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Background: Parkinson’s disease (PD) is a neurodegenerative disease

commonly seen in the elderly. On the other hand, cuprotosis is a new

copper-dependent type of cell death that can be observed in various diseases.

Methods: This study aimed to identify potential novel biomarkers of Parkinson’s

disease by biomarker analysis and to explore immune cell infiltration during the

onset of cuprotosis. Gene expression profiles were retrieved from the GEO

database for the GSE8397, GSE7621, GSE20163, and GSE20186 datasets. Three

machine learning algorithms: the least absolute shrinkage and selection

operator (LASSO), random forest, and support vector machine-recursive

feature elimination (SVM-RFE) were used to screen for signature genes for

Parkinson’s disease onset and cuprotosis-related genes (CRG). Immune cell

infiltration was estimated by ssGSEA, and cuprotosis-related genes associated

with immune cells and immune function were examined using spearman

correlation analysis. Nomogram was created to validate the accuracy of

these cuprotosis-related genes in predicting PD disease progression.

Classification of Parkinson’s specimens using consensus clustering methods.

Result: Three PD datasets from the Gene Expression Omnibus (GEO) database

were combined after eliminating batch effects. By ssGSEA, we identified three

cuprotosis-related genes ATP7A, SLC31A1, and DBT associated with immune

cells or immune function in PD and more accurate for the diagnosis of

Parkinson’s disease course. Patients could benefit clinically from a

characteristic line graph based on these genes. Consistent clustering analysis

identified two subtypes, with the C2 subtype exhibiting higher immune cell

infiltration and immune function.

Conclusion: In conclusion, our study reveals that several newly identified

cuprotosis-related genes intervene in the progression of Parkinson’s disease

through immune cell infiltration.
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Introduction

Parkinson’s disease (PD) is the second most common

neurodegenerative disease after Alzheimer’s disease, affecting

1.2% of individuals over the age of 65 (Hickman et al., 2018).

It is more common in older adults, with an average age of onset of

about 60 years, and aging is the greatest risk factor for the

development of Parkinson’s disease (Collier et al., 2011).

Parkinson’s disease (PD) is a debilitating motor coordination

disorder caused by the degeneration of dopamine neurons in the

substantia nigra (SN) (Ballance et al., 2019). The main clinical

manifestations are resting tremors, bradykinesia, myotonia, and

postural gait disturbances (Hammond et al., 2019). Other motor

dysfunctions include gait and postural changes, speech and

swallowing difficulties, and changes in expression (Zhang

et al., 2021). In recent years it has been increasingly noted

that non-motor symptoms such as depression, constipation,

and sleep disturbances are also common complaints in

patients with Parkinson’s disease, and they can have an even

greater impact on a patient’s quality of life than motor symptoms

(Cederroth et al., 2019). More research is needed on how to

prevent motor complications. The exact cause of Parkinson’s

disease remains unclear, and genetic factors, environmental

factors, aging, and oxidative stress may all be involved in the

degenerative death process of PD dopaminergic neurons (Fung

et al., 2017). Therefore, early identification of molecular

biomarkers of PD is crucial to initiate timely treatment before

the onset of motor symptoms.

Copper is an essential trace element that plays an important

role in maintaining human life activities, and mechanisms

involving copper may represent potential therapeutic targets

for different pathologies, and significant changes in its levels

in the body may be a potential pathogenic factor in Parkinson’s

disease (Atrian-Blasco et al., 2017). Reduced binding of copper to

ceruloplasmin in PD patients, resulting in elevated free copper

levels, has been shown to be associated with oxidative stress and

neurodegeneration (Ajsuvakova et al., 2020). A recent study

identified a new mode of cell death that is dependent on and

regulated by copper ions in the cell body: cuprotosis. By directly

binding to the lipid acylated components of the tricarboxylic acid

cycle pathway, copper ions lead to abnormal aggregation of lipid

acylated proteins and loss of iron-sulfur cluster proteins,

resulting in proteotoxic stress and ultimately cell death

(Tsvetkov et al., 2022). Dysregulation of copper homeostasis

may trigger cytotoxicity, and changes in intracellular copper

levels can ultimately affect the development and progression

of neurological diseases (Genoud et al., 2020; Li et al., 2020). In

contrast, inhibition of copper transporter protein attenuated α-
synuclein-mediated pathological changes in Parkinson’s patients

and reduced the increase in proteogenic fibrillation and oxidative

stress (Davies et al., 2014; Gou et al., 2021). Also, abnormal

tricarboxylic acid cycle function is closely associated with the

development of Parkinson’s disease, especially dopamine

neurons are much more dependent on mitochondrial

metabolism than other cell types (Supandi and van Beek,

2018; Cai et al., 2019). This suggests that inhibiting the

occurrence of cuprotosis in neurons through drugs may be a

strategy to combat Parkinson’s disease.

