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Our efforts to understand the developmental origins of birth defects and

disease have primarily focused on maternal exposures and intrauterine

stressors. Recently, research into non-genomic mechanisms of inheritance

has led to the recognition that epigenetic factors carried in sperm also

significantly impact the health of future generations. However, although

researchers have described a range of potential epigenetic signals

transmitted through sperm, we have yet to obtain a mechanistic

understanding of how these paternally-inherited factors influence offspring

development and modify life-long health. In this endeavor, the emerging

influence of the paternal epigenetic program on placental development,

patterning, and function may help explain how a diverse range of male

exposures induce comparable intergenerational effects on offspring health.

During pregnancy, the placenta serves as the dynamic interface between

mother and fetus, regulating nutrient, oxygen, and waste exchange and

coordinating fetal growth and maturation. Studies examining intrauterine

maternal stressors routinely describe alterations in placental growth,

histological organization, and glycogen content, which correlate with well-

described influences on infant health and adult onset of disease. Significantly,

the emergence of similar phenotypes inmodels examining preconceptionmale

exposures indicates that paternal stressors transmit an epigenetic memory to

their offspring that also negatively impacts placental function. Like maternal

models, paternally programmed placental dysfunction exerts life-long

consequences on offspring health, particularly metabolic function. Here,

focusing primarily on rodent models, we review the literature and discuss

the influences of preconception male health and exposure history on

placental growth and patterning. We emphasize the emergence of common

placental phenotypes shared between models examining preconception male

and intrauterine stressors but note that the direction of change frequently

differs between maternal and paternal exposures. We posit that alterations in

placental growth, histological organization, and glycogen content broadly serve

as reliable markers of altered paternal developmental programming, predicting

the emergence of structural and metabolic defects in the offspring. Finally, we

suggest the existence of an unrecognized developmental axis between the

male germline and the extraembryonic lineages that may have evolved to

enhance fetal adaptation.
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Introduction

Sperm are principally known for carrying DNA,

specialized cells that deliver one-half of the genome

required to give rise to healthy offspring. However, we now

know these cells carry much more than just a haploid set of

chromosomes. During spermatogenesis, sperm cells undergo

widespread transcriptional and structural changes as they

differentiate (Larose et al., 2019). During this process,

changes in DNA methylation and posttranslational

histone modifications, followed by the sequential

replacement of most histones by protamines, yield an

incredibly specialized cell type with a remarkably unique

epigenome (Le Blévec et al., 2020). Subsequently, during

transit through the epididymis, additional epigenetic signals

are conferred to sperm as they mature to become fertilization

competent, including alterations in noncoding RNAs and

additional changes in posttranslational histone

modifications (Yoshida et al., 2018; Bedi et al., 2022a;

Conine and Rando, 2022) (Figure 1).

Over the past 10 years, clinical and biomedical studies have

demonstrated that epigenetic factors carried in sperm

significantly influence the health of future generations (Lane

et al., 2014; Fleming et al., 2018). These studies have challenged

the exclusive importance of gestational exposures in mediating

environmentally-induced disease and provide compelling

evidence to help redress the notion that exposure-induced

birth defects are solely the woman’s fault. Notably, these

studies also demonstrate that some aspects of teratogenesis are

programmed; epigenetic changes pass through common

progenitors to exert successive tissue-specific effects in an

ensuing life stage. However, there is still a foundational lack

of knowledge concerning how environmental stressors impact

epigenetic processes controlling sperm production, and, as yet,

the mechanisms by which these inherited epimutations persist to

influence offspring health remain almost entirely undefined.

FIGURE 1
Epigenetic Signals in the Sperm. In addition to the paternal genome, sperm cells transmit epigenetic information from the sire to the offspring.
These ‘epigenetic signals’ include a variety of sperm histone posttranslational modifications that are retained during spermatogenesis and may
transmit to the developing embryo. Sperm DNA methylation is another epigenetic modification carried by the sperm that has the potential to
influence embryonic transcription. Sperm also carry a wide range of noncoding RNAs (miRNA, tRFs, piRNA) that influence zygotic transcription.
These epigenetic signals enable the transmission of nongenomic information to the offspring.
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The most plausible track in this endeavor is determining the

influence of paternal exposures on the development and function

of the placenta. In this review, we seek to understand how

changes in sperm-borne epigenetic signals broadly influence

offspring health by focusing on the impacts on placental

biology. We predominantly focus our review on mouse

models, for which a growing body of literature is available.

Finally, we will endeavor to explain how altered epigenetic

programming in sperm influences embryogenesis and

placentation. In doing so, we aim bridge the gap between

TABLE 1 Studies describing the impacts of preconception paternal exposures on offspring placentation.

Reference Paternal
Exposure
Paradigm

Species Placenta Imprinted
Gene(s)

Gross Placental
Phenotype

Histological
Features

Fornes et al.
(2022)

Diabetes Albino Wistar
Rats

Imprinted genes not reported No significant changes seen N/A

Jazwiec et al.
(2022)

Paternal obesity C57BL/6J Mice Igf2 increased No significant changes seen Placental Hypoxia, increased
angiogenesis with loss of integrity in
vessels

Thomas et al.
(2022)

Alcohol (3%,
6%, 10%)

C57BL/6J Mice Ascl2, Cdkn1c, H19, Slc22a18,
Peg3 dysregulated

Higher Placental Weights for 3%
and 6%

Increase in labyrinth and alterations
in vascular space

Gao et al. (2021) Microcystin-LR Mice Imprinted genes not reported No significant changes Decreased proliferation of labyrinth
cells.

Impaired vasculature in MC-LR
exposed placentae

Rokade et al.
(2021)

Inflammation C57BL/6J Mice No imprinted genes reported Changes in placental weights N/A

Thomas et al.
(2021)

Alcohol C57BL/6J:
CD1 Hybrid

Cdkn1c, H19 decreased in
females.

