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Editorial on the Research Topic

Integrative approaches to analyze cancer based on multi-omics

Cancer is a multifactorial malignant disease driven by environmental exposure,

genetic polymorphism, somatic mutation events, and other downstream omics (Shen

et al., 2021a; Sung et al., 2021). In the era of big data, leveraging high dimensional omics

data and conducting computational studies can advance oncogenomics research.

Integration of multi-omics tumor profiling data, supported by compatible algorithms,

enables the establishment of novel cancer biomarkers and personalized treatment

strategies aimed at reducing cancer-specific death and improving patient prognosis

(Akhoundova and Rubin, 2022). Moreover, with the development of multi-omics

designed studies, large-scale and high-quality omics databases are gradually

established and open to the public (Table 1). While the omics data cost huge, most of

the research articles on our topic leveraged publicly available data (e.g., The Cancer

Genome Atlas) and made certain discoveries.

The large-scale cancer omics studies greatly promote the research of tumor etiology,

progression, outcome, and treatment. The first glorious achievement is the identification

of numerous cancer-related loci through genome-wide association studies (GWAS) (Tam

et al., 2019). As the sample size increases with sufficient statistical power, causal single

nucleotide polymorphisms (SNPs) have been reported for major cancers. However, the

mechanistic gap between variants and traits is still hard to bridge, while the majority of the

identified variants are located in non-coding regions and have been shown to have limited

functions (Wu et al., 2018). Thus, it is essential to link the genetic variants to downstream

omics to explain the biological functions. The first approach is leveraging the current in-

silico databases to perform functional annotation analyses, such as expression, splice,

methylation, metabolite, protein quantitative trait locus (QTL), histone modification, and

protein-bound. The second approach is to predict trans-omics biomarkers based on QTL

information and then evaluate the association of predicted biomarkers and cancer
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outcomes, such as transcriptome-wide association (TWAS)

(Gusev et al., 2016) and Mendelian randomization (MR)

(Zheng et al., 2020). These post-GWAS studies support the

findings of GWAS and provide favorable evidence for

exploring the relationship between multi-omics markers and

cancers.

The second glorious achievement is the development of

biotechnology and bioinformatics approaches to understand

multi-omics data, including genomics, transcriptomics,

epigenomics, metabolomics, and proteomics. They have

updated our understanding of oncology and improved the

accuracy of outcome prediction.

In genomics, somatic mutation events (e.g., point mutation,

tumor mutation burden, rearrangements) derived from tumor

tissues and matched normal tissues in next-generation

sequencing (NGS) give us novel insights into tumor driver

factors and are practical to guide clinical therapy, such as

targeted therapy and immunotherapy. In transcriptomics,

RNA sequencing of bulk and single-cell technology advances

us to understand the various RNA biomarkers that play essential

roles in tumor regulation, proliferation, differentiation, and

metastasis (Zhang et al., 2022). While the protein-coding

genes have been deeply investigated, the function of non-

coding RNAs remains largely unknown, such as long non-

coding RNA (lncRNA), circular RNA (circRNA), and PIWI-

Interacting RNA (piRNA) (Shen et al., 2021b). Studies have

found that non-coding RNAs had a close relationship with tumor

microenvironment, immune checkpoints, and specific

mechanisms, such as N6-Methyladenosine, ferroptosis, and

autophagy (Sun et al.; Zhao et al., Lan et al., Yang et al.). In

epigenomics, epigenetic modifications play important roles in the

DNA chromatin structure and accessibility, affecting gene

transcription and regulation. Among these, DNA methylation

marks at the cytosine-phosphate-guanine (CpG) dinucleotide

sites are extensively documented that regulate gene expression,

genome stability, and cell fate (Shen et al., 2018). Numerous

successful epigenome-wide association studies (EWAS) have

discovered important CpG sites across human diseases

(Campagna et al., 2021). In addition, mass spectrometry

(MS)-based proteomics and metabolomics are downstream

biomarkers with remarkable effects on cancer outcome, which

could reflect the cancer course more directly and should be paid

more attention (Lotta et al., 2021; Satpathy et al., 2021).

For multi-omics data, various types of integration methods

and algorithms are proposed, which could be generally classified

into two fields: traditional methods and artificial intelligence

(AI). The traditional statistical methods and bioinformatic

algorithms are widely recognized. For example, Shen et al.

