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CIPKs are a subclass of serine/threonine (Ser/Thr) protein kinases. CBLs are

ubiquitous Ca2+ sensors that interact with CIPK with the aid of secondary Ca2+

messengers for regulation of growth and development and response to stresses

faced by plants. The divergent roles of the CIPK-CBL interaction in plants

include responding to environmental stresses (salt, cold, drought, pH, ABA

signaling, and ion toxicity), ion homeostasis (K+, NH4
+, NO3

−, and microelement

homeostasis), biotic stress, and plant development. Each member of this gene

family produces distinct proteins that help plants adapt to diverse stresses or

stimuli by interacting with calcium ion signals. CIPK consists of two structural

domains—an N-terminal domain and a C-terminal domain—connected by a

junction domain. The N-terminal domain, the site of phosphorylation, is also

called the activation domain and kinase domain. The C-terminal, also known as

the regulatory domain of CIPK, further comprises NAF/FISL and PPI. CBL

comprises four EF domains and conserved PFPF motifs and is the site of

binding with the NAF/FISL domain of CIPK to form a CBL-CIPK complex. In

addition, we also performed a bibliometric analysis of the CIPK gene family of

data extracted from theWoSCC. A total of 95 documents were retrieved, which

had been published by 47 sources. The production over time was zigzagged.

The top key terms were gene, CIPK, abiotic stress, and gene expression. Beijing

Forestry University was the top affiliation, while The Plant Cell was the top

source. The genomics and metabolomics of this gene family require more

study.
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1 The CIPK gene family

CIPKs are a subclass of serine/threonine (Ser/Thr) protein

kinases. CBL (calcineurin B-like proteins) are ubiquitous Ca2+

sensors that interact with CIPK (CBL-interacting protein

kinases) with the aid of secondary messengers Ca2+ to

regulate growth and development, and also respond to

various stresses faced by plants (Sanyal et al., 2016). Ca2+

plays a regulatory role in the formation of the CBL-CIPK

complex and the enhancement of kinase domain activity

(Sánchez-Barrena et al., 2007). The various roles of CIPK-

CBL interaction in plants include responding to

environmental stress (salt stress, cold stress, drought stress,

pH stress, ABA signaling, ion toxicity), ion homeostasis (K+

homeostasis, NH4
+ homeostasis, NO3

− homeostasis,

microelement homeostasis), biotic stress, and plant

development (Ding et al., 2022). Each member of this gene

family produces distinct proteins that help plants to adapt to

diverse stresses or stimuli by interacting with calcium ion

signals.

1.1 Structure of the CIPK-CBL complex

CIPK consists of two structural domains: an N-terminal

domain and a C-terminal domain, which are connected by a

junction domain. The N-terminal domain, the site of

phosphorylation, is also called the activation domain and

kinase domain (Guo et al., 2001). This domain comprises

three conserved amino acids (Ser, Thr, and Tyr) that are

crucial for the proper CIPK functioning and activity. CIPK

activity is inhibited if any one of the three amino acids is

mutated to Asn. The C-terminal is also the regulatory domain

of CIPK and further comprises NAF/FISL and PPI (Sanyal

et al., 2015). CBL includes four EF domains and conserved

PFPF motifs and is the site of binding with the NAF/FISL

domain of CIPK to form the CBL-CIPK complex. When the

intracellular level of Ca2+ is less, the NAF domain is not bound

to the PFPF domain due to the self-inhibitory property of FISL

the domain, thus blocking the kinase activity (Batistic et al.,

2008). When the Ca2+ level increases, the PFPF motifs of CBL

bind to the NAF domain of CIPK due to the conformational

FIGURE 1
Process of CBL-CIPK complex-mediated responses. Stress can induce the calcium ion signatures which bind to EF1-EF4 domains on the CBL.
CIPK consists of the N-terminal domain comprising the activation domain and the C-terminal domain comprising the regulatory domain, which
includes the NAF/FISL and PPI domains. The red line shows the CBL and CIPK interaction. This complex formation regulates downstream processes.
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change in protein structure and hydrophobic interactions,

causing a release of kinase activity and downstream regulation

for various stress responses (Figure 1) (Sánchez-Barrena et al.,

2007).

1.2 How many genes?

Each plant has a different number of CIPK genes that have

been discovered so far. For instance, the total number of CIPK

genes in Arabidopsis, Populus, and Cassava are presented in

Supplementary Table S1. There are several CBL and CIPK genes

found in various plants, some examples are mentioned in

Tables 1, 2. The CIPK gene family is further divided into two

groups: Those with more introns and those with fewer introns.

