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Background: The molecular mechanisms underlying obstructive sleep apnea

(OSA) and its comorbidities may involve mitochondrial dysfunction. However,

very little is known about the relationships betweenmitochondrial dysfunction-

related genes and OSA.

Methods: Mitochondrial dysfunction-related differentially expressed genes

(DEGs) between OSA and control adipose tissue samples were identified

using data from the Gene Expression Omnibus database and information on

mitochondrial dysfunction-related genes from the GeneCards database. A

mitochondrial dysfunction-related signature of diagnostic model was

established using least absolute shrinkage and selection operator Cox

regression and then verified. Additionally, consensus clustering algorithms

were used to conduct an unsupervised cluster analysis. A protein–protein

interaction network of the DEGs between the mitochondrial dysfunction-

related clusters was constructed using STRING database and the hub genes

were identified. Functional analyses, including Gene Ontology (GO) analysis,

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene set

enrichment analysis (GSEA), and gene set variation analysis (GSVA), were

conducted to explore the mechanisms involved in mitochondrial

dysfunction in OSA. Immune cell infiltration analyses were conducted using

CIBERSORT and single-sample GSEA (ssGSEA).

Results: we established mitochondrial dysfunction related four-gene signature

of diagnostic model consisted of NPR3, PDIA3, SLPI, ERAP2, and which could

easily distinguish between OSA patients and controls. In addition, based on

mitochondrial dysfunction-related gene expression, we identified two clusters

among all the samples and three clusters among the OSA samples. A total of

10 hub genes were selected from the PPI network of DEGs between the two

mitochondrial dysfunction-related clusters. There were correlations between

the 10 hub genes and the 4 diagnostic genes. Enrichment analyses suggested

that autophagy, inflammation pathways, and immune pathways are crucial in

mitochondrial dysfunction in OSA. Plasma cells and M0 and M1 macrophages
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were significantly different between the OSA and control samples, while several

immune cell types, especially T cells (γ/δ T cells, natural killer T cells, regulatory

T cells, and type 17 T helper cells), were significantly different among

mitochondrial dysfunction-related clusters of OSA samples.

Conclusion: A novel mitochondrial dysfunction-related four-gen signature of

diagnostic model was built. The genes are potential biomarkers for OSA and

may play important roles in the development of OSA complications.

KEYWORDS

mitochondrial dysfunction, obstructive sleep apnea, immunocyte infiltration,
bioinformatic analysis, gene signature

1 Introduction

Obstructive sleep apnea syndrome (OSA), a growing health

concern that affects nearly one billion people worldwide, is an

independent risk factor for cardiovascular and metabolic

diseases, but is highly underdiagnosed (Arnaud et al., 2020).

Continuous positive airway pressure is highly effective at

improving symptoms but cannot reduce the occurrence of

comorbidities. The use of biomarkers has been strongly

recommended, as the condition often goes undiagnosed

because patients remain oblivious to the severity of OSA and

its complications (Wang et al., 2022). Therefore, it is an urgent

task to find indicators for early diagnosis of OSA and decipher

the molecular pathways involved in OSA and its complications in

order to ensure earlier treatment and prevent complications.

The physiologic changes in OSA are vast and involve

complex mechanisms which play a role in the pathogenesis of

cardiovascular and metabolic disorders. Chronic intermittent

hypoxia (CIH) is the most deleterious feature of OSA, as it

can lead to oxidative damage in every organ (Shan et al., 2007).

CIH can suppress mitochondrial function and lead to the

generation of reactive oxygen species (ROS) (Wang et al.,

2010; Huang et al., 2014; Zhao et al., 2019; Lin et al., 2021;

Song et al., 2022). As mitochondrial status is important for the

metabolic function of all organs, mitochondrial dysfunction at

the cellular level that can affect systemic metabolic balance can

significantly contribute to many diseases and have been defined

as classical a hallmark of many diseases (Srinivasan et al., 2017;

Chapman et al., 2019). Mitochondrial dysfunction is a basic

mechanism in inflammation-related non-communicable diseases

(Hernandez-Aguilera et al., 2013). The wide acceptance of

mitochondrial dysfunction as a correlated factor of

Parkinson’s disease (Rocha et al., 2018), cardiovascular

diseases (Vásquez-Trincado et al., 2016), diabetic kidney

disease (Wei and Szeto 2019) and other numerous diseases

(Kasapoğlu and Seli 2020; Yapa et al., 2021) has led to the

presupposition that mitochondrial dysfunction markers are

associated with OSA. Although various microRNAs and

proteins (and their genes) have been reported to be involved

in OSA (Li et al., 2017; Cao et al., 2021; Shi et al., 2021; Tang et al.,

2021), the effects of OSA on genes and pathways remain largely

unknown, especially regarding mitochondrial dysfunction.