(2017). performed variable selection based on DNA

methylation using sure independence screening (SIS) and

developed a trans-omics prognosis model including CpG sites

and their corresponding gene expression based on Cox

proportional hazards model to predict the overall survival of

oral squamous cell carcinoma. The integrated model of clinical

characteristics, methylation, and gene expression outperformed

single omics. Moreover, bioinformatic methods are practical,

such as gene co-expression network, unsupervised similar omics

network fusion, pathway enrichment analysis, gene set variation

analysis (Shen et al., 2019). Recently, AI is becoming a hotspot

where machine learning and deep learning are widely applied in

TABLE 1 Introduction of public databases with available pan-cancer omics data.

Database Omics data Sample
size

Feature URL

UK Biobank Genomics, metabolomics,
proteomics

≈500,000 Natural population cohort https://www.ukbiobank.ac.uk/

The Cancer Genome Atlas
(TCGA)

Genomics, transcriptomics,
epigenomics, proteomics

≈10,000 Pan-cancer cohort with large sample size https://portal.gdc.cancer.gov/

Clinical Proteomic Tumor
Analysis Consortium (CPTAC)

Proteomics, genomics,
transcriptomics, epigenomics

≈1,500 Pan-cancer cohort with high quality proteomics
data

https://proteomics.cancer.gov/
programs/cptac

The Pan-Cancer Analysis of
Whole Genomes (PCAWG)

Genomics, transcriptomics ≈2,700 Pan-cancer cohort with whole genome
sequencing data

https://dcc.icgc.org/pcawg/

FinnGen Genomics ≈300,000 Natural population cohort https://www.finngen.fi/en

Gene Expression Omnibus Transcriptomics, epigenomics — Data uploaded when the article is published https://www.ncbi.nlm.nih.gov/geo/

dbGAP Genomics — Data uploaded when the article is published https://dbgap.ncbi.nlm.nih.gov/

TARGET Genomics, transcriptomics,
epigenomics

≈6,000 Focus on childhood cancers https://portal.gdc.cancer.gov/

Research Program on Genes,
Environment and Health
(RPGEH)

Genomics ≈78,000 Natural population cohort https://divisionofresearch.
kaiserpermanente.org/genetics/
rpgeh

MSK (MSK-IMPACT, MSK-CH,
MSK-MET)

Genomics ≈25,000 Target sequencing data of somatic events, clonal
hematopoiesis, and metastatic events and
tropisms

http://www.cbioportal.org/
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diagnosis and risk/prognosis prediction using cancer omics data

(Arjmand et al.). AI generally has higher accuracy for cancer

diagnosis and prediction, while it could consider the complex

high-order interaction effects ignored in parametric statistical

models. However, an enormous disadvantage of AI is the “black

box” problem that it does not consider causal medical

relationships and could not explain the potential pathogenesis

mechanism.

However, challenges still exist for trans-omics studies.

First, large-scale DNA sequencing [e.g., whole exome

sequencing (WES), whole genome sequencing (WGS)] is

gradually focused on for its high coverage of genetic

variants. For example, the UK Biobank 150 k WGS project

contains 585 million single nucleotide variants (SNVs). At the

same time, most of them are rare variants (minor allele

frequency <0.01) and ultra-rare variants (minor allele

carrier <10), which should not be ignored and might

explain part of “missing heritability” (Halldorsson et al.,

2022). However, current QTL databases could not contain

all rare variants that need novel methods to explore the trans-

omics biomarkers, such as variant set-based design. Second,

most prediction models only focus on the performance (e.g.,

Area Under Curve, C-index) but ignore the causal biological

relationship (Shu et al.; Zhou et al.). Nonetheless, the

mechanism should be comprehensively understood for

adjuvant treatment and drug development to seek valuable

and practical target therapy biomarkers. Third, although the

definition of omics data is well established, deep data-mining

of omics data is still insufficient. In addition, new

biotechnological (e.g., single-cell sequencing, radiomics,

electronic medical records) and computational methods (e.

g., deep learning, natural language processing) have been

developed, both of which require further research.

In conclusion, trans-omics tumor investigation

approaches have rapidly developed, diving deeply into the

molecular landscapes of tumors, and elucidating exciting

novel aspects of cancer biology. Clinical application of

multi-omics biomarkers will further improve our

understanding of tumor biology and significantly shape

cancer precision treatment in the future.
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