Additionally, fluorescent labeling reveals that the majority of

CIPK proteins are found in the cytoplasm and nucleus. In the

cytoplasm and nucleus, the GFP fusion proteins of several CIPKs,

including CIPK1, CIPK2, CIPK3, CIPK4, CIPK7, CIPK8,

CIPK10, CIPK14, CIPK17, CIPK21, CIPK23, and CIPK24,

exhibit significant fluorescence (Mao et al., 2016b). However,

the subcellular localization and targeting mechanisms of most

CBL-CIPK complexes are yet mysterious.

1.3 Brief introduction to somemembers of
the CIPK gene family

A total of 26 CIPK genes have been identified in Arabidopsis

(Kolukisaoglu). Several of these genes and their roles are

described in Table 3.

Individual CIPK genes from other plant species have also

been reported and characterized in terms of function. For

instance, OsCIPK23 overexpression improved rice drought

tolerance by increasing the expression levels of drought-

related genes (Yang et al., 2008). Drought activated the

cotton CIPK gene GhCIPK6, the overexpression of which in

Arabidopsis improved drought tolerance (He et al., 2013).

These findings imply that the CIPK family plays a significant

role in the development of plant stress tolerance.

TABLE 1 List of plants with identified CIPK and CBL genes.

Botanical name Family Common name CIPKs CBLs References

Citrus sinensis Rutaceae Sweet orange 7 CsCIPK 8 CsCBL Shu et al. (2020)

Setaria italica Poaceae Millet 35 SiCIPK — Zhao et al. (2019)

Solanum commersonii Solanaceae Nightshade 26 ScCIPK 10 ScCBL Esposito et al. (2019)

Malus domestica Rosaceae Apple 34 MdCIPK — Niu et al. (2018)

Medicago sativa Fabaceae Alfalfa 58 MsCIPK 23 MsCBL Du et al. (2021)

Beta vulgaris Amaranthaceae Beet 20 BvCIPK — Wu et al. (2022)

Arabidopsis thaliana Brassicaceae Rockcress 26 AtCIPK 10 AtCBL Kolukisaoglu et al. (2004)

Oryza sativa Poaceae Rice 33 OsCIPK 10 OsCBL Kanwar et al. (2014)

Vitis vinifera Vitaceae Grapes 20 VvCIPK 8 VvCBL Xi et al. (2017)

Capsicum annuum Solanaceae pepper 26 CaCIPK 9 CaCBL Ma et al. (2019a)

Chenopodium quinoa Amaranthaceae Quechua 41 CqCIPK 16 CqCBL Xiaolin et al. (2022)

Pyrus bretschneideri Rosaceae Pear 28 PbCIPK — Tang et al. (2016)

Carya illinoinensis Juglandaceae Hardy pecan 30 CiCIPK 9 CiCBL Zhu et al. (2022)

Dendrobium catenatum Orchidaceae Dendrobium 24 DcaCIPK — Wan et al. (2019)

Brassica napus Brassicaceae Canola 23 BnaCIPK 7 BnaCBL Zhang et al. (2014)

Cicer arietinum Fabaceae Chickpea 22 CaCIPK — Poddar et al. (2021)

Glycine max Fabaceae Soya bean 52 CIPK — Zhu et al. (2016)

Solanum melongena Solanaceae Egg Plant 26 SmCIPK 10 SmCIPK Li et al. (2016)

Sorghum bicolor Poaceae Broomcorn 32 SbCIPK — Guo et al. (2015)

Manihot esculenta Euphorbiaceae Cassava 26 MeCIPK 10 MeCBL Mo et al. (2018)

Prunus mume Rosaceae Plum 16 PmCIPK — Li et al. (2019)

Camellia sinensis Theaceae Tea plant 18 CsCIPK 7 CsCBL Wang et al. (2020)

Lonicera japonica Caprifoliaceae Honeysuckle 17 LjCIPK 6 LjCBL Huang et al. (2021)

Zea mays Poaceae Maize 43 ZmCIPK — Chen et al. (2011)

Gossypium raimondii Malvaceae Cotton plant 41 GrCIPK — Wang et al. (2016)

Gossypium arboreum Malvaceae Cotton plant 18 GaCIPK — Wang et al. (2016)
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1.4 Roles of CIPK in transcriptional
regulation in plants

The divergent roles of the CIPK-CBL interaction in plants

include response to environmental stress (salt stress, cold stress,

drought stress, pH stress, ABA signaling, ion toxicity), ion

homeostasis (K+, NH4
+, NO3

−, and microelement

homeostasis), biotic stress, and plant development (Ding et al.,

2022). We discuss these roles in the following sections.