Increased placental weight in
male C57 offspring, decrease in
male CD1 hybrids.

Decrease in junctional zone area
and increase in labyrinth in females

No change in males Decreased placental diameter in
male CD1 hybrids.

Cissé et al. (2020) Paternal Stress C57BL/6J Mice No imprinted genes identified No significant changes NA

Denomme et al.
(2020)

Advanced age CF1 Mice Slc22a18, Cdkn1c, Kcnq1, Copg2,
Klf14, Igf2r, Slc22a3, Meg3 and
H19 increased.

No significant changes N/A

Kcnq1ot1, Mest, Airn, Ins2
decreased

McPherson and
Lane (2020)

Obesity C57BL/6J Mice No imprinted genes reported No significant changes N/A

Morgan et al.
(2020)

Low protein diet C57BL/6J Mice Igf2, Snrpn, Mest (No changes
reported)

Decreased placental weights Decreased junctional zone area

Innocenzi et al.
(2019)

Cannabinoid
receptor agonist

CD-1 Mice Peg10 and Plagl1, altered
methylation

Decreased placental weights Decreased spongiotrophoblast area
with corresponding increase in
labyrinth

Ding et al. (2018) Gestational TCDD C57BL/6J Mice Igf2, H19 decreased No significant changes N/A

Gerlinskaya et al.
(2017)

Immunization C57BL/6J,
BALB/c, ICR
mice

No imprinted genes reported Changes in placental weights
across strains

N/A

Mitchell et al.
(2017)

High Fat Diet C57BL/6J Mice Peg3, Peg9, Peg10, decreased No significant changes N/A

Watkins et al.
(2017)

Low Protein Diet C57BL/6J Mice No imprinted genes reported Decreased placental weights Increased Area of Junctional Zone

Binder et al.
(2015)

Obesity C57BL/6J Mice No significant changes in
imprinted genes

Decreased placental weights N/A

Lambrot et al.
(2013)

Folic Acid
Deficiency

C57BL/6J Mice No significant changes in
imprinted genes

No significant changes Decreased spongiotrophoblast area
with absence of giant cells

Drake et al.
(2011)

Glucocorticoids Wistar rats Igf2 decreased in F1 Placental weights decrease in
F1 and paternal F2, increase in
maternal F2

N/A

Cdkn1c, Phlda, H19 increased
in F2
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paternal exposures and pediatric disease and identify potential

markers of altered developmental programming common

between divergent models examining preconception paternal

exposures.

Preconception paternal stressors and
placental function

The placenta is the dynamic interface between mother and

fetus that regulates nutrient, oxygen, and waste exchange,

coordinates fetal growth, metabolism, and maturation, and

determines gestation length. Consequently, factors influencing

placental development and function are not only crucial in

determining successful pregnancy outcomes; they set the stage

for multiple aspects of lifetime health (Burton et al., 2016).

Although rarely considered when assessing child-health

outcomes, paternally-inherited epigenetic factors have been

long-known to play critical roles in controlling the

development and differentiation of extraembryonic tissues

across multiple mammalian species (McGrath and Solter,

1984; Surani et al., 1984; Wang et al., 2013). Accordingly,

several studies examining the intergenerational impacts of

paternal stressors report alterations in placental growth within

the next generation (Table 1). Below, we review these data and

discuss potential mechanistic pathways linking paternal

exposures to placental dysfunction while also infusing some

caution into the interpretation of these changes.

Preconception paternal stressors and
alterations in placental imprinted gene
expression: Causal drivers or additional
symptoms?

During the mid-1980s, pioneering studies by McGrath and

Solter (McGrath and Solter, 1984) and Surani et al. (Surani et al.,

1984) demonstrated that the sperm and egg contain information

beyond the genetic code and make unequal contributions to

offspring development, with the paternal contribution

predominantly driving the growth and differentiation of the

placenta and yolk sac. From this early work, the field of

genomic imprinting was born, which has since revealed that

the appropriate dosage and function of a small cohort of

monoallelically expressed genes is critical to controlling

fetoplacental development (Bartolomei et al., 1991; DeChiara

et al., 1991; Giannoukakis et al., 1993; Constância et al., 2002; Lee

and Bartolomei, 2013). Moreover, gene loss-of-function studies

examining Ascl2, Cdkn1c, Grb10, Igf2, Igf2r, Peg1, Peg3, Peg10,

Phlda2, Rtl1, and several others, have revealed that imprinted

genes play foundational roles in directing placental

differentiation and patterning (Bressan et al., 2009; Piedrahita,

2011).

Notably, multiple aspects of paternal health influence the

epigenetic regulation of imprinted genes in sperm, which

affects offspring fetoplacental growth. For example,

Denomme and colleagues report that age-related changes in

sperm DNA methylation are associated with altered placental

imprinted gene expression and growth (Denomme et al.,

2020). Further, recent clinical studies suggest paternal

imprints (here, we reference the inheritance of a silenced

paternal allele) may be less stable than maternal imprints,

and loss of genomic imprinting impacts placental and infant

weight (Vincenz et al., 2020). Therefore, given the established

role paternally-expressed imprinted genes have in controlling

the development and differentiation of extraembryonic

tissues, imprinted genes and their epigenetic regulatory

mechanisms represent the logical first suspects in our

efforts to understand how paternal stressors and

environmental exposures impact offspring fetoplacental

health.

Although a relatively small number of studies investigating

the influence of paternal exposures on offspring health have

examined aspects of placental development, a notable number

have identified altered imprinted gene expression (Table 1).

