic backbone that

all individuals share, which genome-wide genotyping data are

making more readily available in many large cohorts and

biobanks throughout the world. Together with a thoughtful

understanding of the biological question at hand, heritability can

be used to optimize dietary variable processing and phenotype

derivation. This approach can be extended to many traits and

phenotype processing approaches beyond the field of nutritional

epidemiology, as the principle of this work only hinges on a non-

zero heritability. However, a key limitation to this approach is that

heritability must be detectable. We demonstrate that the large

sample size of the UKB allowed us to detect even modest

heritability for many but not all noisy and environmentally

mediated dietary traits derived from UKB’s 24HR questionnaire.

Furthermore, unlike correlations with known biomarkers, our use of

heritability only quantifies the relative precision of dietary

phenotypes, and does not discern their accuracy, particularly if

mediated (and to different extents) through another heritable trait,

as is often the case with dietary intake (e.g., health conditions and

socioeconomic status) (Pirastu et al., 2022). Complete mediation of

the relationship between genetic variants and dietary intake by

heritable health conditions (e.g., medical advice that changes

eating habits) would limit the use of this approach in a

population free of the condition at hand. In the end, heritability

is ametric of an underlying biological relationship, direct or indirect,

FIGURE 3
Relationship between phenotype reliability and heritability. Scatter plots of intra-class correlation (y-axis) versus SNP heritability estimates
(x-axis) colored by the method (EB, crude, or equal) that led to the higher heritability for proportion phenotypes (A) and average phenotypes (B).
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with the phenotypes at hand; therefore, a key assumption when

comparing the same phenotype processed in two different ways is

that the same genetic variants are at play, and the heritability

estimate is capturing phenotype precision alone. As discussed,

the use of heritability as a precision metric is best suited for

comparing different transformations of the same phenotype, but

an important next question is then how to compare heritability

between two different phenotypes with both different levels of

phenotype precision and different underlying genetic

determinants. Furthermore, applying a recently developed

approach that estimates heritability after correcting for

measurement error (Ge et al., 2017b) to the nutritional data in

UKB is a compelling and complementary next step to truly

determine which dietary traits are more heritable.
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