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Background: DNA methylation aberrations are widespread among the

malignant B lymphocytes of patients with chronic lymphocytic leukaemia

(CLL), suggesting that DNA methylation might contribute to the

pathogenesis of CLL.

Aim: We aimed to explore the differentially methylated positions (DMPs)

associated with CLL and screen the differentially methylated and expressed

genes (DMEGs) by combining public databases. We aimed to observe the

direction of each DMEG in CLL based on the DMPs in the promoter and the

body region respectively to narrow down DMEGs. We also aimed to explore the

methylation heterogeneity of CLL subgroups and the effect of B cells

maturation on CLL.

Methods: In this population-based case control study, we reported a genome-

wide DNA methylation association study using the Infinium

HumanMethylation450 BeadChip, profiling the DNA methylation of CD19+

B Cells from 48 CLL cases and 28 healthy controls. By integrating

methylation data and expression data from public databases, gene sets were

jointly screened, and then the relationship between methylation sites in

promoter and body region and expression of each gene was explored. In

addition, support vector machine (SVM) classification algorithm was used to

identify subgroups of CLL cases based onmethylation pattern, and the effect of

B-cell differentiation related methylation sites on CLL-related sites was

observed.
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Results:We identified 34,797 DMPs related to CLL across the genome, most of

which were hypomethylated; the majority were located in gene body regions.

By combining these DMPs with published DNA methylation and RNA

sequencing data, we detected 26,244 replicated DMPs associated with 1,130

genes whose expression were significantly different in CLL cases. Among these

DMEGs, nine low expressed DMEGs were selected with hypermethylated in

promoter and hypomethylated in body region, and 83 high expressed DMEGs

were selected with both hypomethylated in promoter and body region. The 48

CLL cases were divided into 3 subgroups based on methylation site by SVM

algorithm. Over 92% of CpGs associated with B cell subtypes were found in

CLL-related DMPs.

Conclusion: TheDNAmethylation pattern was altered across the genome in

CLL patients. The methylation of ZAP70, FMOD, and ADAMTS17 was

significantly different between CLL cases and controls. Further studies

are warranted to confirm our findings and identify the underlying

mechanisms through which these methylation markers are associated

with CLL.

KEYWORDS

DNA methyaltion, chronic lymphocytic leukaemia (CLL), illumina 450 K beadchip
methylation array, CD19+ B cells, differentially methylated and expressed genes
(DMEGs)

Introduction

Chronic lymphocytic leukaemia (CLL) is characterized

by the accumulation of B lymphocytes in the peripheral

blood, bone marrow, and secondary lymphoid tissues, and it

is the most common adult leukaemia in Western countries

(Mansouri et al., 2018). It was estimated that

20,720 Americans would be diagnosed with CLL and

3,930 patients would die of CLL in 2019 (Siegel et al.,

2019). At present, there is no efficient early treatment

available for this haematologic malignancy, and in most

cases, treatments start only when clinical symptoms

develop. A clear understanding of the disease

pathogenesis could facilitate the prevention and better

treatment of CLL.

CLL is a clinically heterogeneous disease, and CLL

subtypes differ in terms of B Cell activation, maturation,

and cellular subgroup (Chiorazzi et al., 2005). Biological and

genetic characteristics such as ZAP70 expression,

immunoglobulin heavy chain variable region (IGHV)

mutation, and cytogenetic abnormality (del17p) can be

linked to CLL prognosis (Parikh and Shanafelt, 2016). A

meta-analysis of genome-wide association studies has

defined genetic components of CLL aetiology (Berndt

et al., 2016). However, the genetic variations identified

for CLL in high-risk families can only partially explain

CLL risk.

DNA methylation perturbations are common in cancer

genomes and even in precancerous normal tissue, playing a

pivotal role in the early tumorigenic process (Feinberg, 2018).

DNA methylation serves as an intermediate between gene and

environmental interactions, study of DNA methylation might

explain epigenetic mechanism of CLL pathogenesis. The

methylation pattern in CLL patients of peripheral blood

and lymph node samples is relatively stable over time,

suggesting that aberrant methylation might be involved in

the early phase of leukaemogenesis (Cahill et al., 2013).

Studies have suggested that DNA methylation changes not

only distinguished CLL and healthy control but also exhibited

large interpatient differences in CLL, which could be used to

distinguish CLL subtypes with different IGHV statuses

(Supplementary Table S1). It has been reported that the

transcriptional start sites of many tumour suppressor genes

(TSGs) are located in CpG islands (CGIs), which are usually

hypermethylated in tumours (Herman and Baylin, 2003).