For example, placentae derived from the offspring of obese

males exhibit altered expression of the imprinted genes Igf2,

Peg3, Peg9, and Peg10 (Mitchell et al., 2017; Jazwiec et al.,

2022). Males exposed to exogenous glucocorticoids during

gestation sire offspring with reduced placental weights, which

correlated with altered expression of the imprinted genes Igf2,

Cdkn1c, Phlda2, and Slc22a18 in both the placenta and fetal

liver (Drake et al., 2011). Adult males exposed to the toxicant

Tetrachlorodibenzo-p-dioxin (TCDD) display reductions in

placental weight and altered placental DNA methylation

profiles at the Igf2-H19 imprint control region (Ding et al.,

2018). The offspring of adult males exposed to cannabinoids

present with disruptions in the histoarchitecture of the

placenta, including reductions in the placental junctional

zone and increases in the labyrinth layer, which correlated

with altered methylation of the paternally expressed imprinted

genes Peg10 and Plagl1 (Innocenzi et al., 2019). Likewise, our

group has identified changes in placental histology induced by

chronic preconception paternal alcohol exposure, in which,

similar to the offspring of cannabinoid-exposed males, the

labyrinth layer increases and junctional zone decreases

(Thomas et al., 2021; Thomas et al., 2022). We also identify

alterations in placental imprinted gene expression, including

changes in Ascl2, Igf2, H19, and Slc22a18. In contrast,

placentae derived from the offspring of males maintained

on a low protein diet exhibit increased size of the placental

junctional zone and a decreased labyrinth layer but also

display abnormal expression of multiple imprinted genes,

including Cdkn1c, Grb10, H19, Mest, and Snrpn (Watkins

et al., 2017; Morgan et al., 2020). Therefore, paternal

exposures appear to transmit a stressor to their offspring,
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frequently resulting in altered placental imprinted gene

expression.

However, determining if alterations in imprinted gene

expression are phenotypic drivers or additional symptoms

remains a challenging question central to determining how

the paternally-inherited epigenetic program influences

offspring phenotype. Although human studies suggest

genomic imprints transmitted through sperm are more

labile than those in oocytes (Vincenz et al., 2020), few

studies report correlative DNA methylation profiles between

exposed sperm and imprint control regions within offspring

placentae. To this point, genome-wide studies using a mouse

model of paternal folic acid deficiency, which also reported a

thinning of the placental junctional zone and increases in the

labyrinth layer, identified 300 differentially expressed

placental genes, but only two candidates exhibited

differential methylation in sperm; none of the candidates

were imprinted genes (Lambrot et al., 2013; Radford et al.,

2014). Moreover, neither the aforementioned studies

examining paternal glucocorticoid exposures (Drake et al.,

2011) nor our work examining alcohol-exposed sperm (Chang

et al., 2017; Chang et al., 2019a) identified any DNA

methylation changes in sperm or alterations in monoallelic

imprinted gene expression. Finally, the remaining studies that

report common changes between exposed sperm and offspring

placentae identified very modest changes of 2–10%, which

previous reports suggest are insufficient to disrupt monoallelic

gene expression patterns (Mann et al., 2003; Mann et al., 2004;

Susiarjo et al., 2013), and did not employ a mouse model

capable of confirming parent-of-origin expression

patterns. Therefore, the altered placental imprinted gene

expression observed in intergenerational models of paternal

exposures are likely additional symptoms and unlikely to

represent the primary epigenetic memory influencing

offspring phenotypes.

In support of this assertion, recent studies examining the

offspring of obese males identify altered Igf2 expression at

gestational day 14.5, but these differences disappear by

gestational day 18.5 (Jazwiec et al., 2022). Furthermore,

most studies report sex-specific changes in placental

imprinted gene expression. These sex-specific patterns

and transient alterations indicate that altered imprinted

gene expression likely arises as part of a cellular response

to a paternally-inherited stressor rather than as a primary

driver of altered developmental programming. This argument

is consistent with studies examining placental defects

induced by assisted reproductive techniques, including

superovulation and in vitro embryo culture, which do not

consistently report altered imprinted gene expression or

imprint control region DNA methylation profiles, despite

invariably observing placentomegaly and junctional zone

overgrowth (de Waal et al., 2015; Chen et al., 2017;

Vrooman et al., 2022).

Preconception male exposures and the
epigenetic transmission of placental
stressors

The murine placenta consists of four main histological layers,

the chorion, the labyrinth layer, the junctional zone, and the

maternal decidua (Figure 2). The functional organization of these

layers serves to bring the fetal and maternal blood systems into

close contact. Here, the maternal blood supply passes through the

spongiotrophoblast cells of the junctional zone via a large central

sinus. Subsequently, blood becomes distributed into the tortuous,

small spaces of the labyrinth, directly bathing the fetal

trophoblastic villi. The labyrinth layer, therefore, serves as the

primary site of fetomaternal exchange, while the junctional zone

functions as the primary endocrine compartment of the placenta,

releasing a vast suite of hormones, growth factors, and cytokines

that act on both maternal and fetal physiology to regulate

pregnancy progression (please see excellent reviews by Rossant

and Cross 2001 (Rossant and Cross, 2001) and Woods, et al.,

2018 (Woods et al., 2018)).

During times of stress, the placenta allocates priority to the

growth and expansion of either the junctional zone or labyrinth,

depending on the specific stressor or stage of pregnancy. For

example, the processes of superovulation and in vitro embryo

culture induce an expansion of the junctional zone, accompanied

by placentomegaly, reduced placental efficiency, and altered

metabolic function in the offspring (Collier et al., 2009; Delle

Piane et al., 2010; Bloise et al., 2012; Tan et al., 2016; Chen et al.,

2017; Dong et al., 2021; Bai et al., 2022; Vrooman et al., 2022). In

contrast, maternal starvation reduces the growth of the junctional

zone (at gestational day 16.5), characterized by a prominent

reduction in glycogen-producing trophoblast cells (Coan et al.,

2010; Sferruzzi-Perri et al., 2011). Decreases and increases in the

junctional zone also emerge in loss-of-function studies

examining imprinted genes, emphasizing the role these genetic

factors have in driving placental histology and adaptation

(Tunster et al., 2020).