1.4.1 Environmental stress: salt stress
Elevated salt levels in plants can cause salt toxicity, resulting

in halted growth and development. Similarly, extremely low

cellular K+ levels can affect plant development. Plants have

developed protection mechanisms against salt stress. For

instance, to lessen increasing cytoplasmic levels of Na+, plants

overcome the threat of salt damage by increasing Na+ discharge,

decreasing Na+ intake, and sequestering Na+ into the vacuoles.

The first identified CBL-CIPK complex to maintain ion

homeostasis is SOS (salt overly sensitive) pathway. High Na+

concentration activates the formation of CBL4/SOS3 and

CIPK24/SOS2 complex due to increased concentration of Ca2+

(Yin et al., 2020). This complex activated SOS1, is a plasma

membrane anti-porter for Na+/H+ ions. SOS1 helps plants

maintain the ion balance by transporting Na+ from the

cytoplasm to the extracellular space and controls Na+

transport from root to shoot. CBL10-CIPK24/SOS2 maintains

Na+ levels by vacuole sequestration (Shi et al., 2000; Yin et al.,

2020). Similarly, CBL1/9-CIPK23 plays a role in maintaining the

K+ balance in response to low cellular levels. Low levels of

intracellular K+ activate Ca2+, resulting in the formation of the

CBL1/9-CIPK23 complex, in which AKTI is located in the

plasma membrane, as shown in Figure 2 (Cheong et al.,

2007). The CIPK23 kinase domains activate the AKTI channel

in the plasma membrane by physically interacting and

phosphorylating the channel to initiate K+ uptake into the

cytoplasm (Li et al., 2006).

1.4.2 Environmental stress: cold stress
Cold stress can have severe effects on overall plant survival.

Cold stress can inhibit plant growth as it reduces membrane

fluidity and affects water and nutrient absorption; thus disturbing

cellular metabolism and reactions (Chinnusamy et al., 2007).

Plants have developed mechanisms to respond to decreasing

temperature conditions through various pathways, including the

CIPK7-CBL1 complex-mediated approach (Shinozaki et al.,

TABLE 2 CIPK genes and their function in Arabidopsis thaliana.

Gene Function Reference

AtCIPK1 Encodes a protein kinase that interacts with CBL, ECT1 and ECT2 Lu et al. (2020)

AtCIPK2 Act as a calcium sensor that is involved in growth and development, Negative regulator of the responses to cold Kudla et al. (1999)

AtCIPK3 Encodes a serine-threonine protein kinase Ju et al. (2022)

AtCIPK4 CBL-interacting protein kinase 4; autophosphorylation activity Nemoto et al. (2011)

AtCBL4 Known as Arabidopsis SOS3 and contribute to salt stress by activating the Na+/H+ antiporter Ye et al. (2013)

AtSOS1 It maintains Na+ at low level Wang et al. (2019)

AtCIPK7 It responds to cold tolerance Huang et al. (2011)

AtCBL9 Forms a complex with AtCIPK23 to regulate potassium homeostasis under low potassium stress Lara et al. (2020)

AtCIPK24 SOS2 gene is required for intracellular Na+ and K+ homeostasis Liu et al. (2000)

TABLE 3 CIPK roles in transcriptional and post-transcriptional regulation in different plants.

Role References

Post-transcriptional modification of CIPKs, was identified in plant signaling pathways and abiotic resistance Xian et al. (2020)

CIPKs plays diverse roles in phosphorylation in cold stress Reviewed by (Barrero-Gil and Salinas, 2013)

The CIPKs may be involved in post-transcriptional modification of the development of the rhizomes and the construction of
defense systems of the plants

Yang (2022)

CIPK-CBL complex raises cytosolic free Ca2+ levels, enhancing CIPK kinase activity and triggering a phosphorylation cascade Batistič and Kudla (2009)

In Arabidopsis, the AKT1 channel is phosphorylated by CIPK23, which enhances the K+ uptake activity of AKT1 under K+-
deficient conditions

(Li et al., 2006; Xu et al., 2006)

CIPKs interact with PP2Cs by binding the kinase domain of CIPK and the protein phosphatase interacting motif (PPI) in the
regulatory domain

Lan et al. (2011)
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2003). CIPK7-CBL1 may be involved in the response to cold

stress by producing sugars, as sugars reduce the risk of cell

damage by cold. AtCIPK7 may lead to the phosphorylation of

sucrose synthase for sucrose metabolism, as shown in Figure 3

(Huang et al., 2011).