Besides the gene silence by hypermethylation of promoter

region, altered methylation observed in the gene bodies could

also influence gene expression (Kulis et al., 2012; Yang et al.,

2014). However, the relationship between DNA methylation

and gene expression level in CLL was not consistent, more

epigenome-wide association studies, integrating expression

data, are needed to explore the role of DNA methylation in

the CLL pathogenesis. In addition, CLL heterogeneity and the

cell types caused by B Cell differentiation are considered to

bias the pathogenesis of CLL. In this study, we also explored

the influence of CLL subtypes and the methylation changes

related to B Cell differentiation on the methylation change in

the case-control screening.
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Materials and methods

Study population

Participants were recruited from the NCI B-CLL Registry,

which has been described previously (Ishibe et al., 2001).

Demographic information was collected from surveys and

questionnaires. Clinical information was obtained from private

physicians, patient interviews, hospital records, death certificates,

and NIH clinic visits.

Sample preparation

Fifty CLL patients, two MBL patients, and 29 unrelated

healthy controls were included in the current study. The

peripheral blood samples collected closest to diagnosis were

used for the assay. B lymphocytes were isolated from

cryopreserved peripheral blood lymphocytes by magnetic cell

separation (ZenBio Advanced Cell-based Solutions and Services,

North Carolina) using a CD19+ antibody (Miltenyi Biotec,

Bergisch Gladbach, Germany). The cell purity of the isolated

samples was evaluated by flow cytometry using propidium iodide

for live/dead cell discrimination with CD45/CD19 antigens.

Sample aliquots of CD19+ B Cells with purity greater than

90% were selected for DNA extraction.

Microarray-based DNA methylation assay

DNA from the isolated CD19+ B Cells was extracted with a

DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA). For each

sample, 500 ng of genomic DNA was bisulfite converted using

the EZ DNA Methylation Kit (Zymo Research, Irvine, CA), and

125 ng bisulfite-converted DNA was used to evaluate

methylation levels with Infinium HumanMethylation450K

BeadChip (Illumina, Inc, San Diego, CA) according to the

manufacturer’s protocol.

450k DNA methylation data analysis

Raw 450K BeadChip methylation data were extracted from

GenomeStudio (Illumina, Inc.). Two samples were excluded due

to the high average detection p-values (over 1% CpG sites with

detection p > 0.05). One sample was excluded due to the

misclassification of sex by multidimensional scaling (MDS) of

CpG sites on the X chromosome. CpG sites were excluded if 1)

over 1% of samples had a detection p > 0.05; 2) over 5% of

samples had bead counts <3; 3) they were located on X or Y

chromosomes; or 4) they were annotated with SNPs and cross-

reactive probes (Zhou et al., 2017). Data normalization was

performed using dasen and beta-mixture quantile

normalization. Batch effects were corrected by ComBat

(Johnson et al., 2007). Altogether, 406,879 autosomal probes

from 76 samples (48 CLL cases and 28 controls) were included in

the final analysis. Two MBL samples were used for preliminary

exploration.

Linear regression adjusted for age and sex comparing CLL

cases and controls was performed using the R package limma.

Beta values were transformed to M-values for the linear

regression model. p values were corrected for multiple testing

by Benjamini–Hochberg FDR (q-value). Probes with

methylation differences over 0.2 (|Δβ|> 0.2) between cases and

controls and FDRs less than 0.05 (q-value <0.05) were identified
as differentially methylated positions (DMPs). The chi-square

goodness of fit test was used to compare the distribution of DMPs

with genomic background CpGs. Differentially methylated

regions (DMRs) containing more than seven DMPs with

lengths over 50 bp were defined by ProbeLasso (Butcher and

Beck, 2015). The minimum distance between two adjacent DMRs

was 1,000 bp.

Copy number aberrations (CNAs) were profiled using the

total signal intensity of probes by the Infinium array (Feber et al.,

2014). The copy gain or loss on each chromosome was defined

using a threshold of 0.2.