As briefly mentioned above, multiple studies examining

paternal stressors also report changes in placental

histoarchitecture, with reallocations primarily occurring

between the junctional and labyrinth zones (Watkins et al.,

2017; Innocenzi et al., 2019; Morgan et al., 2020; Gao et al.,

2021; Thomas et al., 2022). Interestingly, however, these

programmed changes often contrast those observed during

maternal exposures. For example, in contrast to maternal

starvation, which associates with decreased size of the

junctional zone (Coan et al., 2010), paternal nutrient

restriction programs junctional zone hypertrophy (Watkins

et al., 2017). Further, while the offspring of adult males

exposed to cannabinoids and alcohol present with reductions

in the junctional zone and increases in the labyrinth layer

(Innocenzi et al., 2019; Thomas et al., 2022), maternal alcohol

exposures promote an expansion of the junctional zone
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(Gårdebjer et al., 2014). The duality of these responses is

intriguing and emphasizes the divergence between paternal

and maternal experiences in programming aspects of placental

adaptation.

In some reports, paternally programmed alterations in

placental histology correlate with altered glycogen content of

the junctional zone. For example, paternal toxicant exposures

(Ding et al., 2018; Gao et al., 2021), cannabinoid use (Innocenzi

et al., 2019), and long-term maintenance on a low protein diet

(Watkins et al., 2017) all induce reductions in placental glycogen

stores, while chronic preconception paternal alcohol use is

associated with increased glycogen levels (Thomas et al.,

2021). Reductions in placental glycogen content are also

present in mouse models of maternal nutrient restriction

(Coan et al., 2010; Sferruzzi-Perri et al., 2011), while studies

examining the impacts of assisted reproductive technologies,

maternal alcohol use, and gestational glucocorticoid exposures

all report increases in placental glycogen (O’Connell et al., 2013;

Gårdebjer et al., 2014; Dong et al., 2021). In humans, both

decreases and increases in placental glycogen content

accompany pregnancy complications that adversely affect fetal

development, including intrauterine growth restriction,

gestational diabetes, and preeclampsia (Akison et al., 2017).

Although we do not yet fully understand the significance of

placental glycogen flux, these changes consistently emerge in

circumstances where maternal-placental stressors have begun to

impact fetal growth (Akison et al., 2017; Tunster et al., 2020).

Because of their glycogen content and location, placental

biologists believe spongiotrophoblast cells of the junctional zone

serve as a critical energy store, providing additional nutrition to

the placenta and/or embryo during specific phases of pregnancy

(Tunster et al., 2020). As both maternal and paternal stressors

program changes in junctional zone growth and glycogen

content, we propose that the placenta’s histological

organization and glycogen content offers a dynamic readout

of altered paternal epigenetic programming. In support of this

hypothesis, we recently reported alterations in placental growth

and architecture that varied depending on the dose of alcohol

encountered by the father (Thomas et al., 2022). Notably, these

dose-dependent changes are non-linear, with low doses inducing

placental overgrowth with no histological changes, while higher

doses induce growth restriction, which is accompanied by a

male-specific reduction in the junctional zone. Combined with

other works (Vallaster et al., 2017), these data imply that paternal

exposures can program hormetic growth responses, which may

bolster offspring toxicant resistance and adaptability to counter

adverse environmental conditions.

Although an emerging body of work describes consistent

impacts on placental growth and histoarchitecture, the

developmental origins of these changes remain obscure.

FIGURE 2
Paternal Exposure and Placental Phenotypes. Paternal exposures induce a wide variety of gross and histological placental phenotypes. For
example, paternal alcohol, cannabis, and high-fat diet exposures induce increases in the labyrinth layer (layer responsible for nutrient and gaseous
exchange) and decreases in the junctional zone (containing the spongiotrophoblasts and glycogen cells). In contrast, maintaining sires on a low-
protein diet induced an increase in the junctional zone and a corresponding decrease in the labyrinth. Regardless of the changes to placental
histology, most paternal exposures led to dysregulation of imprinted genes like Ascl2, Igf2, H19, Slc22a18, Cdkn1c, Grb10, Mest, and Snrpn.
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However, a small number of studies report associations between

paternal stressors and alterations in early embryonic growth. For

example, paternal low-protein and high-fat diets are both

associated with delayed progression of embryos through the

earliest cleavage events, with the most prolonged delays

coinciding with embryonic genome activation around the 2-

cell stage (Binder et al., 2012; Sharma et al., 2016). Further,

blastocyst-stage embryos derived using sperm from obese males

report reductions in the number of cells within the inner cell

mass and an expansion of the trophectoderm lineage (Mitchell

et al., 2011; Binder et al., 2012). These observations suggest that

paternally-inherited epigenetic stressors may impede the earliest

phases of embryonic differentiation and lineage specification.

Similar to embryos generated using in vitro fertilization (Bai

et al., 2022), it is plausible that paternal stressors alter the

allocation and developmental trajectory of the extraembryonic

endoderm, with downstream consequences on placental

patterning and function. However, these placental deficiencies

may not measurably impact fetal development until late

gestation, when the placenta has reached its maximal size and

is required to support the near logarithmic increase in late-stage

fetal growth (Mu et al., 2008). Notably, deficiencies in late

gestation are purported to predominantly impact male

offspring, which may help explain the emergence of some sex-

specific outcomes across multiple models examining the

intergenerational impacts of paternal stressors (Kalisch-Smith

et al., 2017).

Alterations in the sperm-inherited
epigenome and altered embryonic
development

Several lines of evidence have emerged to help explain how

epigenetic changes in sperm may impact embryonic

development. However, each of these proposed mechanisms

has limitations that complicate our understanding of how

paternal exposures influence offspring health and

morphogenesis. Below, we will briefly review each epigenetic

signal and discuss evidence supporting and limiting the

involvement of these mechanistic pathways as drivers of

paternal epigenetic inheritance.