Previous studies have suggested that mitochondrial

dysfunction represents the molecular mechanism underlying

OSA and its comorbidities. First, sleep disorders are prevalent

in individuals with mitochondrial disorders; the clinical features

of the mitochondrial dysfunction affect the type of sleep

disturbance (Brunetti et al., 2021). Second, mitochondrial

DNA (mtDNA) copy number is significantly reduced in

patients with OSA, and it is a reliable biomarker for

predicting cardiovascular risk in patients with OSA (Kim

et al., 2014). Third, Banxia-Houpu decoction reduced CIH-

induced heart damage by regulating mitochondrial function

(Song et al., 2022). Fourth, attenuating mitochondria-

dependent apoptosis has been suggested as a novel adjunct

strategy for ameliorating OSA-induced neurocognitive

impairment (Xu et al., 2021). Fifth, mitochondrial dysfunction

and the oxidative stress were found to be involved in genioglossus

muscle injuries in OSA with obesity, which may provide

therapeutic targets for use in OSA with obesity (Chen et al.,

2021). Lastly, research has identified certain proteins associated

with CIH, and some may serve as novel biomarkers for OSA and

related disorders, such as acute coronary syndrome (Shi et al.,

2021) and Alzheimer’s disease (Wu et al., 2021). In conclusion,

patients with OSA exhibit several mitochondrial gene mutations,

deletions, and some mitochondrial dysfunction indexes.

Unfortunately, little has been reported whether mitochondrial

dysfunction related genes and pathways could be used as clinical

biomarkers of OSA susceptibility and severity so far.

In the present study, a four-gene (NPR3, PDIA3, SLPI, and

ERAP2) diagnostic model was built to diagnose OSA based on

mitochondrial dysfunction-related gene expression. The genes

are potential biomarkers and therapeutic targets for use in OSA.

Consensus clustering of all the samples (OSA and control) was

used to identify two mitochondrial dysfunction-related clusters

(A and B). Furthermore, to investigate the underlying biological

functions of the clusters, we identified 106 differentially

expressed genes (DEGs) between clusters A and B and

conducted functional enrichment analyses of these DEGs. A

protein–protein interaction (PPI) network of the DEGs was
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constructed using the STRING database. Thereafter, immune cell

infiltration was evaluated using both CIBERSORT and single-

sample gene set enrichment analysis (ssGSEA). In addition, the

correlations between the four diagnostic genes and immune cell

infiltration were calculated. To our knowledge, this is the first

study to integrate bioinformatics analyses in order to identify the

key mitochondrial dysfunction-related genes and pathways, and

the degree of immune cell infiltration, in OSA. These genes and

pathways may facilitate our understanding of the molecular

mechanism of OSA and further provide evidence for early

diagnosis, prevention, and treatment of this disease.

2 Methods

2.1 Data sources and processing

Two microarray datasets [GSE135917 (Gharib et al., 2020)

and GSE38792 (Gharib et al., 2013)] on adipose tissue samples

fromOSA patients and controls were downloaded from the Gene

Expression Omnibus (GEO) database. The sequencing platform

was GPL96 (HG-U133A)] Affymetrix (Supplementary Table S1).

Data of 58 OSA patients and 8 controls from GSE135917, and

10 OSA patients and 8 controls fromGSE38792, were analyzed in

our study. The datasets were log2 transformed and normalized

using the SVA R package. The expression distribution before and

after normalization was visualized using boxplots

(Supplementary Figure S1).

2.2 Analysis of differentially expressed
genes and mitochondrial dysfunction-
related genes

The limma R package (Ritchie et al., 2015) was used to

conduct a DEG analysis comparing the OSA and control

samples. The genes with |log(fold change [FC])|>1 and p <
0.05 were identified as DEGs. The RCircos R package (Zhang

et al., 2013) was used to map the chromosomal location of the

genes.

A total of 8334mitochondrial dysfunction-related genes were

then downloaded from the GeneCards database (https://www.

genecards.org/) (Safran et al., 2010) using the key words

“mitochondrial dysfunction”. The mitochondrial dysfunction-

related DEGs were then identified.

2.3 Correlation analysis among genes

Pearson correlations between pairs of genes were calculated.

The GGplot2 R package was used to construct scatter plots of the

expression correlations between pairs of genes that met the

criteria and to fit correlation curves. The criteria for

significant correlation comprised absolute correlation

coefficient value >0.5 and p < 0.05.

2.4 Establishment of diagnostic model

Least absolute shrinkage and selection operator (LASSO)

Cox regression was used for feature selection and dimensionality

reduction in order to generate a gene-based classifier [9]. To

verify the diagnostic value of the model, ROC curves of the single

genes and the four-gene model were plotted using R package

pROC (Robin et al., 2011). A nomogram and decision curve

analysis (DCA) curves were used for validation.

2.5 Consensus clustering

Using all the OSA and control samples, a consensus

clustering analysis of mitochondrial dysfunction-related genes

was used to identify distinct mitochondrial dysfunction-related

clusters using the k-means clustering algorithm (Sabah et al.,

2021). The optimum number of clusters, along with the

consistency of clusters, was determined by the consensus

clustering algorithm in the ConsensusClusterPlus package

(Seiler et al., 2010). A total of 1000 iterations were performed

to ensure the stability of the categories. Additionally, using only

the OSA samples, consensus clustering was again used to identify

distinct mitochondrial dysfunction-related clusters.