Integration with public DNA methylation
and transcription data

The publicly available datasets of DNA methylation and

RNA transcription used in this study are shown

(Supplementary Table S2A). DNA methylation data of

Illumina 450K methylation array from the European Genome-

Phenome Archive (EGA), EGAD00010000254 and

EGAD00010000871 were requested. The CD19+ B Cell

samples of 329 CLL cases (139 from EGAD00010000254,

190 from EGAD00010000871) and 21 healthy controls

(14 from EGAD00010000254, seven from EGAD00010000871)

were finally selected from the dataset of EGAD00010000871 after

quality control (Supplementary Table S2B), and their

Methylation data were extracted and analysed with the

procedure described above for replication. DMPs identified

with methylation changes in the same direction as our data

were defined as replicated DMPs. RNA sequencing data,

including 145 CLL samples (98 from EGAD00001000258,

47 from GSE66117) and seven control samples (2 from

GSE62246, five from GSE70830) from the Gene Expression

Omnibus, were requested (Supplementary Table S2C). RNA

sequencing data were evaluated and merged by FastQC and

multiQC. Trimmomatic (Bolger et al., 2014) was used for read

filtering. RNA reads were aligned to the human reference genome

hg19 (UCSC) using STAR (Dobin et al., 2013) and were

assembled for quantification using featureCounts to generate

counts (Liao et al., 2014). Altogether, RNA expression data of
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CD19+ B Cells from 144 CLL and seven controls were included

for downstream analysis after filtering one case due to the total

counts of genes less than 10 0000. Genes with expression

differences larger than 2-fold (|log2fold change| > 1) and

Benjamini–Hochberg adjusted p values less than 0.05

(q-value <0.05) were defined as differentially expressed genes

(DEGs) using DESeq2 (Love et al., 2014). DEGs covered by

replicated DMPs were defined as differentially methylated and

expressed genes (DMEGs) by combining methylation data in our

study and DEG lists analysed with public datasets. Gene

Ontology (GO) enrichment analysis and KEGG pathway

analysis were performed on DMEGs using clusterProfiler (Yu

et al., 2012) for enriched biological process (BP), molecular

function (MF), and cell component (CC) terms and KEGG

pathways. The significantly enriched GO terms and KEGG

pathways were identified as those with q-values less than 0.05.

Since DMPs in promoter and gene body region could be

associated with gene expression (Kulis et al., 2012), the

relationship of DMPs in different regions (promoter and body

region) and expression was inconsistent. We conducted

integrative analysis by combining DNA methylation data in

our study and expression data from public datasets. We

defined the promoter region as the combination of TSS1500,

TSS200, and the first exon (Jiao et al., 2014). To narrow down the

DMEG gene list, we selected the DMPs in the promoter region

had a negative direction with expression, and the DMPs in the

gene body region had a positive or negative direction with

expression; and the overlap genes of these two types of DMPs

might be the potential methylation regulated DEGs.

A flow chart describing these analysis steps is shown in

Figure 1.

Methylation of CLL subtypes

Based on IGHV status, CLL can be classified as M-CLL

(IGHV mutated) or U-CLL (IGHV unmutated). CLL can also be

classified as naive B-cell-like (n-CLL), intermediate (i-CLL), and

memory B-cell-like CLL (m-CLL) based on methylation level,

where n-CLL and m-CLL shared high similarity with U-CLL and

M-CLL, respectively. We applied the support vector machine

(SVM) model (C = 10, γ = 0.01) reported to classify the 48 CLL

patients in our study into subgroups of m-CLL, n-CLL, and

i-CLL based on the five CpGs (cg00869668, cg03462096,

cg09637172, cg11472422, cg17014214) selected with 133 CLL

cases in the ICGC database reported by Queiros et al. (2015).

Linear regression adjusted for sex and age was fitted to find the

DMPs between n-CLL and m-CLL. Subtype-related DMPs were

compared to CLL-related DMPs to evaluate the impact of CLL

methylation heterogeneity on DMP identification.

FIGURE 1
Flowchart showing our steps for identifying methylation markers.
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Methylation of normal B Cell subtypes

To explore the impact of normal B Cell differentiation on

CLL-related DMPs detection, DNA methylation data of

14 samples of CD19+ B Cell mixture and three samples of

each purified B Cell subtypes, including naive B Cells (NBCs),

CD5+ naive B Cells (CD5+ NBCs), class-switched memory B Cells

(csMBCs), and non-class-switched memory B Cells (ncsMBCs)

were requested from EGAD00010000254 dataset (Kulis et al.,

2012). A linear regression was fitted to identify DMPs between

CD19+ B Cells (N = 14) and these four subtypes (N = 3 each).

DMPs identified in these four comparisons were combined as

normal B Cell differentiation related DMPs. After removing these

DMPs from the comparison of normal B Cells to the total CpG

sites after quality control, a linear model was fitted on CLL

patients and healthy controls to find CLL-related DMPs and

DMEGs, which should be independent from B Cell maturation.

Gene enrichment analysis was performed on these genes to

identify relevant biological processes other than B Cell

differentiation.