DNA methylation

Of the known epigenetic mechanisms examined to date,

DNA methylation is the best characterized across all

subdisciplines of developmental programming, including

studies examining paternal inheritance. Because early studies

contrasting DNA methylation across transposable elements and

imprinted genes identified correlative patterns between sperm

and embryonic tissues, researchers have long suspected this

epigenetic modification participates in the paternal

transmission of environmentally-induced phenotypes (Monk

et al., 1987; Yoder et al., 1997). Supporting this suspicion,

nearly every paternal exposure model or stressor examined to

date yields some degree of change in the sperm DNAmethylome.

For example, high-fat and low-protein diets, exposure to stressful

conditions, cold, drugs of abuse, and multiple environmental

toxicants modify the DNAmethylation profiles of sperm (Anway

et al., 2005; Ouko et al., 2009; Knezovich and Ramsay, 2012;

Martínez et al., 2014; Radford et al., 2014; Wei et al., 2014; Shea

et al., 2015; Chen et al., 2016a;Wu et al., 2016a; Chamorro-Garcia

et al., 2017; Le et al., 2017; Ly et al., 2017; Baptissart et al., 2018;

Sun et al., 2018; Ben Maamar et al., 2019; Innocenzi et al., 2019;

Skinner et al., 2019). Further, several of these studies report

consistent alterations between the methylation profiles of

exposed sperm and gene regulatory regions driving

pathological changes in gene expression in adult animals.

Thus, these data suggest that some modified loci in sperm

may survive embryonic remodeling, persist into adulthood,

and associate with pathological changes in gene expression.

However, although bolstered by the emergence of altered

methylation in clinical studies examining the sperm of obese

males (Donkin et al., 2016), reported changes in DNA

methylation are frequently modest and do not reliably align

with pathology-associated gene expression patterns in

subsequent generations. For example, studies reporting

correlative changes in DNA methylation between sperm and

affected tissues in the next generation frequently describe

differences ranging from 1% to 5% (Martínez et al., 2014; Wei

et al., 2014; Wu et al., 2016a; Sun et al., 2018; Innocenzi et al.,

2019). These very subtle differences are unlikely to appreciably

impact transcription, and, as discussed previously (Shea et al.,

2015), the low frequency of these identified changes in exposed

sperm cannot account for the consistent penetrance of offspring

phenotypes. Further, most studies examining paternal epigenetic

inheritance do not consistently report any direct correlations

between changes in sperm DNA methylation and alterations in

offspring gene expression or only report the emergence of

transcriptional dysregulation in similar genomic regions;

sometimes megabases away (Radford et al., 2014; Shea et al.,

2015; Terashima et al., 2015; Chen et al., 2016a; de Castro

Barbosa et al., 2016; Chamorro-Garcia et al., 2017; Chang

et al., 2017; Le et al., 2017; Ly et al., 2017; Sun et al., 2018).

Therefore, despite early enthusiasm, there is no compelling

evidence that, outside of imprinted genes and select

transposable elements, the inheritance of this epigenetic

modification through sperm stably influences fetal or adult

gene expression in the next generation.

As most DNA methylation is stripped off during syngamy

(Smallwood et al., 2011; Smith et al., 2012) and the epigenome is

heavily remodeled during histogenesis (Guo et al., 2014), it is

unlikely that altered DNAmethylation in sperm persists through

development to influence transcription in fetal or adult tissues
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directly. However, emerging evidence indicates that some regions

may escape the reprogramming wave during early embryonic

development (Hackett et al., 2013; Tang et al., 2015; Zhu et al.,

2018; Hao et al., 2021), which could impact gene expression

within the developing embryo. Although DNA methylation does

have causal roles in the transcriptional regulation of imprinted

genes, the suppression of transposable elements, and the process

of X-chromosome inactivation, its role in controlling the

expression of most protein-coding appears to be responsive

rather than causal and is frequently context-specific (Bestor

et al., 2015; de Mendoza et al., 2022). As single-cell

technologies improve, we may indeed track changes in sperm

DNA methylation that persist through the erasure at syngamy

and impact the initiation of the earliest transcriptional programs

diving development. However, these are likely acute changes

altering embryonic transcription, not permanent ones driving

pathology in adult tissues.

Histone posttranslational modifications

Although less explored than DNA methylation, a small

number of studies examining alterations in sperm histone

posttranslational modifications have also emerged. Despite the

replacement of most histones with protamines during

spermatogenesis, some genomic loci in sperm retain histones,

which carry select posttranslational modifications to the zygote.

These nucleosome-enriched regions colocalize with regulatory

regions of developmentally crucial genes (Gardiner-Garden et al.,

1998; Arpanahi et al., 2009; Hammoud et al., 2009; Brykczynska

et al., 2010; Erkek et al., 2013; Royo et al., 2016; Yamaguchi et al.,

2018; Yoshida et al., 2018) or gene-poor domains enriched in

repetitive elements (Zalenskaya et al., 2000; Carone et al., 2014;

Samans et al., 2014; Sillaste et al., 2017), depending on the

method of analysis. Similar to studies examining DNA

methylation, researchers suspect that a subset of these

histone-enriched loci transmits to the early embryo to

influence embryonic development.

Whether the environment modulates this form of epigenetic

information to heritably influence offspring development is still

in the initial stages of investigation. However, research reveals

that sperm from males exposed to alcohol, a folic acid-deficient

diet, and a high-fat diet all display altered amounts of

trimethylated histone H3 lysine 4 (H3K4me3) or dimethylated

histone H3 lysine 9 (H3K9me2) (Terashima et al., 2015;

Claycombe-Larson et al., 2020; Yoshida et al., 2020; Lismer

et al., 2021; Bedi et al., 2022b; Cambiasso et al., 2022; Pepin

et al., 2022). Inheritance of these changes may directly impact

chromatin accessibility in the developing embryo, impacting the

earliest transcriptional programs governing lineage specification

and developmental patterning. For example, recent work

examining sperm derived from alcohol-exposed males

identified a significant increase in global levels of H3K4me3

(Bedi et al., 2022b). This increase in sperm-retained histones may

alter chromatin decondensation dynamics during syngamy and

delay embryonic genome activation (Binder et al., 2012).