In addition, there is growing evidence that the immune

system is allied to neuronal death and PD pathogenesis.

Recent studies have demonstrated that early stages of

Parkinson’s disease progression can be confirmed by detecting

immune cell components in the blood, leading to earlier

detection and confirmation of the disease (Farmen et al.,

2021). Microglia are the brain’s resident immune cells, and

activated microglia correlate directly with the clinical and

pathological severity of Parkinson’s disease (Lanskey et al.,

2018). Current research also includes the function of various

immune cells, such as NK cells (Earls and Lee, 2020) and T cells

(Yeapuri et al., 2022), but there is still a gap in how these cells play

a role in the progression of cuprotosis in PD.

Currently, microarray technology and integrated

bioinformatics analysis have been widely used to identify

potential novel biomarkers and their roles in various diseases

to further explore the pathogenesis and develop potential

therapeutic approaches (Zhao et al., 2021). In contrast, there

have not been any studies on cuprotosis-related forms of

Parkinson’s disease. In this study, four datasets (GSE8397,

GSE7621, GSE20163, and GSE20186) were combined into one

integrated dataset by the SVA method to eliminate batch

differences. To explore the immune cell or immune function

correlation of CRGs with PD, ssGSEA was used to study immune

infiltration in PD, and consistency clustering analysis was

performed to identify pathway differences in cuprotosis-

related gene groupings. We believe our findings will provide

greater insight into the characterization of cuprotosis progression

in PD and provide potential prognostic biomarkers to design

rational therapeutic regimens.

Materials and methods

Raw data acquisition

Five PD datasets (GSE8397, GSE7621, GSE20163, GSE20186,

and GSE42966) were downloaded from the NCBI Gene

Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/

). The above five datasets are all gene expression arrays,

GSE7621 generated using GPL570 (HG-U133_Plus_2)

Affymetrix Human Genome U133 Plus 2.0 Array. GSE8397,
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GSE20164, and GSE20186 generated via GPL96 (HG-U133A)

Affymetrix Human Genome U133A Array was generated.

GSE42966 was generated by GPL4133 Agilent-014850 Whole

Human Genome Microarray 4 × 44K G4112F. The dataset of

GSE8397 included 24 nigrostriatal (SN) samples from PD

patients and 15 nigrostriatal samples from normal subjects;

GSE20163 contained nine nigrostriatal samples from PD and

eight nigrostriatal samples from control subjects; GSE7621 used

nine normal nigrostriatal samples from controls and

16 nigrostriatal samples from 16 Parkinson’s disease patients;

GSE20186 contained 14 PD nigrostriatal samples and five control

samples. GSE42966 served as the validation group and included

four Braak3 nigrostriatal samples from patients and five

Braak4 patient samples.

Selection of characteristic genes

Three machine learning algorithms: LASSO regression

analysis, random forest, and SVM-RFE (Sanz et al., 2018)

were used to screen for eigengenes. LASSO was implemented

as a dimensionality reduction method to perform variable

screening and complexity adjustment while fitting a

generalized linear model. LASSO analysis was implemented

with a penalty parameter utilizing a 10-fold cross-verification

via the “glmnet” package (Engebretsen and Bohlin, 2019).

Recursive feature elimination (RFE) in the random forest

algorithm is a supervised machine learning method for

ranking cuprotosis-associated genes in Parkinson’s disease.

Predictive performance is estimated by tenfold cross-

validation and genes with relative importance >0.25 are

identified as feature genes. SVM-RFE is a small-sample

learning method that essentially bypasses the traditional

process of induction to deduction and enables efficient

“transductive inference” from training to prediction

samples, simplifying the usual classification and regression

problems.