Results

Characteristics of 48 CLL patients and
28 healthy controls

Genome-wide DNA methylation status was evaluated in

48 CLL cases and 28 healthy controls (Table 1). CLL patients

were on average approximately 4 years older than controls (p =

0.015). Both white blood cell counts (WBCs) and absolute

lymphocyte counts (ALCs) in CLL cases were significantly

higher than those of controls (p = 1.2e-7; P = 3e-5). Among

CLL cases, 21 were at Rai stage 0, 22 were at Rai stage I/II, and

three were at Rai stage III/IV. Two patients with monoclonal

B Cell lymphocytosis (MBL), one male and one female, were also

included for preliminary exploration.

CLL-related differentially methylated
positions (DMPs)

The density plot of beta values showed that genomic CpG

sites followed a bimodal distribution in cases and healthy

controls (Figure 2A). Compared to controls, both CLL and

MBL cases contained more sites with decreased methylation

(Figure 2B). Principal component analysis (PCA) based on all

probes showed that the overall methylation pattern of CLL cases

was significantly different from that of controls, and MBL

patients were grouped into CLL cases (Figure 2C). With the

criteria of |Δβ| > 0.2 and q-value <0.05, we identified

34,797 DMPs between CLL cases and controls (Supplementary

Table S3). Unsupervised clustering analysis showed that most

DMPs were hypomethylated in CLL cases compared to controls

(Figure 3A). The DMPs were annotated with genomic features

and CGI features, and the distribution of DMPs on 22 autosomes

is shown in Figure 3B. Over 57.7% of DMPs in CpG islands were

hypermethylated (Figure 3C). Nearly 93.9% of DMPs in gene

body regions were hypomethylated (Figure 3D). A total of

477 differentially methylated regions (DMRs) located in

TABLE 1 Characteristics of the 76 subjects in this study.a

Characteristics CLL (N = 48) Control (N = 28) pb

Sex

Female 29 (60%) 19 (68%) 0.69

Male 19 (40%) 9 (32%)

Age c 61 (55–71.5) 57 (42–66) 0.015

WBC (109/L) 29.2 (22.1–53.7) 7.4 (6.1–8.5) 1.2e-7

ALC (109/L) 21.0 (13.9–36.4) 2.0 (1.6–2.4) 3.0e-5

Rai staged

Low 0) 21 (46%)

Intermediate (I/II) 22 (48%)

High (III/IV) 3 (6%)

aTwo MBL, cases were used to explore the tumor progression related issue assuming MBL, as intermediate point between healthy to CLL.
bContinuous variables were expressed as medians (IQRs), and categorical variables are expressed as frequencies (%). p values were calculated by using a wilcoxon rank sum test for

continuous variables and chi-square test for categorical variables.
cAge was recorded when blood samples were collected. Age of three subjects in the control group was not available.
dRai stage for two subjects in the CLL, group were not available.

Abbreviations: WBC, white blood cells; ALC, absolute lymphocyte count.
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232 genes were identified (Supplementary Table S4).

Chromosome six contained the highest number of DMRs,

with 77 (Supplementary Figure S1).

CLL-related copy number aberrations
(CNAs)

Moreover, 82 CNA regions were detected in CLL cases

compared to controls (Supplementary Figure S2;

Supplementary Table S5). The copy number loss mapped to

chr13, chr17 and chr19 were top three chromosomes. Only three

of the 82 CNAs were copy number gain regions, including two

regions acrossHOXC8 andGALNT9 on chromosome 12 and one

region across GSTTP1 on chromosome 22. In contrast, 79 copy

number loss CNAs were identified; these included two regions

across GSTT1 and LOC391322 on chromosome 22 that exhibited

both copy number gains and losses. The other 77 copy number

losses were located on chromosomes 1, 5, 6, 7, 11, 12, 13, 14, 17,

and 19.

Differentially methylated and expressed
genes

A comparison of 450k methylation data from 329 CLL cases

and 21 controls from the EGA revealed 31,536 DMPs. Over 75%

of the DMPs found in our study (n = 26,244) could be replicated

with the same direction as in the EGA data (Figure 4A;

Supplementary Table S6A). We constructed a volcano plot

showing the 5,104 differentially expressed genes (DEGs) that

were detected by comparing the RNA sequencing data of

144 CLL cases and seven controls from the EGA and GEO

datasets (Figure 4B; Supplementary Table S6B); the heatmap of

the top 30 DEGs according to normalized counts using vst

method was shown in Figure 4C. By combining the DEGs

FIGURE 2
Whole-genome methylation pattern in our study (A) Density plot of methylation beta values of 48 CLL patients, two MBL patients, and
28 healthy control after quality control (B) Percentage of beta value as three categories (<0.75, 0.25–0.7, and >0.75) in CLL, MBL, and healthy control
(C) Principal component analysis of all probes (N = 406,879) in CLL, MBL, and control.
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and the replicated DMPs, 1,130 DMEGs were identified

(Supplementary Table S6C). We found that ROR1 and ZAP70

was hypomethylated in the promoter region and highly

expressed in CLL patients (Table S6C). The top ten BP, MF,

and CC Gene Ontology terms identified in enrichment analysis

of these DMEGs (Supplementary Table S7) are shown in

Figure 4D. The biological process of actin filament

organization and T cell activation were involved in CLL

progression.