Alternatively, regions of the sperm genome displaying altered

chromatin enrichment may persist through the early cleavage

stages and directly influence gene expression patterns driving

early development. For example, recent studies by Sarah

Kimmins’s group have revealed that sperm from folic acid

deficient males transmit some H3K4me3-modified loci in

preimplantation stage embryos, which are associated with

deregulated embryonic gene expression (Lismer et al., 2021).

Similarly, sperm from obese males exhibit alterations in

H3K4me3 that predominantly map to transcriptionally-active

loci of the placental genome; regions controlling inflammation,

metabolism, and placental glycogen storage, all of which are

transcriptionally dysregulated in this model (Pepin et al., 2022).

Notably, there was very little to no conservation between the

histone changes identified in sperm and adult offspring liver,

arguing against the direct inheritance of these changes as drivers

of metabolic syndrome. Furthermore, most regions exhibiting

altered H3K4me3 enrichment in sperm isolated from obese,

alcohol-exposed, or folic acid deficient males localize to gene

enhancer regions controlling embryonic patterning (Lismer et al.,

2021; Bedi et al., 2022b; Pepin et al., 2022). Therefore, altered

chromatin states may transmit to the embryo and alter

embryonic transcription directly.

However, many studies suggest that sperm posttranslational

histone modifications and larger aspects of chromatin structure

are entirely erased, with H3K4me3 stripped from the paternal

genome, and most histone H3.3, which is enriched over gene

regulatory regions, is extruded in the second polar body (Du

et al., 2017; Flyamer et al., 2017; Gassler et al., 2017; Ke et al.,

2017; Kong et al., 2018; van der Weide and de Wit, 2019; Liu

et al., 2020). In contrast, other studies report the conservation of

multiple histone posttranslational modifications, including

H3K4me3, and higher-order chromatin folding between the

sperm and early zygote (van der Heijden et al., 2006; Dahl

et al., 2016; Wu et al., 2018; Alavattam et al., 2019; Jung et al.,

2019; Collombet et al., 2020). As the resolution of chromatin

mapping techniques continues to improve, researchers will

determine how many regions of the sperm genome escape

reprogramming in the early embryo and if regions altered by

paternal stressors directly transmit to the offspring, impacting

early development. However, as with DNA methylation, it is

unlikely that any histone modifications persist into adulthood to

drive pathophysiological changes in gene expression directly.

An alternative mechanism to direct transmission of histone

modifications and DNA methylation could be the

interrelationship between the enrichment of these epigenetic

signals and the binding of chromatin accessibility factors

either in sperm or immediately after fertilization. Here,

increases or decreases in chromatin accessibility may influence

larger aspects of embryonic chromatin organization and,
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therefore, not rely on the direct inheritance of histone-mediated

epigenetic marks in sperm.

Although few studies have considered this perspective, some

reports describe consistent changes in chromatin accessibility

despite inconsistent associations between epigenetic signals. For

example, rather than the direct transmission of altered DNA

methylation across generations, ancestral exposure to the

obesogen tributyltin associates with altered sperm chromatin

accessibility at essential metabolic genes dysregulated in adipose

cells (Chamorro-Garcia et al., 2017). As another, altered

enrichment of H3K4me3 in alcohol-exposed sperm correlates

with changes in placental CTCF enrichment and disrupted gene

expression patterns at gestational day 14.5 (Bedi et al., 2022b).

Similar correlations between altered H3K4me3 and CTCF

binding site enrichment exist in sperm isolated from males

deficient in folic acid (Lismer et al., 2021). In these scenarios,

modified chromatin structure in sperm serves as a bookmark for

other factors, persisting after the primary epigenetic signals in

sperm are lost. In models of transgenerational epigenetic

inheritance, this paradigm may explain the inconsistency of

differential DNA methylation and histone enrichment in F0,

F1, F2, and F3 sperm, despite conserved pathological phenotypes

across generations (Beck et al., 2021). Future studies integrating

multiple omics approaches across generations are necessary to

determine if these separate epigenetic signals and chromatin

accessibility interact in the paternal transmission of growth and

disease phenotypes.

Sperm noncoding RNAs

Perhaps the most exciting discovery emerging from studies

examining paternal epigenetic inheritance has been the

unanticipated influence of sperm noncoding RNAs (ncRNAs)

on offspring phenotype (Chen et al., 2016b; Sharma, 2019).

Multiple stressors, including exercise, drug abuse,

environmental toxicants, inflammation, malnutrition, obesity,

and stress, alter the repertoire of sperm-inherited ncRNAs,

which correlate with alterations in offspring phenotypes

(Conine and Rando, 2022). Many of these ncRNAs originate

from extracellular vesicles called epididymisomes, secreted by the

luminal epithelium of the epididymis, the portion of the male

reproductive tract directing spermmaturation (Zhou et al., 2018)