2.6 Protein–protein interaction network
construction

After determining the DEGs between the mitochondrial

dysfunction-related clusters (based on all samples), a PPI

network of the DEGs was constructed using STRING network

version 11.0 and the default confidence threshold of 0.4. The PPI

network was exported and then Cytoscape version 3.8.0 was used

to calculate the network attributes of each node. Next, cytoHubba

version 1.6 was used to identify hub nodes based on the degree of

the nodes.

We predicted the miRNAs and transcription factors related

to the hub genes using TarBase (Wang et al., 2013) and

miRecords (Fornes et al., 2020). Protein-chemical interactions

were obtained from the Comparative Toxicogenomics Database

(http://ctdbase.org/) (Davis et al., 2021).

2.7 Functional enrichment analyses of
differentially expressed genes

Using the DEGs between the mitochondrial dysfunction-

related clusters (based on all samples), Gene Ontology (GO)
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enrichment analysis was employed to study the large-scale

functional enrichment of the DEGs at three levels: biological

process (BP), molecular function (MF) and cellular

component (CC) (Ashburner et al., 2000). Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis was used to identify the biological pathways related to

the DEGs (Kanehisa and Goto 2000). The clusterProfiler R

package (Wu et al., 2021) was used to perform GO functional

annotation for all significant DEGs to identify significantly

enriched GO terms. The enrichment results were visualized

using the GOplot R package.

Gene set enrichment analysis (GSEA) using data fromMSigDB

(Liberzon et al., 2015) was employed to identify the significant

differences in biological pathways between the high- and low-

expression clusters. The “C2.cp.kegg.v7.4.entrez.gmt” (KEGG

pathways) gene set was selected as the reference gene set.

Gene set variation analysis (GSVA) using the

“c2.cp.kegg.v7.2.symbols.gmt” (KEGG pathways) and

“h.all.v7.2.symbols.gmt” (Hallmark pathways) gene sets

(Hanzelmann et al., 2013) was employed to identify the

significant differences in biological pathways between the

mitochondrial dysfunction-related clusters. The criteria for

significant enrichment comprised nominal p < 0.05,

normalized enrichment score (NES) > 1, and false discovery

rate (FDR) q < 0.25 using the GSVA R package.

2.8 Analysis of immune cell infiltration

The degree of immune cell infiltration was assessed twice,

using 1) CIBERSORT and 2) ssGSEA. First, the CIBERSORT R

package was used to determine the degree of immune cell

infiltration based on the CIBERSORT scores for immune

infiltrating cells (Steen et al., 2020). Second, the GSVA R

package method based on ssGSEA (Huang et al., 2021) was

used to evaluate the degree of immune cell infiltration.

FIGURE 1
Flow diagram of methodologies used in this study.
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2.9 Statistical analysis

All data processing and analysis were completed in R

software (version 4.0.2). Normally distributed continuous

variables were compared using independent-samples

Student’s t tests, and non-normally distributed continuous

variables were compared using Mann–Whitney U tests

(i.e., Wilcoxon rank-sum tests). Categorical variables were

compared using chi-square tests or Fisher’s exact tests.

Kruskal–Wallis tests were used for comparison of more

than two groups. Two-tailed p < 0.05 was considered

statistically significant.

3 Results

Figure 1 shows the study flowchart.

3.1 Identification of mitochondrial
dysfunction-related differentially
expressed genes

First, heatmaps and volcano plots were used to visualize the

DEGs between the OSA and control samples in the GSE135917

(Supplementary Figures S2A,B), GSE132651 (Supplementary

Figures S2C,D), and combined datasets (Supplementary

Figures S2E,F). Next, we analyzed the intersection of DEGs

among the GSE135917, GSE38792, and combined datasets, as

displayed in a Venn diagram (Figure 2A). A total of

21 overlapping genes were obtained. Moreover, 18 of the

overlapping genes were mitochondrial dysfunction-related

genes (Figure 2B), which were designated as the

mitochondrial dysfunction-related hub genes. Their expression

levels in the GSE38792 and GSE135917 datasets are presented in

boxplots (Figures 2C,D). Figure 2E shows the chromosomal

positions of the mitochondrial dysfunction-related hub genes.

3.2 Diagnostic model based on
mitochondrial dysfunction-related hub
genes

The 18 mitochondrial dysfunction-related hub genes were

subjected to LASSO Cox regression to create a diagnostic model

(Figure 3A). Four genes were gathered, the regression model

reached the optimal ability (Figure 3B). A plot of the diagnostic

genes was used to visualize their differential effectiveness for

diagnosing OSA (Figure 3C). The calibration curve regarding the

nomogram predictions (Figure 3D) and decision curve analysis

curve predicted by irrelevant nomogram (Figure 3E) were

constructed. Both showed that 4− gene diagnostic model had

good predictive value.