1.4.3 Environmental stress: drought stress
Drought stress can seriously threaten plant growth through

reduced efficiency water use, smaller leaf size, stem elongation,

etc. CBL1/9-CIPK23 responds to drought stress in plants by

altering the sensitivity of ABA in guard cells. CIPK11 negatively

regulates the stress response in coordination with transcriptional

factor Di19-3 (Ma X. et al., 2019; Ma Y. et al., 2019).

1.4.4 Environmental stress: ABA signaling
ABA is a vital phytohormone in plants that plays diverse

roles, including stomata opening and closing, pathogen defense,

seed germination, and plant growth and development. Studies

have revealed the role of the CIPK-CBL complex in the regulation

of the signal transduction pathway. CIPK3/CBL9 and CIPK15/

CBL1 play vital roles in ABA signaling. Experiments have

revealed a negative regulatory role of AtCBL9 in ABA

signaling during seed germination. A study in plants lacking

CBL9 with mutant cbl9 showed the accumulation of higher levels

of abscisic acid and hypersensitivity to abscisic acid (Pandey

et al., 2004; Pandey et al., 2008). Similarly, to understand the

involvement of CIPK15/CBL1 in ABA signaling, plants with

mutant CBL1 (cbl1) have been studied. Study results showed that

CBL1 is not involved in the regulation of ABA signaling while the

interaction of CIPK1 with CBL1 and CBL9 plays a role in the

mediation of abscisic acid signaling (D’Angelo et al., 2006).

Similarly, CIPK6 loss-of-function lines (cipk6) also showed a

higher accumulation of abscisic acid in seedlings, thus

demonstrating the role of CIPK6 in ABA signaling (Chen

et al., 2013).

1.4.5 Environmental stress: ion toxicity
Cadmium ions can accumulate in plants and are highly toxic

to plant growth and development (Cuypers et al., 2010).

AtCPK11 plays a role in overcoming cadmium stress by

enhancing expression of the ABA signaling pathway (Gu

et al., 2021). IRT1 is cadmium transported in roots and the

ABA pathway reduces the two crucial transcriptional factors, FIT

and bHL039, which regulate IRT1 to block the entry of cadmium

and other ions (Fan et al., 2014). Similarly, CIPK23 causes

IRT1 degradation to stop the entry of toxic ions into cells

(Dubeaux et al., 2018).

1.4.6 Environmental stress: pH stress
CIPK11/CBL2 plays a key role in pH stress management in

plants. CIPK11 targets the H+-ATPases AHA2, which is involved

in extracellular acidification. CIPK11 (PKS5) negatively regulates

H+-ATPase AHA2, as shown in Figure 4 (Fuglsang et al., 2007).

The AtCIPK11-AtCBL2 complex phosphorylates H+-ATPase

AHA2, preventing it from interacting with the 14-3-3 protein

in alkaline conditions (Sanyal et al., 2020).

FIGURE 2
Role of CIPK-CBL complexes in managing salt stress in Arabidopsis. CBL4-CIPK24 (SOS2) activates SOS1 for the extracellular transfer of excess
sodium ions. Similarly, CBL10-CIPK24 (SOS2) transfers extra sodium ions inside the vacuole, and CBL1/9-CIPK23 plays a role inmaintaining a balance
of potassium ions by activating AKT1 receptors in the plasma membrane to import potassium ions in low-potassium conditions.
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1.4.7 Ion homeostasis
Ion homeostasis is a dynamic process for maintaining the

physiological processes of plants. The CIPK-CBL complexes play

crucial roles in the homeostasis of NO3−, NH4+, K+, and

microelements (Mulet et al., 2020). The CBL-CIPK complex

allows plant cells to sequester extra Mg2+ into vacuoles,

thereby protecting plant cells from high Mg toxicity (Tang

et al., 2015). CBL4-CIPK5 complex confers salt, but not

drought and chilling, tolerance by regulating ion homeostasis

(Huang et al., 2020).