(Figure 3). During epididymal transit, these vesicles fuse with and

transmit their ncRNA cargos to maturing sperm (Belleannée

et al., 2013; Nixon et al., 2015; Reilly et al., 2016; Sharma et al.,

2016; Sharma et al., 2018). Researchers hypothesize that these

ncRNAs serve as signaling molecules that modulate genetic

FIGURE 3
Epididymis as an Environmental Sensor. The epididymal (mainly the caput and corpus) epithelium functions as a sensor of paternal
environmental stressors. This epitheliummay respond to these stressors by altering its transcriptional program to deliver payloads ofmolecular cargo
through extracellular vesicles (epididymisomes) to the passing spermatozoa. These epididymisomes contain a variety of small RNAs that may deliver
a layer of epigenetic information to the maturing spermatozoa, which can alter gene programming events in the early embryo.
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pathways driving growth, metabolic, or other adaptive processes

in the embryo (Grandjean et al., 2015). Significantly, across

multiple experimental models, injection of naive zygotes with

small RNAs derived from exposed males is sufficient to induce

similar, if not identical phenotypic changes in the resulting

offspring (Gapp et al., 2014; Grandjean et al., 2015; Rodgers

et al., 2015; Chen et al., 2016a; Conine et al., 2018; Gapp et al.,

2018; Sarker et al., 2019; Zhang et al., 2021a; Raad et al., 2021)

(Figure 4). Therefore, sperm-derived ncRNAs represent a viable

means by which epigenetic information transmits to the embryo

to alter physiological function.

Although the mechanisms by which sperm-inherited

ncRNAs alter embryonic development remain poorly

described, one fascinating theme emerging from studies

examining the impact of sperm ncRNAs on embryonic gene

expression is an interaction with transposable elements.

During preimplantation development, embryos transcribe

multiple transposable element families in stage-specific

patterns (Vitullo et al., 2012; Fadloun et al., 2013; Liu et al.,

2020; Lu et al., 2020; Modzelewski et al., 2021). These

transposable elements participate in diverse biological

processes, including driving the expression of genes

controlling embryonic pluripotency, serving as alternative

promoters enabling the generation of novel splice variants,

modulating chromatin accessibility to influence the timing of

embryonic genome activation, and serving as stage-specific

gene regulatory elements (Faulkner et al., 2009; Macfarlan

et al., 2012; Elsässer et al., 2015; Wu et al., 2016b; De Iaco et al.,

2017; Hendrickson et al., 2017; Jachowicz et al., 2017; Liu et al.,

2020; Lu et al., 2020). Importantly, multiple lines of evidence

across diverse mammalian species indicate that proper

transcriptional control of transposable elements is essential

for embryonic development and that manipulating their

expression or sequence impacts fundamental aspects of

embryo physiology (Beraldi et al., 2006; Jachowicz et al.,

2017; Modzelewski et al., 2021). Therefore, sperm ncRNA

interactions with transposable element biology may

influence multiple facets of embryonic development. This

FIGURE 4
Injection of Sperm noncoding RNAs Recapitulate Environmentally-Induced, Paternally-Inherited Phenotypes in Offspring. Environmental
exposures and paternal stressors alter the repertoire of noncoding RNAs carried in sperm. Isolation of these noncoding RNAs from exposed sperm
and injection into naïve, in vitro-produced embryos induces similar growth and metabolic phenotypes in the offspring as those emerging from in
vivo-derived embryos. These experiments demonstrate a causal role of sperm noncoding RNAs in the paternal transmission of
environmentally-induced phenotypes.
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influence may be especially significant for placental

development and function, where transposable elements

serve as core regulatory elements for this tissue (Rawn and

Cross, 2008; Chuong et al., 2013).

Sperm contains a vast repertoire of ncRNAs interacting

with transposable elements, including Piwi-interacting RNA

(piRNAs), tRNA fragments (tRFs), and microRNAs

(miRNAs). PiRNAs are germline-derived small RNAs that

direct the transcriptional and posttranscriptional silencing

of transposable elements in the male germline (Siomi et al.,

2011). Fragments derived from cleaved tRNAs either directly

bind multiple clades of endogenous retroviral elements to

block their replication or recruit the RNAi machinery to

induce their degradation (Schorn et al., 2017). Finally,

multiple oocyte-derived miRNAs and endogenous short

interfering RNAs map to transposable elements and

constrain their expression (Stein et al., 2015). Therefore,

multiple small RNA species present in sperm can interact

with transposable elements.

A small number of studies tracking the impacts of sperm

ncRNAs on embryonic transcription report effects on

transposable elements. For example, paternal exposure to a

low-protein diet induces alterations in several ncRNA species

but most prominently in 5′ fragments of the Glycine tRNA (tRF-

Gly). Injection of these tRFs into naive zygotes upregulated genes

proximal to the MERVL transposon (Sharma et al., 2016).

Subsequent experiments using embryonic stem cells revealed

that these tRNA fragments interact with a U7 small nuclear RNA,

modulating the translational control of histone proteins;

potentially modifying the timing of embryonic genome

activation (Boskovic et al., 2020). As highlighted above,

paternal low-protein diets retard preimplantation development

(Sharma et al., 2016). Similarly, the injection of ncRNAs derived

from normal sperm into embryos generated using somatic cell

nuclear transfer reduced global levels of H3K9me3, a critical

modification constraining transposable element transcription

and overcoming a significant barrier in cloned embryo

development (Liu et al., 2022). Therefore, sperm-derived

ncRNAs may modify transposable element transcriptional

activity and their regulatory effects through chromatin-based

mechanisms.

Alternatively, sperm ncRNAs may upregulate gene

expression via direct interactions with the genome. For

example, multiple transcripts mapping to transposable

element fragments appear in the sperm of males subjected to

traumatic experiences (Gapp et al., 2018). Injection of LINE1-

derived small RNAs into embryos upregulates LINE1 element

transcription, potentially by forming triple-helical RNA-DNA

hybrids (Fadloun et al., 2013). Similarly, tRFs identified in the

sperm of obese males map to genomic regions near transposable

elements and proximal to many genes dysregulated in 8-cell stage

embryos (Chen et al., 2016a). These correlative data suggest

sperm ncRNAs may exert their transcriptional control by either

directly binding to gene regulatory regions (promoters or

enhancers) or via their proximity to TEs.