The DMEGs were classified as three classes: 1.335 DMEGs

with DMPs located in gene body regions, and the methylation

levels of all these DMPs and gene expression had the same

direction in CLL (Supplementary Table S8A). 2.326 DMEGs

with DMPs located in body regions, and the methylation levels of

all these DMPs and gene expression were in the inverse direction

in CLL (Supplementary Table S8B). 3.226 DMEGs with DMPs

located in promoter regions, and the methylation levels of all

these DMPs and the expression were in the inverse direction

(Supplementary Table S8C). Then we combined the DMPs of

promoter and body for each DMEG. There were 83 DMEGs

whose DMPs were both in body and promoter regions by

combining 335 DMEGs and 226 DMEGs. These 83 DMEGs

were all highly expressed in CLL with hypomethylated DMPs in

the two regions, including ROR1 and ZAP70 (Supplementary

Table S8D). There were nine DMEGs by combining 326 DMEGs

and 226 DMEGs, including MACROD2, ADAMTS17, TJP1,

MET, OSBPL1A, SYN2, KCNG2, AGBL4, and ME3, were

lower expressed in CLL cases with hypermethylated DMPs in

promoter regions and hypomethylated DMP in body regions

(Supplementary Table S8E).

FIGURE 3
CLL-related DMPs identified in our study (A) Hierarchical analysis was performed on the beta value of all CLL-related DMPs (N = 34,797). DMPs
with FDR lower than 0.05 were selected adjusted by age and sex using linear regression. Heatmap of CLL-related DMPs showedmore perturbed and
decreased methylation in CLL patients. (B) Density plot of DMP distribution on 22 human autosomes (C) Barplots depicting the percentage of DMPs
was on each CGI feature (Island, Shore, Shelf, and Opensea). CpG Islands contained more hypermethylated DMPs. Opensea and Shelf regions
contained more hypomethylated DMPs. (D) Barplots depicting the percentage of DMPs was on each genomic feature (TSS1500, TSS200, 5′UTR,
1stExon, Body, 3′UTR, and IGR). DMPs in the promoter region including the TSS200, TSS1500, 1stExon region showedmore hypermethylated. DMPs
in the body and 3′ UTR region showed more hypomethylated. Background: Total 406,879 CpGs after quality control; DMPs: Total 34,797 CLL-
related DMPs; HyperDMPs: Hypermethylated DMPs in CLL patients; HypoDMPs: Hypomethylated DMPs in CLL patients.
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Methylation heterogeneity in CLL

The 48 CLL patients in our study were classified into

subgroups composed of 24 n-CLL, 16 m-CLL, and eight i-CLL

patients using the SVM model of five CpG sites reported by

Queiros et al. (2015). The hierarchical clustering of the five CpG

sites reported in Querios et al., defined as in ICGC and in our

study is shown in Figure 5A. PCA also showed that the subgroups

were distinct from each other (Figure 5B). By fitting the linear

model adjusted for age and sex, 15,744 DMPs covering

5,906 genes were identified by comparing the n-CLL and

m-CLL subgroups. It was previously reported that

3,266 DMPs covering 1,519 genes could distinguish the

U-CLL and M-CLL subgroups (Kulis et al., 2012); 87% of the

3,266 DMPs covering 1,427 genes also differentiated the n-CLL

and m-CLL subtypes in our study (Figure 5C). In addition,

compared to healthy controls, only 23.8% of DMPs were

overlapped distinguishing the n-CLL and m-CLL subtypes

overlapped with the CLL-related DMPs (Figure 5D).