FIGURE 3
Role of CIPK-CBL complexes in managing cold stress in Arabidopsis.Many genes are involved in this response. Cold stress is first perceived by
COLD1 receptors. The signals activate the secondary Ca2+ messengers. The transient changes produced in a cell due to Ca2+ activation and
AtSRC2 produce ROS due to the NADPH oxidase activity of the AtRBOHF. Increased ROS production positively regulates the Ca2+ channels. CBL1-
CIPK plays a role by phosphorylating and activating the MAPK cascades. CRLK1 or CRLK2 interacts with calmodulin (CaM) to further activate the
MAPK cascade. The MAPK pathway suppresses the breakdown of ICE1 to tolerate stress. Dashed lines: unclear mechanisms; solid lines: induction.

FIGURE 4
Process of maintaining pH balance by CBL2-CIPK11 complexes after activation of AHA ATPases.
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1.4.8 NO3
– homeostasis

Nitrate is the chief source of nitrogen for plants and acts as a

signal molecule by inducing the expression of nitrate-associated

genes, a process called the primary nitrate response. Nitrate

induction includes two responses; namely, the high-affinity

(km = 30 µM) and low-affinity (km = 0.9 µM) (Liu et al., 2020)

stages. The genes of the CIPK family, including CIPK8 and CIPK23,

play a crucial role in nitrate homeostasis by regulating the low and

high-affinity stages of nitrate induction, respectively. CIPK8

positively regulates the low-affinity response by inducing the

expression of the CHL1 (NRT1.1) and NRT2.1 transporters.

CIPK23 is a negative regulator of high-affinity response and acts

in antagonism with CIPK8 (Zhao et al., 2018). The CBL1/0-

CIPK23 complex is located in the plasma membrane, where

CIPK23 can convert low-affinity CHL1 to high-affinity by

phosphorylation of threonine residues in low-nitrate conditions.

Thus, at low nitrate concentrations, higher primary nitrate reactions

are prevented. In contrast, high nitrate concentrations inhibit

CHL1 phosphorylation by binding to low-affinity sites. This

produces high primary nitrate reactions and, ultimately,

transports nitrates (Ho et al., 2009).

1.4.9 NH4
+ homeostasis

High levels of NH4
+ are toxic for plant growth. The CBL1-

CIPK23 complex helps maintain ammonium balance by

phosphorylating and inactivating the threonine residue of

cytosolic AMT1, thus preventing the entry of further

ammonium ions (Figure 5) (Straub et al., 2017).

1.4.10 K+ homeostasis
Plants usually suffer at low potassium concentrations. The

CBL1/9-CIPK23-AIP1-AKT1 pathway plays a role in

maintaining a balance of this ion in plants. CBL1/9 recruits

CIPK23 to form an activating complex at the root cells, where

CIPK23 activates the AKT1 transporter to increase potassium

ion intake by phosphorylating AKT1 (Srivastava et al., 2020).

Other than AKT1, CIPK23 can also regulate the potassium

ion concentration by interacting with HAK5 (K+ transporter)

and KUP4 (K+ regulator) (Srivastava et al., 2020). Many

essential microelements in homeostasis are also

maintained by CBL-CIPK families. For instance, CBL1/9-

CIPK11 and CBL1/9-CIPK23, CIPK7, and CIPK21 play

roles in iron homeostasis, as shown in Figure 6 (Ding et al.,

2022).

1.4.11 Biotic stress
CIPK plays a vital role in protecting plants from biotic stress

such as pathogens by directly or indirectly increasing reactive

oxygen species (ROS) production (Torres, 2010). ROS are

produced by plants through variable defense mechanisms

(e.g., PAMP-triggered immunity (PTI) and effector-triggered

immunity (ETI)) as a sign that the plant has recognized the

FIGURE 5
CBL-CIPK complexes involved in ion homeostasis. NH4

+ homeostasis is maintained through AMT1 inactivation by the CBL-CIPK23 complex to
block entry into the cell. K+ homeostasis is maintained by three complexes, CBL1-CIPK23, which interact with HAK5 and AKT1 while CBL4-CIPK6
interacts with AKT2 for K+ uptake into the cell. NO3 homeostasis is maintained by CIPK8 and CIPK23, which interact with CHL1 as positive and
negative regulators respectively.
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pathogen and started to protect itself from biotic stress (Torres,

2010). For instance, CIPK26 protects plants from pathogens via the

production of ROS. Similarly, respiratory burst oxidase homolog

(RBOH) is also involved in ROS production in plants. The CBL1/9-

CIPK26 complex activates RBOH, which further triggers ROS

production via the ABA pathway and leads to stomata closure

(Fuglsang et al., 2007). Similarly, CBL5-CIPK11 activates other plant

defense mechanisms by activating NPR1 (nonexpressor of

pathogenesis-related genes), which acts downstream of salicylic

acid, which is well known for defense in plants and activates

defense genes. The CBL5-CIPK11 complex also reportedly

regulates WRKY38 and WRKY62 in disease response (Figure 7)

(Tena et al., 2011).