3.3 Verification of diagnostic value of four-
gene diagnostic model

Boxplots of the four genes (NPR3, PDIA3, SLPI, and ERAP2)

in the diagnostic model, as OSA-related risk genes, had

significant differences in expression between the OSA and

control samples in the GSE135917, GSE38792, and combined

datasets (Figures 4A–C).

The area under the ROC curve (AUC) was calculated to

measure the diagnostic value of the model. Figures 4D–F show

the ROC curves of NPR3, PDIA3, SLPI, and ERAP2 in the

GSE135917, GSE38792, and combined datasets, respectively.

Figures 4G–I show the ROC curves of the four-gene

diagnostic model in the GSE135917, GSE38792 and combined

datasets, respectively. The results indicated that the four-gene

signature of diagnostic model had high diagnostic value.

3.4 Mitochondrial dysfunction-related
clusters

To explore biological characteristics related to the expression

of mitochondrial dysfunction-related genes, all the samples were

first divided into k (k = 2, 3, 4, 5, 6, 7, and 8) clusters using

ConsensusClusterPlus. The optimal categorization occurred

when k = 2, based on the cumulative distribution function

(CDF) curves of the consensus score. Therefore, the samples

were divided into two mitochondrial dysfunction-related

clusters: cluster A (n = 28) and cluster B (n = 56) (Figures 5A–D).

3.5 Transcription factor and miRNA
predictions

To explore the interactions related to four-gene diagnostic

model at the post-transcriptional level, 41 transcription factors

that upregulate the genes and 134 miRNAs that target the genes

were identified (Supplementary Figure S3A), along with

104 protein chemical components (Supplementary Figure S3B).

3.6 Protein–protein interaction network

To investigate the underlying biological functions of the

mitochondrial dysfunction-related clusters A and B, we

identified 106 DEGs between clusters A and B (Figure 6A). We

then constructed a PPI network using the STRING database

(Figure 6B). The highly connected (hub) genes in the PPI

network were identified using the MCODE plug-in in

Cytoscape (Figure 6C). The top 10 genes, based on high scores

using the cytoHubba plug-in in Cytoscape, were also selected

(Figure 6D). A Venn diagram was used to identify the intersection

of the results of the MCODE and cytoHubba methods, which led
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to 10 hub genes being obtained (Figure 6E). A correlation network

diagram (Supplementary Figure S4A), scatter plots

(Supplementary Figures S4B–P) and Supplementary Table S2

show the correlations of the 10 hub genes and 4 genes in the

diagnostic model, revealing strong correlations between the hub

genes and diagnostic genes. This indicated that they may act in

synergistic way, contributing to OSA and related complications.

3.7 Functional enrichment analyses

Functional enrichment analyses of the 106 DEGs between

clusters A and B were performed (Figure 7). The GO analysis

indicated that the genes were significantly enriched in

cytoplasmic vesicle lumen, chemokine activity, collagen-

containing extracellular matrix, regulation of smooth muscle

cell proliferation, DNA binding, and transcription activator

activity (Supplementary Table S3). The KEGG analysis

showed that the genes were enriched in cytokine and cytokine

receptor, interleukin (IL)-17 signaling pathway, tumor necrosis

factor (TNF) signaling pathway, pathogenic Escherichia coli

infection, and complement and coagulation cascades

(Supplementary Table S4).

Subsequently, GSEA was performed between the high- and

low-expression clusters based on the four diagnostic genes in the

GSE135917 and GSE38792 datasets (Supplementary Table S5).

The results suggested that the samples in the high-expression

cluster were significantly enriched in IL-6 pathway, IL-12

pathway, IL6_7 pathway, DNA repair, IL-1 signaling,

nonsense-mediated decay, transcriptional regulation of

FIGURE 2
Identification of mitochondrial dysfunction-related hub genes. (A) Venn diagram of DEGs between the OSA and control samples in the
GSE135917, GSE38792, and combined datasets. (B) Venn diagram of hub DEGs and mitochondrial dysfunction-related genes. Boxplots of the
differences in expression of mitochondrial dysfunction-related hub genes in (C) GSE38792 and (D) GSE135917 datasets. (E) Chromosomal positions
and expression of mitochondrial dysfunction-related hub genes. *p < 0.05, **p < 0.01, ***p < 0.001, ns: no significant difference. DEGs:
differentially expressed genes.
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pluripotent stem cells, complement activation, and gastrin

signaling pathway (Figures 8A–H). The samples in the low-

expression cluster were significantly enriched in autophagy,

lysosome, proteasome, anaphase promoting complex/

cyclosome (APC/C)-mediated degradation of cell cycle

proteins, cell cycle check points, metabolism of polyamines,

FIGURE 3
Diagnostic model based on mitochondrial dysfunction-related genes. (A) Diagnostic model construction using a least absolute shrinkage and
selection operator (LASSO) Cox regression model. (B) Coefficient distribution plots to select the optimum lambda value. (C) Plot of diagnostic genes
demonstrating their differential effectiveness for diagnosingOSA. (D)Calibration curves based on nomogrampredictions and actual observations. (E)
Decision curve analysis (DCA) of diagnostic model.
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and stabilization of P53 (Figures 8I–P). Cytokines exert a vast