B Cell differentiation-related methylation
changes

Studies have shown that dynamic methylation changes

during normal B Cell differentiation may play a role in B-CLL

aetiology (Kulis et al., 2015; Oakes et al., 2016). To test this

hypothesis, we retrieved a 450k DNA methylation dataset for

CLL (EGAD00010000254) and compared the DNA

methylation patterns of four main CD19+ B Cell subtypes

(CD5+ NBCs, NBCs, ncsMBCs, csMBCs) compared to those

of the CD19+ B Cell mixture. A total of 84,273 CpGs related to

FIGURE 4
DMEGs identified between CLL patients and controls (A) Venn diagram showed the number of replicated DMPs. Replicated DMPs (N = 26,244)
overlapped using our dataset of 48 CLL patients and 28 healthy control compared to DMPs identified datasets from EGA of 329 CLL patients and
21 healthy control. More than 75% DMPs from our study were also found in DMPs identified in EGA. (B) Volcano plot showed the differentially
expressed genes through transcription analysis using DESeq2. Datasets were required from EGA and GEO with a total of 144 CLL patients and
seven healthy controls. DEGs (N = 5,104) were selected with the criterion of q-value <0.05 and |foldchange| > 2 using DESeq2. (C)Heatmap showed
the expression value the top 30 DEGs. The hierarchical clustering analysis was performed using the normalized counts from RNAseq data. The
marked genes were in the 1,130 DMEG list. (D) Bubble chart shown gene enrichment results of 1,130 DMEGs. Gene ontology terms were shown with
the top ten of BP, MF, and CC respectively.
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B Cell differentiation subtypes were identified (Figure 6A).

The top two principal components of the M-value of these

CpGs could also differentiate the subtypes from the CD19+

B Cell mixture (Figure 6B). Comparing the B Cell

differentiation-related DMPs to the CLL-related DMPs

showed that more than 92% of CLL-related DMPs were

normal B Cell subtype-related (Figure 6C). After removing

the 84,273 CpGs related to B-cell differentiation, 2,781 CpG

sites covered by 274 genes out of 34,797 CpG sites with

expression changes were detected. The top 20 most

enriched biological processes identified by gene

enrichment analysis among those 274 genes are shown in

Figure 6D. And the enriched terms included T cell activation,

cell-cell adhesion, and lipid metabolic process.

Discussion

In this study, we evaluated 406,879 CpGs and identified

34,797 DMPs related to CLL. More than 90% of the DMPs in

CLL patients were hypomethylated and mainly in gene body

regions. Combining our study with public datasets of 450k

methylation data and RNAseq data, we identified

1,130 DMEGs with methylation and gene expression both

altered in CLL patients. Nine low expressed DMEGs were

selected with hypermethylated in promoter and

hypomethylated in body, such as ADAMTS17, and 83 high

expressed DMEGs were selected with both hypomethylated in

promoter and body, such as ZAP70, FMOD, PAX9. 48 CLL cases

were characterized into three subgroups based on SVM model.

Methylation sites associated with B Cell subtypes account for

large methylation alteration in CLL. Apart from B Cell

differentiation, methylation changes in DMEGs involved in

T cell activation and lipid metabolism might also contribute

to CLL.

Large-scale methylation alterations may contribute to

chromosomal instability (Landau et al., 2014; Oakes et al.,

2014) and subsequently promote CLL pathogenesis and

progression. Losses of 13q and 17p were reported as common

cytogenetic aberrations in CLL patients and are associated with

FIGURE 5
Subgroups in CLL patients classified bymethylation pattern. (A)Clustering shown SVMmodeling of methylation data revealed CLL subgroups in
our study. SVM model (Radial Basis Kernel, C = 10, γ = 0.01) was conducted with five CpGs (cg00869668, cg03462096, cg09637172, cg11472422,
cg17014214) from were used as train datasets according to AC Queirós et al, 2014. CLL patients were classified into three subgroups of 16 m-CLL,
eight i-CLL, and 24 n-CLL. (B) Principal component analysis on the M value of this five CpGs of 48 CLL patients in our study. Three subgroups of
CLL patients could be more closely with the training dataset. (C) A comparison of DMPs (N = 15,744) between m-CLL and n-CLL and the previously
reported DMPs (N = 3,626) distinguishing M- and U-CLL from Kulis et al., 2012. (D) A comparison of the CLL-related DMPs (N = 34,797) identified in
our study with DMPs (N = 15,744) distinguishing m-CLL and n-CLL subgroups in our dataset. n-CLL: NBC-like CLLs; m-CLL: MBC-like CLLs.
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the prognosis of CLL (Ouillette et al., 2011; Puiggros et al., 2014).

We also observed that the loss of chromosome 13q was the most

frequent CNA in CLL patients. The deletion of the

13q14.3 region spans several TSGs, including FAM10A4

(Sossey-Alaoui et al., 2002), DLEU7 (Palamarchuk et al.,

2010), KCNRG (Birerdinc et al., 2010), and RB1 (Liu et al.,

1993), which have been reported to be related to CLL

aetiology. A region on chromosome 17q including MIR21

(17q23.1, 3′ UTR TMEM49), one of the microRNA

fingerprints in CLL patients (Rossi et al., 2010), was lost in

more than 50% of the CLL cases in our study.