1.4.12 Plant development
CIPK6/12/13/19 plays a vital role in plant development and

growth. CIPK12 and CIPK19 are key regulators in the growth of

pollen tube tips in plants (Zhou et al., 2015). CIPK13 plays a part

in reversible protein phosphorylation, which is essential for

maintaining many plant processes such as metabolism,

photosynthesis, gene expression, cell development, and

structure formation (Schliebner et al., 2008; Schönberg and

Baginsky, 2012). CIPK6 is involved in cell division,

enhancement of auxin sensitivity, and root growth and

development (Tripathi et al., 2009). Finally, CIPK25 aids in

the regulation of root meristem development and size

(Tripathi et al., 2009).

1.5 CBL-CIPK complex mediates different
signaling pathways in plants

As explained above, the CBL-CIPK complex is involved

in responses to high salinity, osmotic or drought stress, cold,

pH, ABA, K+, nitrate, and other stresses. Crosstalk occurs

between the CBL-CIPK complex and other classical

pathways such as the CDPK, AMP-activated protein

kinase (AMPK), salt overly sensitive (SOS), and reactive

oxygen species (ROS) pathways. AtCBL4/SOS3 was the

first CBL protein identified in Arabidopsis and was shown

to function specifically in the SOS pathway, interacting with

AtCIPK24/SOS2 under salinity stress in roots (Liu and Zhu,

FIGURE 6
Schematic representation of different CBL-CIPK complexes and their functions in regulating Na+, K+, and Mg2+ homeostasis. The regulatory
pathways of K+, Mg2+, and Na+ are indicated in blue, pink, and black lines, respectively. Question mark (?): unknown tonoplast-localized transporter
(Mao et al., 2016a).
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1998; Qiu et al., 2002). During germination and seedling

development, AtCBL1 reacts to signals involving glucose and

gibberellin (GA) (Li et al., 2013). AtCBL1 and

AtCBL9 regulate the Arabidopsis NADPH oxidase RbohF

after interacting with AtCIPK26 in the ROS pathway

(Kimura et al., 2013).

2 Bibliometric analysis

Bibliometrics is the application of statistical techniques to

evaluate the scientific content of books, papers, and other

publications (Ellegaard and Wallin, 2015). In library and

information science, bibliometric techniques are preferably

employed. Bibliometrics examines and analyzes scientific

metrics and different indicators highly associated with the

respective domains (Ellegaard and Wallin, 2015). The earliest

bibliometrics studies date back to the late 19th century and

changed significantly following the Second World War in the

wake of the “periodical crises” and the new technological

possibilities provided by computing tools (Wolfram, 2003).

The Science Citation Index resulting from Eugene Garfield

and Derek John de Solla Price’s citation network analysis

became the cornerstone of organized bibliometrics research

programs in the early 1960s (Wolfram, 2003). Creating the

citation graph, which displays a network of citations between

texts, is the foundation of the widely used bibliometric

technique known as citation analysis (Hutchins et al.,

2019). To examine the influence of their area

bibliometric methodologies have been applied to specific

publications to identify especially influential papers

in certain fields of study (Weingart, 2005). The creation

of thesauri, evaluating reader usage, and descriptive

linguistics are approaches frequently incorporated in

bibliometrics.

2.1 Data sources for bibliometric analysis

Currently, bibliometric analysis can be performed using

several databases. However, the development of Scopus and

the Web of Science has simplified citation analysis. With

certain restrictions, data sources including Dimensions,

Google Scholar, and PubMed are also used for data extraction

(AlRyalat et al., 2019; Donthu et al., 2021). In 2010, new

TABLE 4 Main information about the data.

Description Results

Timespan 2003:2022

Sources (Journals, Books, etc.) 47

Documents 95

Annual growth rate % 12.88

Document average age 5.61

Average citations per doc 34.72

References 2,844

Document contents

Keywords plus (ID) 309

Author’s keywords (DE) 274

Authors

Authors 507

Authors of single-authored docs 1

Authors collaboration

Single-authored docs 1

Co-authors per Doc 6.35

International co-authorships % 16.84

Document types

Article 87

Meeting abstract 1

Review 7

FIGURE 7
CBL-CIPK complexes involved in response to biotic stress in plants.
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initiatives in support of open citation data challenged the

background of infrastructures for citation data. For example,

Web of Science and Scopus have dramatically eased meta-data

analysis (Ellegaard, 2018). The Web of Science database provides

users access to billions of cited sources in the humanities, social

sciences, and life sciences dating back to 1900. This database can

be accessed through the website: https://www.webofscience.com.