array of immunoregulatory actions critical to human physiology

and disease (Spangler et al., 2015). TNF-α, IL-17, IL-6, IL-12, and
IL-1 are inflammatory cytokines. The autophagy–lysosome

pathway and ubiquitin–proteasome system are the main

mechanisms of intracellular protein degradation and they help

to maintain normal cellular functions.

To further investigate the biological pathways that

mitochondrial dysfunction may affect, we conducted GSVA

between the mitochondrial dysfunction-related clusters A and

B to assess pathway enrichment. Regarding the KEGG pathways,

most of them, including regulation of pyrimidine metabolism,

proteasome, SNARE interactions in vesicular transport,

endocytosis, other glycan degradation, amino sugar and

nucleotide sugar metabolism, and lysosome, were more

enriched in cluster B (Figure 8Q). Regarding the Hallmark

pathways, the ROS pathway, heme metabolism, PI3K-AKT-

mTOR signaling, mTORC1 signaling, hypoxia, peroxisome,

and apoptosis were more enriched in cluster B, whereas

myogenesis and KRAS signaling pathways were more enriched

in cluster A (Figure 8R). ROS influence metabolic processes such

as proteasome function, autophagy, and general inflammatory

signaling (Forrester et al., 2018). Heme metabolism influences a

wide variety of biological processes relevant to OSA, including

redox balance and inflammatory response (Wang et al., 2022).

Autophagy, which can be activated by hypoxia, can be beneficial

in inflammatory disorders as it eliminates damaged organelles

and maintains homeostasis (Yao et al., 2021), and mTOR is a key

negative regulator of autophagy. It should be noted that the

enriched pathways were mainly autophagy, inflammatory, and

FIGURE 4
Expression differences and diagnostic value ofmitochondrial dysfunction-related four-gene diagnosticmodel. Boxplots of differences in NPR3,
PDIA3, SLPI, and ERAP2 expression between OSA and control samples in (A) GSE135917, (B) GSE38792, and (C) combined datasets. ROCcurves of
NPR3, PDIA3, SLPI, and ERAP2 in (D) GSE135917, (E) GSE38792, and (F) combined datasets. ROC curves of four-gene diagnostic model in (G)
GSE135917, (H) GSE38792, and (I) combined datasets.
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immune related pathways. This indicated that mitochondrial

dysfunction might be associated with autophagy, inflammation,

and the immune microenvironment in OSA.

3.8 Immune cell infiltration

The CIBERSORT algorithm was used to evaluate the

immune microenvironment in OSA. The correlations among

immune cells are shown in Figure 9A. A boxplot indicated that

the infiltration of several immune cells (plasma cells,

M0 macrophages, and M1 macrophages) were significantly

different between OSA and control samples (Figure 9B).

To explore the relationship between mitochondrial

dysfunction and immune cell infiltration, we compared the

immune cell infiltration between clusters A and B. The results

showed that several immune cells (activated B cells, CD56bright

natural killer cells, eosinophils, macrophages, monocytes, and

plasmacytoid dendritic cells) were significantly different between

clusters A and B (Figures 9C,D). Figure 9E further visualizes

immune cell infiltration differences between clusters.

We then performed consensus clustering of the OSA samples

only (n = 68) and identified three mitochondrial dysfunction-

related clusters, with 43 samples in cluster A, 8 in cluster B, and

17 in cluster C (Figures 10A–D). We assessed the degree of

immune cell infiltration using both CIBERSORT and ssGSEA.

Interestingly, the results were consistent with each other. Both

methods showed differences among clusters A, B, and C in the

infiltration degree of activated B cells, CD56bright natural killer

cells, γ/δ T cells, immature dendritic cells, natural killer T cells,

regulatory T cells (Tregs), and type 17 T helper cells (Figures

10E,F).

FIGURE 5
Identification of two mitochondrial dysfunction-related clusters using consensus clustering analysis of mitochondrial dysfunction-related
genes. (A) Tracking plot of consistent clustering. (B) Cumulative distribution function (CDF) curves for k = 2–9. (C) Elbow plot showing relative
change in area under the CDF curve (AUC). (D) Consensus clustering matrix for k = 2.
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To understand the correlations between the genes in the

diagnostic model and infiltrating immune cells, we constructed a

scatter plot of statistically significant results with correlation

coefficient (R) > 0.4. PDIA3 was correlated with plasma cells,

monocytes, M0 macrophages and T cells CD4 memory resting

(Supplementary Figures S5A–D). SLPI was correlated with

M0 macrophages, naive B cells, and plasma cells

(Supplementary Figures S5E–G). Taken together, the results

indicate that mitochondrial dysfunction plays an important

role in immune microenvironment regulation in OSA.