There were 34,797 DMPs related to CLL, of which more than

90% were hypomethylated in CLL patients, and mainly located in

gene body regions. The gene body regions contained a large

number of hypomethylated DMPs in CLL, consistent with a

recent study exploring the global distribution of DNA

hydroxymethylation and methylation in CLL (Wernig-Zorc

et al., 2019).

Combining our study with public datasets of 450k

methylation data and RNAseq data, we identified

1,130 DMEGs associated with CLL. Among them, PAX9 (Rani

et al., 2017), FMOD (Beekman et al., 2018), and LEF1 (Beekman

et al., 2018) were reported previously. FMOD was the top

DMEGs with expression level increased more than a thousand

folds in CLL patients, which was consistent with report of

Beekman et al. (Beekman et al., 2018). FMOD belongs to the

family of small interstitial proteoglycans, and its silencing could

induce apoptosis in CLL cell lines (Choudhury et al., 2010).

SNORD17 the DMEG with the lowest q-value in our study, was

reported to play a role in the biogenesis of small nuclear RNAs

(snRNAs). SNORD17 can be regulated by the non-coding

splicing factor SF3B1, which is frequently mutated in CLL

(Shuai et al., 2019). The methylation status of ZAP70 has

been reported to be associated with its expression and has

been recognized as a strong prognostic marker for CLL

(Corcoran et al., 2005). We found that ZAP70 was both

hypomethylated in the promoter and body region, and was

highly expressed in CLL patients. Similarly, the CD5 antigen

has been reported to be highly expressed in CLL patients

(Bashford-Rogers et al., 2017), and we also found that it was

FIGURE 6
The implication of B Cell differentiation in CLL patients. (A) Petal diagram shown DMPs associated with B Cell differentiation (N = 84,273). The
DMPs were identified by comparing each B Cell subtype’s DNA methylation with CD19+ B Cells mixture, using the dataset from Kulis et al., 2012. (B)
PCA on the subtypes of normal B Cells based on M value of DMPs associated with B Cell differentiation (N = 84,273). (C) CLL-related DMPs (N =
34,797) compared to DMPs associated with B Cell subtypes (N = 84,002). DMPs associated with B Cell subtypes, not in the 406,879 CpGs of the
whole genome were removed before integrating. (D) Bubble chart shown the top 20 biological processes using enrichment analysis of the DMEGs
not associated with B Cell subtypes (N = 274). NBCs: naïve B Cells; CD5+ NBCs: CD5+ naïve B Cells; csMBC: class-switched memory B Cells;
ncsMBCs: non-Class-switched memory B Cells
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hypomethylated in promoter and body regions and highly

expressed in CLL cases. The tyrosine kinase receptor ROR1

gene, which is involved in the peptidyl-tyrosine modification

pathway, was reported to be upregulated in CLL patients (Hojjat-

Farsangi et al., 2015). Consistent with this report, we observed

hypomethylation of ROR1 both in promoter and body region and

higher ROR1 expression with 32-fold in CLL patients. CTLA-4, a

gene that serves as an immune checkpoint to regulate T cell

function (Palma et al., 2017), was hypomethylated in the first

exon region and body region in our CLL cases and had 128-fold

higher expression in CLL patients than in healthy controls

according to publicly available transcription data.

Human MHC class II molecules (HLA-DMB, HLA-DMA,

HLA-DRA, HLA-DOA) in the top 30 DMRs, which could attract

inflammatory tumour-specific CD4+ T cells and dampen CD8+

T cell antitumour reactivity (Donia et al., 2015), were found to be

hypomethylated in all CLL patients in our study. Considering

that T cell activation was among the top two enriched biological

processes in CLL samples, these results suggest that T cell-related

pathways may play an important role in CLL pathogenesis. The

cytoskeleton plays a key role during several stages of B Cell

activation (Kuokkanen et al., 2015). We observed three actin

filament processes among the top ten enriched biological

processes in our gene enrichment analysis. One study in

1986 had reported that cytoskeletal organization was

aberrantly rearranged with adhesive properties in CLL

(Caligaris-Cappio et al., 1986).