Millions of entries from journals, books, and conference

proceedings are included in the Scopus extended abstract and

citation database. Scopus can be accessed via the website: https://

www.scopus.com/home.uri.

2.1.1 Web of Science
The Web of Science (WoS) is a subscription platform

available to institutions and offers access to numerous

databases containing reference and citation data from

conference proceedings, academic journals, and other

publications in a variety of disciplines (AlRyalat et al., 2019).

WoS was created by the “Institute for Scientific Information” but

is currently held by Clarivate, formerly Thomson Reuters’

Intellectual Property and Science division (Wikipedia, 2022).

2.1.2 Scopus
Elsevier is among the top abstract and citation databases.

Scopus was first introduced in 2004 and comprises almost

36,377 titles from approximately 11,678 publishers worldwide

(Scopus, 2022). Among these titles, 34,346 are peer-reviewed

journals in top-tier subject areas (biological sciences, physical

sciences, social sciences, and health sciences). It encompasses

certain different sources, for instance, trade journals, book series,

and journals (Khudhair et al., 2020). Each year, different

parameters such as the h-Index, CiteScore, SCImago Journal

Rank, and SNIP numerical quality measures are used to evaluate

each journal included in the Scopus database to ensure that it is of

a high enough standard (Source Normalized Impact per Paper)

(Rankings, 2022). Patent database searches are also incorporated

into Scopus searches (Kulkarni et al., 2009).

2.2 Introduction to bibliometric analysis
tools

Although several bibliometric databases are available, each

was created with a specific objective (Mallig, 2010; Choudhri

et al., 2015). Among bibliometric analysis tools, Bibliometrix has

the most comprehensive collection of methods and is appropriate

for practitioners because of Biblioshiny (Aria and Cuccurullo,

2017). VOSviewer can import and export data from a variety of

sources and offers excellent visualization (Van Eck andWaltman,

2017). SciMAT provides the most robust pre-processing and

export capabilities (Cobo et al., 2012) and has been used in

biomedical sciences (Granada et al., 2020), applied intelligence,

and machine learning (Rincon-Patino et al., 2018; López-Robles

et al., 2021). Due to the variety of characteristics, researchers

FIGURE 8
Total number of publications on the CIPK gene family over the study period. The x-axis indicates the years while the y-axis indicates the number
of publications.
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must decide on the desired analytical results and select the choice

that best serves their objectives.

2.2.1 VOSviewer
VOSviewer (visualization of similarities) is a program for

creating and visualizing bibliometric networks. Different types of

networks can be developed using VOSviewer. For instance,

bibliographic coupling and co-authorship relationships can be

shown as attractive networks (Van Eck and Waltman, 2010).

VOSviewer allows the detailed analysis of bibliometric maps

from various aspects and provides the viewer with the ability to

zoom and scroll through themaps to perform detailed examination.

To prevent the overlapping of labels, smart labeling algorithms are

used. For viewing a moderately large number of items in

bibliometric maps, the viewing capability of VOSviewer is

remarkable compared to other software (Van Eck and Waltman,

FIGURE 9
Three-field network map. The right-hand, middle, and left-hand sides show the keywords, terms extracted from titles, and author affiliations,
respectively.

FIGURE 10
Most relevant sources. (A) The most locally cited sources. (B) The most relevant sources according to the number of publications.
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2010). Similarly, VOSviewer can also be used to produce citation

and co-citation networks. These networks can be journals,

researchers, or individual articles (Van Eck and Waltman, 2010).

Data retrieved from the Web of Science, Scopus, Dimensions, Lens,

and PubMed databases can be used to create co-authorship,

citation-based, and co-occurrence networks (VOSviewer, 2022).

Similarly, data downloaded from the APIs of Crossref, Europe

PMC, and OpenAlex can also be used to create networks. This

program can save screenshots of data as bitmaps and vectors with

high resolution (VOSviewer, 2022).