4 Discussion

OSA can cause many complications, such as

cardiovascular, metabolic, and neuropsychiatric disorders,

pose a major threat to human health (Wang et al., 2022).

However, the approaches to the management of OSA are

limited due to the incomplete understanding of the

underlying molecular mechanisms of OSA.

During respiratory events in OSA patients, intermittent

hypoxia together with post-apnea/hypopnea reoxygenation

triggers an increase in oxidative stress (Passali et al., 2015). As

the major energy-producing organelles, mitochondria, are highly

sensitive to hypoxic stress. They can respond dynamically under

hypoxia, which can minimize ROS formation and reduce the risk

of cell death and tissue damage. However, as a prominent

mechanism of mitochondrial dysfunction, abnormal metabolic

cues induced by hypoxia can disrupt the dynamic mitochondrial

balance. This results in a series of intracellular signaling cascades

and apoptosis, followed by the progression of diverse diseases

(Wang et al., 2022). Mitochondrial abnormalities may be one of

the pathological mechanisms underlying OSA-related cardiac

injury, while maintaining the integrity of mitochondria allows

the survival of cardiomyocytes under hypoxia. Aged relative to

young mouse hearts exhibited maladaptation to CIH because of

mitochondrial dysfunction (Wei et al., 2022).

Since the mitochondrial dysfunction appears to be involved in

the pathogenesis ofOSA and its complications, investigating the role

of mitochondrial dysfunction-related genes may provide novel

personalized and optimal management strategies for OSA and its

comorbidities. In the present study, we identified a mitochondrial

dysfunction-related four-gene signature of diagnostic model

involving NPR3, PDIA3, SLPIM, and ERAP2. The model easily

FIGURE 6
Protein–protein interaction (PPI) network construction and hub gene identification. (A) Volcano plot of DEGs between mitochondrial
dysfunction-related clusters A and B. (B) PPI network based on STRING database. (C)Hub genes identified by Cytoscape MCODE plug-in. (D) Top10
hub genes identified by Cytoscape CytoHubba plug-in. (E) Venn diagram showing the intersection of the two methods, identifying 10 hub genes.
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FIGURE 7
GO and KEGG enrichment analyses of DEGs between mitochondrial dysfunction-related clusters A and B. (A,B) Histogram, (C,D) bubble plot,
(E,F) circle plot, and (G,H) chord diagram of the results of GO and KEGG enrichment analyses.
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FIGURE 8
GSEA and GSVA. GSEA results: KEGG pathways with significantly differential enrichment between patients with (A–H) high and (I–P) low
expression of the four diagnostic genes. GSVA results: (Q) Hallmark and (R) KEGG pathways with significantly differential enrichment between
mitochondrial dysfunction-related clusters A and B.
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distinguished between OSA and control samples, which highlights

that mitochondrial dysfunction differs between OSA patients and

control individuals. Although there have been previous studies on

OSA diagnostic genes (Li et al., 2017; Ambati et al., 2020; Bencharit

et al., 2021; Cao et al., 2021; Li et al., 2022), we are the first group to

establish and validate a mitochondrial dysfunction-related

diagnostic model.

Among the mitochondrial dysfunction-related genes, NPR3

mediates natriuretic peptides degradation and was proved to act

as a tumor suppressor in certain types of cancers. Moreover,

previous study also showed that it played an important role in

modulating intravascular volume and vascular tone and could

protect cardiomyocytes from apoptosis. Thus, NPR3 might be a

viable therapeutic target to decrease cancer and cardiovascular

FIGURE 9
Immune cell infiltration. (A) Heatmap of correlations among 15 infiltrating immune cells, as analyzed by CIBERSORT. (B) Boxplot of differences
in 15 infiltrating immune cells between OSA and control samples, as analyzed by CIBERSORT. (C) Heatmap of correlations among 23 infiltrating
immune cells, as analyzed by ssGSEA. (D) Boxplot of differences in 23 infiltrating immune cells between clusters A and B, as analyzed by ssGSEA. (E)
Heatmap of the differences in immune cell infiltration (based on ssGSEA between clusters A and B.
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diseases risk in OSA patients (Lin et al., 2016; Li et al., 2021).

PDIA was reported to be able to intercept the endoplasmic

reticulum stress-related apoptotic cellular death and its

expression is significantly up-regulated in response to cellular

stress (Mahmood et al., 2021). SLPI is an important immunity

regulator, acts as a component of tissue regenerative programs,

and has anti-proteolytic, anti-microbial and immunomodulatory

activities (Majchrzak-Gorecka et al., 2016). ERAP2 plays roles in

the processing of antigenic peptides and influences cellular

cytotoxic immune responses (de Castro and Stratikos 2019).