There were nine DMEGs were lower expressed in CLL

patients, with DNA hypermethylated in the promoter region

and hypomethylated in gene body regions, including

MACROD2, ADAMTS17, TJP1, MET, OSBPL1A, SYN2,

KCNG2, AGBL4, and ME3. Among these genes, ADAMTS17

was also reported to be hypermethylated and transcriptionally

silenced in CLL (Barrow et al., 2021). Although the other eight

genes have not been reported in CLL, aberrant methylation,

transcription, or genetic alteration of these genes has been

observed in various cancers, including breast cancer

(Mohseni et al., 2014), colorectal cancer (Thorsen et al.,

2011; Lin et al., 2015; Kordowski et al., 2018), prostate

cancer (Devaney et al., 2013), malignant glioma (Milinkovic

et al., 2013), and some other epithelial cancers (Martin and

Jiang, 2009; Kordowski et al., 2018).

By comparing DMPs between m-CLL and n-CLL (classified

by SVMmodel) with CLL-related DMPs, only 23.8% of the CLL-

related DMPs we identified were associated with CLL subtypes.

This might suggest that the heterogeneity of CLL had a limited

impact on the detection of CLL-related DMPs. Using the DNA

methylation of B Cell subtypes reported by Kulis et al. (2012), we

found that 92% of CLL-related DMPs were involved in the B Cell

differentiation process, which suggests that B Cell maturation

may play a prominent role in CLL pathogenesis. There were

274 DMEGs identified by comparing CLL and controls after

removing the B Cell maturation-related DMPs from background

CpG sites. Gene enrichment analysis of the 274 DMEGs

suggested that T cell activation and cell adhesion related

processes might be involved in the pathogenesis of CLL. Ras

protein signal transduction, which has been recognized as an

attractive therapeutic target for myeloid leukaemia (Willman,

2001), was also observed as an enriched pathway. Interestingly,

the lipid metabolism pathway was also one of the top 20 enriched

biological processes. We also found that the gene expression of

lipoprotein lipase (LPL) and CD36 were significantly upregulated

in CLL patients. These two proteins could activate the uptake of

fatty acids and were highly expressed in a lipogenic cancer model

(Zaidi et al., 2013). LPL expression was reported to be closely

correlated with IGHV mutational status and may be involved in

BCR and NOTCH1-dependent signalling pathways (Bilous et al.,

2019). Further studies are needed to decipher the role of lipid

metabolism in CLL aetiology. We thought these findings might

shed light on finding the new biological process for CLL

carcinogenesis.

A previous study showed that methylation status was

stable during CLL progression for 6.8 years (Cahill et al.,

2013), suggesting that methylation is altered in a very early

stage of neoplastic transformation. MBL is defined as the

presence of CLL phenotypic cells in the peripheral blood in

the absence of other features of CLL. MBL can be categorized

as either low-count or high-count based on whether the B Cell

count is above or below 0.5×109/L. High-count MBL

progresses to CLL requiring therapy at a rate of 1%–2%

per year (Strati and Shanafelt, 2015). Therefore, we

examined two high-count MBL cases for preliminary

exploration. The methylation patterns of these two MBL

cases were more similar to that of CLL cases than that of

healthy controls, supporting the hypothesis that methylation

alteration occurs in a very early stage of CLL development.

Since the sample size of MBL was limited in our study, further

complementary longitudinal studies of MBL are warranted to

validate our findings.

Our study presents several strengths. First, 94% of CLL

cases in our study were in the early stage (0, I, II). Thus, the

influences of CLL progression and medical treatment on

methylation status were limited in these early stage

patients compared to late-stage (III and IV) patients.

Second, we integrated our data with publicly available

methylation and expression data, which provided

independent validation of the methylation results and

provided with transcription data. There are also

limitations in our study. We could not directly validate

the DNA methylation and RNA expression for the top

DMEGs with our population due to the lack of

biospecimens. However, we acquired only 450k DNA

methylation data from public databases to validate our

findings. The larger population from the public data may

provide extra information for methylation pattern and also

made up the sample size limited by our own biospecimen.
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Conclusion

In summary, our study revealed that the DNA methylation

pattern was altered across the genome in CLL patients.

Differentially expressed genes with changes in methylation

status, were detected by combining publicly available DNA

methylation and RNA expression data. CLL-related DMEGs

reported previously, including ZAP70, FMOD, and

ADAMTS17, were also detected in our study. Our study also

found that the methylation heterogeneity of CLL, and abnormal

methylation of B Cell differentiation should be an important

factor in the pathogenesis of CLL. Apart from B Cell

differentiation, we detected DMEGs involving T cell

activation, cell adhesion, Ras signalling, and lipid metabolism

were associated with CLL, suggesting that these pathways might

contribute to CLL pathogenesis. Further longitudinal large-scale

population studies are warranted to replicate our results.

Subsequent studies are also needed to decipher the

mechanism of these DMEGs in CLL pathogenesis.
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