Although the correlations with altered transposable element

activity and chromatin accessibility are tantalizing, it remains

difficult to reconcile the negligible scale of RNAs carried by a

single sperm compared to the vast repositories found in the

oocyte and early zygote (Yang et al., 2016). Therefore,

determining how the minor contribution of sperm-derived

ncRNAs exerts a lasting impact on embryonic development

and influences adult physiology remains a challenging and

unresolved question. Nonetheless, microinjection of cauda-

specific small RNAs into developmentally incompetent zygotes

generated using caput epididymis-derived sperm improves

embryo survival and restores embryonic gene expression

(Conine et al., 2018).

Researchers speculate that chemical modifications,

including methylation at multiple bases (m5C, m6A, and

m1A), increase RNA stability, extending the half-life of

sperm ncRNAs until well after fertilization (Chen et al.,

2016b). However, despite the enhanced stability these

modifications confer, ncRNAs only exist for discrete

periods and must stably manipulate gene regulatory

mechanisms to achieve a lasting impact on animal

phenotype. As an alternative to transposable element-

centered interactions, researchers have identified an

influence of tRFs on ribosome biogenesis (Kim et al., 2017).

Like transposable elements, ribosomal sequences are repetitive

and challenging to map. Notably, paternal exposure to a low-

protein diet also decreases ribosomal gene expression, which

may also explain why low-protein embryos developed slower

than controls (Sharma et al., 2016). Alternatively, ncRNAs also

recruit chromatin-binding factors like CTCF, which could

modify the embryonic developmental program (Kung et al.,

2015). However, experiments examining the transgenerational

inheritance of metabolic phenotypes suggest that although

sperm RNAs can act as vectors of intergenerational

inheritance, they do not mediate stable transgenerational

transmission of diet-induced metabolic alterations (Raad

et al., 2021). Although fascinating, much work remains to

determine how the minuscule amount of RNA carried in

sperm impacts offspring embryonic growth and long-term

health.

Future directions: The placenta as a
mediator of early life mitohormesis
and the paternal inheritance of
protective adaptations

Although most models of paternal epigenetic inheritance

report adverse health outcomes, some studies have identified

positive changes potentially conferring protective adaptations to

adverse environmental challenges. For example, repeated
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paternal exposures to sublethal doses of the hepatotoxin carbon

tetrachloride (CCl4), constant low-level systemic inflammation,

and nicotine all suppressed the fibrotic response in the next

generation, improving the wound healing response (Zeybel et al.,

2012; Zhang et al., 2020; Zhang et al., 2021a; Zhang et al., 2021b).

In addition, paternal nicotine exposure also enhances offspring

xenobiotic responses to toxicants by upregulating hepatic

detoxification genes (Vallaster et al., 2017).

The mechanisms by which the memories of these stressors

achieve protective germline programming remain poorly

described. However, many of these reports share similarities

with investigations of stressor-induced germline

programming in insects, plants, and worms, which also

describe enhanced growth, adaptability, and toxicant

resistance in the offspring of organisms exposed to low-

dose stressors (Agathokleous et al., 2022). In worms,

multiple reports can link transgenerational germline

programming to early-life mitochondrial dysfunction and

the epigenetic regulation of antioxidant pathways

(Kishimoto et al., 2017; Zhang et al., 2021c). Significantly,

similar pathways are also present in mammalian systems, and

transient, intrauterine episodes of placental oxidative stress

induce improvements in hepatic metabolism, priming of

antioxidant pathways, and resistance to high-fat diet-

induced obesity; a phenomenon broadly termed

mitohormesis (Yun and Finkel, 2014; Cox et al., 2018;

Dimova et al., 2020). Our data examining low-level paternal

alcohol exposures also identify altered transcription of

placental mitochondrial genes (Thomas et al., 2021;

Thomas et al., 2022), and the male offspring of alcohol-

exposed sires exhibit resistance to the effects of a high-fat

diet (Chang et al., 2019b). Therefore, hormetic alterations in

placental mitochondrial function may represent a mechanistic

pathway by which paternal exposures program fetoplacental

adaptive responses, which may or may not be compatible with

the gestational or postnatal environment. Additionally,

changes in oocyte mitochondrial function are also observed

in maternal models of obesity, suggesting this pathway may

not be unique to the male germline.

As discussed above, many placental changes induced by

paternal exposures are sex-specific, with paternal stressors

inducing diametrically opposite changes in the directionality

of affected gene sets between males and females (Chang et al.,

2019a; Cissé et al., 2020). It is also noteworthy that emerging

research reveals that male cells contain more mitochondria than

females (Cao et al., 2022). Therefore, sex differences in

mitochondrial function may help explain the sexual

dimorphisms observed across studies examining paternal

stressors and why males are more sensitive to specific

exposures. However, as we know almost nothing about the

dynamics of placental mitochondrial function, we require

additional studies to determine the validity of this hypothesis.

Conclusions and future directions

Ultimately, just as maternal exposures do not occur in

isolation, a myopic focus on paternal exposures offers limited

insights. Although limited in scope, a small number of studies

have emerged examining dual-parental exposures to obesity

and stress (McPherson et al., 2015; Ornellas et al., 2015; Cissé

et al., 2020). Importantly, these studies reveal that maternal

and paternal exposures tend to disproportionately impact one

sex and, when combined, that parental sex-specific effect

becomes exacerbated (Cissé et al., 2020). Moving forward,

additional dose-response studies are necessary to determine if

environmental stressor-induced transgenerational hormesis

plays a prominent role in mammalian development, as in

insects, worms, plants, and microbes (Agathokleous et al.,

2022). Further, we need to develop more multiplex exposure

models to determine how preconception paternal exposures

may interact with maternal stressors to influence offspring

growth and disease development. Only by examining the

combined experiences of both parents will we truly

understand the developmental origins of disease. Finally, we

believe that, in these endeavors, the placenta offers the best

direct readout of altered developmental programming.
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