Obviously, PDIA3, SLPI, and ERAP2 are involved in stress

and immune response. The experimental models of OSA

suggested that the metabolic and inflammatory changes

induced by chronic intermittent hypoxia and sleep

fragmentation may foster or exacerbate immune alterations

(Almendros et al., 2020).

We obtained 134 miRNAs related to the four genes in the

mitochondrial dysfunction-related diagnostic model. A previous

study reported differentially expressed miRNAs in OSA (Li et al.,

2017), but they were not necessarily associated with

mitochondrial dysfunction. Additionally, to identify another

set of key genes related to OSA, we selected 10 hub genes (IL-

6, FOS, FOSB, JUN, DUSP1, EGR1, PTGS2, ATF3, and ZFP36)

from the PPI network of DEGs between the two mitochondrial

dysfunction-related clusters. Interestingly, IL-6 receptor levels

have been reported to reflect OSA severity (Zheng et al., 2018);

FOS, FOSB, and JUN have been demonstrated to be involved in

obesity, osteoporosis, and colorectal cancer (Skrypnik et al.,

2017); and DUSP1 is upregulated in CIH in OSA patients

(Hoffmann et al., 2013). Additionally, in this study, we found

that SLP1 expression was positively correlated with IL-6, FOS,

FOSB, and JUN, whereas PDIA3 expression was negatively

correlated with FOS, FOSB, and JUN. Although most of the

10 hub genes have not been studied in OSA, we speculate that

these genes might be involved in the pathogenesis of OSA and its

complications and form a regulatory network to coregulate OSA.

Functional enrichment analysis was conducted after

reclassifying the microarray according to the mitochondrial

dysfunction and our results indicated that DEGs of two

clusters were primarily involved in autophagy, inflammation

and immune pathways. 1) Regarding autophagy, consistent

with our results, OSA is known to induce autophagy as a

FIGURE 10
Consensus clustering analysis of OSA subjects based on mitochondrial dysfunction-related genes and analysis of immune cell infiltration. (A)
Tracking plot of consistent clustering. (B) Consensus clustering cumulative distribution function (CDF) for k = 2–9. (C) Relative change in area under
CDF curve for k = 2–7. (D) OSA subjects were divided into three clusters when k = 3. Boxplots of degree of immune cell infiltration among clusters
A–C, based on (E) CIBERSORT and (F) ssGSEA methods.
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result of hypoxia, oxidative stress, and endothelial dysfunction

(Ding et al., 2021). Autophagy is related to metabolic disorders,

tumors, pulmonary diseases, and neurodegenerative disorders,

and mitophagy is an autophagic response that specifically targets

mitochondria (Bravo-San Pedro et al., 2017). 2) Regarding

inflammation, mitochondrial dysfunction can trigger innate

immune responses and inflammation (West 2017).

Additionally, inflammatory mediators and infiltrating immune

cells can trigger signaling cascades that alter mitochondrial

metabolism. Cytokines can inhibit mitochondrial oxidative

phosphorylation and induce mitochondrial ROS production,

which may alter mitochondrial dynamics and ultimately result

in cell death. In particular, it has been reported that OSA may

lead to atherosclerosis due to inflammatory processes induced by

CIH (Stanke-Labesque et al., 2014). 3) Regarding immune

pathways, high levels of IL-6 and TNF-α are predictors of

major adverse cardiovascular events in diabetic patients with

peripheral artery disease (Biscetti et al., 2019). The IL-1

superfamily of cytokines also plays a vital role in immunity by

regulating host defenses, inflammation, and injury. IL-1

inhibition improves glycemic control, and decreases the

incidence of cardiovascular disease (Herder et al., 2015; Zheng

et al., 2019). Notably, IL-33, a cytokine from the IL-1 family, is an

inflammatory mediator, that is, increased in OSA patients

compared to controls (Gabryelska et al., 2019). Importantly,

pro-inflammatory activation of monocytes activates mTORC1,

which enhances the production of chemokines and cytokines

(Lin et al., 2014), and the mTORC1 pathway was found to play a

key role in mitochondrial dysfunction (Condon et al., 2021). The

mTOR pathway was also reported to be the most important

DEG-enriched pathway in severe OSA patients with

hypertension (Ko et al., 2021). In summary, these results gave

a detailed description of the ways and mechanisms how

mitochondrial dysfunction participates in OSA’s progress,

which may benefit future development of precise treatment.