2.2.2 Bibliometrix
All of the primary bibliometric methods of analysis are

included in the open-source, scientometric, and bibliometric

research tool known as Bibliometrix developed by Aria and

Cuccurullo (2017). No coding experience is required to use

this software to analyze fields like journals, topics, authors,

timespan, etc. (Bibliometrix, 2022). The Bibliometrix package

includes a variety of features to extract bibliographic data from

databases. The best examples of these databases include

SCOPUS, WoS, PubMed, Clarivate Analytics, Digital Science,

and Dimensions. Bibliometrics can create data matrices for

coupling, scientific collaboration analysis, co-citation, and co-

word analysis. It can also be used for structural analysis of new

information in data and developments.

2.2.3 Gephi
Gephi is another free program for bibliometric data

visualization as massive network graphs (Bastian et al., 2009).

To speed exploration, Gephi utilizes a 3-D platform to display

graphs in real-time (Gephi, 2021).

3 Bibliometric analyses of the CIPK
gene family

A bibliometric analysis of the CIPK gene family was performed.

Data were extracted from the Web of Science Core Collection on

August 26, 2022. We selected three editions of the core collection;

namely, the “Science Citation Index Expanded (SCI-EXPANDED)-

1999-present”, “Conference Proceedings Citation Index (AHCI)—

2003-present”, and “Emerging Sources Citation Index

(ESCI0—2017-present”. The keyword strings CIPK OR CIPK

GENE OR CIPK GENE FAMILY were used. Publications were

collected from 2003 to 2022. A total of 95 articles were retrieved

from the database.

3.1 Information

The main information is provided in Table 4. The time

duration was 2003 to 2022. A total of 95 documents

published by 47 sources were retrieved.

3.2 Publication analysis of the CIPK gene
family

The raw data were analyzed to extract the publications per

annum. The data were first published in 2003, with a single

FIGURE 11
(A) Co-authors to authors’ network. Only linked authors are
shown. VOSviewer was used to draw the network. (B) Citations to
author network map including a total of 532 authors. The overlay
visualization of the linked author network is shown. (C) Co-
occurrence of keywords. A total of 538 keywords were identified
and mapped using VOSviewer. Abiotic stress, abscisic acid, and
Arabidopsis were the leading terms.
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article, entitled Isolation and characterization of a novel rice Ca2+-

regulated protein kinase gene involved in responses to diverse

signals including cold, light, cytokinins, sugars and salts. The

production over time zigzagged and no papers were published

in 2005. In 2015, the number of publications reached double

figures, with a total of 10 articles published. However, the number

decreased to five articles in 2016. Since then, a continuous

increase was observed (Figure 8).

3.3 Relevancy network

The relevancy network was mapped by targeting 1) authors’

affiliations, 2) title terms, and 3) keywords. The top title terms

were gene, cipk, family, and identification. The leading keywords

were cipk, abiotic stress, gene expression, and salt stress. The top

affiliation was Beijing Forestry University (Figure 9).

3.4 Most relevant sources

The retrieved data was analyzed to find the most relevant

sources (Figure 10A). Frontiers in Plant Science was the most

common journal, with 10 publications. The current IF of the

journal is 6.627 and is in category Q1. The most locally cited

sources were also identified (Figure 10B), among which Plant Cell

was first with 486 citations, followed by Plant Physiology Journal,

with 474 citations.

3.5 Authors-citation network analysis

We used VOSviewer to map the co-authorship-to-author

network (Figure 11A). Similarly, we mapped the network of

citations to the authors. A total of 532 authors were included in

these publications. We mapped only the linked author network, as

shown in Figure 11B. Analysis of the co-occurrence of keywords

identified a total of 538 keywords, among which abiotic stress,

abscisic acid, and Arabidopsis were the leading terms (Figure 11C).

3.6 Term co-occurrence map

We used VOSviewer to sketch the term co-occurrence map

based on the text data. The terms were extracted from the titles and

abstracts. A total of 2,856 terms were included. To draw the network

FIGURE 12
Term co-occurrence map. A total of 2,856 terms were extracted from the titles and abstracts. The mapped network is sketched using a
minimum occurrence of 3. A total of 300 terms were mapped.
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map, we set the threshold criterion of minimum occurrence to 3 for

key terms and applied “binary” counting. A total of 300 terms met

this criterion. The mapped network is shown in Figure 12.

4 What should be discovered in the
future?

CIPK proteins play important roles in the Ca2+ signaling

pathway and affect plant development, in addition to

participating in biotic and abiotic stress responses. CIPKs

have been identified and functionally characterized in many

crops such as Arabidopsis, rice, maize, and canola (Niu et al.,

2018), but less is known about CIPKs in wheat and other

economically important crops. Much remains to be studied in

this gene family in terms of genomics andmetabolomics analysis.
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