Our data demonstrated the differences in infiltrating immune

cells between OSA and control samples, and these cells may also be

responsible for OSA comorbidities. Immune cell infiltration may

also be of great importance in the remission of OSA (Fan et al.,

2021). Consistent with our findings, CIH in OSA was previously

found to induce adipose tissue macrophages towards a pro-

inflammatory M1 subtype (Ryan 2017), and macrophages are

known to contribute to adipose tissue insulin resistance and

vascular atherogenesis (Trzepizur et al., 2018). Additionally,

imbalanced effector T helper cells were found in patients with

OSA and hypertension (Zhang et al., 2022). Moreover, immune

cell infiltration in the myocardium adversely affects heart function

(Carrillo-Salinas et al., 2019), so OSA may elicit the immunologic

alterations that lead to cardiovascular changes. Lastly, there is also

a link between OSA and increased cancer incidence and mortality,

as intermittent hypoxia induces changes in signaling pathways

involved in the regulation of host immunological surveillance that

results in tumor formation and invasion (Martínez-García et al.,

2016; Picado and Roca-Ferrer 2020). Intermittent hypoxia may

lead to a tumor-promoting phenotype among tumor-associated

macrophages, leading to more aggressive tumor behavior (Cao

et al., 2015). Better understanding of immune infiltrationmay be of

great significance discovering novel therapeutic targets and

improving cardiovascular and cancer outcomes in OSA.

Mitochondria are not only important for energy supply

during immune activation, but they also induce host

immunological surveillance and are involved in immune

cell differentiation. We found that several immune cell

types, especially T cells (γ/δ T cells, natural killer T cells,

Tregs, and type 17 T helper cells), were significantly different

among the three mitochondrial dysfunction-related clusters of

OSA samples, so T cells are a promising choice for future OSA

treatment development. In addition, the diagnostic genes were

correlated with immune cell infiltration. Research has shown

that mitochondrial processes, along with cytosolic metabolic

processes, drive T cell activation, survival, proliferation, and

effector functions (Sena et al., 2013). Another study showed

that increased γ/δ T cell adhesion occurs in lesion-prone areas

of the arterial tree when high cholesterol induces the

translocation of ATP synthase β chain from the

mitochondria to membrane caveolae in endothelial cells

(Fu et al., 2011). Furthermore, research showed that

mTORC1 activation induces Treg proliferation while

inhibiting the suppressive activity of the Tregs (Procaccini

et al., 2010), which suppress immune activation via

immunosuppressive cytokines (Agita and Alsagaff 2017).

Lastly, T cells have been shown to be central to the

immune responses contributing to hypertension (Madhur

et al., 2021). In summary, our research revealed that

mitochondrial dysfunction might influence immune cell

infiltration, including T cell infiltration, in OSA and thus

promote OSA-related diseases.

However, our study has several limitations. First, the sample

size was small. To confirm the diagnostic value for OSA of the

hub genes, external validation using a larger sample size would

be helpful. Second, not only the identification of mRNA

expression level by real time PCR, but also the protein

expression levels of these genes would be necessary to

examine using western blot to deepen our understanding the

molecular mechanisms of OSA. To comprehensively identify

the nature of the mitochondrial dysfunctions in OSA,

integrated analysis at the molecular, cellular, and organismal

levels is warranted, with experimental evidence being required

to fully determine the roles of the hub genes and the underlying

mechanisms of OSA. Third, the role of each hub gene and the

mechanisms underlying OSA were not fully elucidated. Further

experimental verifications are necessary to elucidate the

biological functions of these genes in OSA. Fourthly, the

correlations between the expression of these genes and the

clinical parameters of OSA were not explored, so further

research on this is required.
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In conclusion, we established and validated a

mitochondrial dysfunction-related four-gene signature of

diagnostic model for OSA. Moreover, we revealed that

this model was related to immune cell infiltration. The

model could act as a diagnostic biomarker model and

might provide therapeutic targets the treatment of

OSA. Further studies should be conducted to clarify our

findings.
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SUPPLEMENTARY FIGURE S1
Normalization of datasets. Gene expression distribution in (A)
GSE38792 dataset before normalization, (B) GSE38792 dataset after
normalization, (C) GSE135917 dataset before normalization, (D)
GSE135917 dataset after normalization, (E) combined dataset before
normalization, and (F) combined dataset after normalization.

SUPPLEMENTARY FIGURE S2
Differentially expressed genes (DEGs) between OSA and control samples.
Heatmaps and volcano plots of DEGs betweenOSA and control samples
in (A,B) GSE38792, (C,D) GSE135917, and (E,F) combined datasets. The
upregulated, downregulated, and non-significant genes are marked in
blue, yellow and grey dots, respectively.

SUPPLEMENTARY FIGURE S3
(A) Prediction of transcription factors and miRNAs related to the genes in
the four-gene diagnostic model. Red and green dots in the middle
represent genes related to mitochondrial dysfunction and their related
transcription factors, respectively. Blue dots in the outer layer represent
the related miRNAs. (B) Molecular networks of protein chemical
interactions of the genes in the four-gene diagnostic model.

SUPPLEMENTARY FIGURE S4
Correlations of 10 hub genes and 4 diagnostic genes. (A) Correlation
network diagram of correlations among hub gene expression levels.
Scatter plots of significant (B–H) negative and (I–P) positive
correlations between hub and diagnostic gene expression.

SUPPLEMENTARY FIGURE S5
Correlations between genes in the diagnostic model and infiltrating
immune cells in OSA samples. Scatter plots of significant correlations of
(A–E) SLPI and (F–H) PDIA3 expression with the degree of immune cell
infiltration.
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