Data processing and identification of
differentially expressed genes

The four raw datasets were pre-processed by affy in R,

including background calibration, normalization, and

log2 transformation (Irizarry et al., 2003). When multiple

probes correspond to a common gene, their average values

were taken as their expression values. In addition, the R

package “sva” was used to eliminate batch effects (Buus et al.,

2017). The limma package was applied to the four GEO cohorts

as a way to screen for differentially expressed cuprotosis-related

genes. p-values < 0.05 and |log2 Fold change (FC)|>0.2 were set

as cut-off points for DEGs (Ritchie et al., 2015). When

performing differential analysis of the two PD subtypes, FDR

values <0.05 and |logFC|>1 of DEGs were considered to be

significantly different.

Functional enrichment analysis

Functional enrichment analysis, including both Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) analyses, was performed by the

“clusterProfiler” package in R software. The BH method was

utilized to adjust the p-value. Single-sample gene set enrichment

analysis (ssGSEA) was used to calculate the infiltration score of

16 immune cells and 13 immune-related pathways by the “gsva”

package in R software (Rooney et al., 2015). Finally, we also

examined the correlation between cuprotosis-related genes and

immune cells and immune function in Parkinson’s disease

samples.

Gene set enrichment analysis

Gene set enrichment analysis is a computational method

used to test whether genes show statistically significant and

consistent changes between two biological states. The most

significant relevant signaling pathways are identified by

10,000 alignment tests. A corrected p-value of less than

0.05 and a false discovery rate (FDR) of less than 0.05 was

used as criteria. Finally, we selected the top 5 KEGG pathways for

statistical analysis and ridge mapping using the R package

“clusterPro”.

Consensus clustering

Consensus clustering is used to calculate how many

unsupervised classes there are in a dataset. The consensus

clustering (CC) method was used. Based on the ICI

characteristics, we used the R package “ConsensusClusterPlus”

(Wilkerson and Hayes, 2010) to classify Parkinson’s patients in

GSE8397, GSE7621, GSE20163, and GSE20186 into different ICI

clusters. These results are displayed after being run 1,000 times to

verify the accuracy and reproducibility of the program, and we

use the heat map function of the R language. Consensus matrix

plots, consensus cumulative distribution function (CDF) plots,

the relative change in area under the CDF curve, and trace plots

were used to find the optimal number of clusters.

Gene set variation analysis

GSVA is a non-parametric unsupervised analysis method

that is mainly used to assess the results of gene set enrichment in

microarrays and transcriptomes. It is mainly used to assess
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FIGURE 1
Identification of Parkinson’s onset and cuprotosis-related genes in the combined expression profile of the GEO cohort. (A–D) Heat map
showing differentially expressed CRGs for the GSE8397, GSE7621, GSE20163, and GSE20186 cohorts. (E) PCA plot showing the combinatorial
expression profile of the GEO cohort. (F) PCA plot showing the combined expression profile of the GEO cohort after batch effect.
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whether different metabolic pathways are enriched between

samples by converting the gene expression matrix between

samples into the expression matrix of gene sets between

samples (Hoang et al., 2019). Fifty signature gene sets were

selected from MSigDB as reference sets. The GSVA package

and its ssGSEA function were used to obtain the GSVA score for

each gene set. The GSVA score indicates the absolute enrichment

of each gene set. The Limma package was used to compare the

differences in GSVA scores per genome between subtypes.

Statistical analysis

All analyses were performed using R version 4.1.1, 64-bit6,

and its support package. The nonparametric Wilcoxon rank sum

test was used to test the relationship between two groups of

continuous variables. Correlation coefficients were examined

using spearman correlation analysis. In all statistical

investigations, p < 0.05 was considered statistically significant.

The “rms” package was used to merge the characteristic genes to

create a nomogram. Calibration curves were used to assess the

accuracy of the nomogram. The clinical utility of the column line

graphs was evaluated by decision curve analysis. PCA plots were

described using the ggplot2 package.

Results

Identification of CRGs

First, using the limma package to perform differential

analysis of CRGs in the four GEO cohorts PD and control,

respectively (Figures 1A–D), we found that DLD, DLAT, and

DBT were differentially expressed in GSE7621, NFE2L2, DLD,

MTF1, GLS, DLAT, PDHA1, PDHA1, and LIPT1 were

differentially expressed in GSE8397. SLC31A1, FDX1, and

ATP7A were differentially expressed in GSE20163, while

NLRP3, LIAS, and DBT were differentially expressed in

GSE20186. To investigate the role of cuprotosis-related genes

in the progression of Parkinson’s disease, we combined the

expression profiles of 38 normal brain substantia nigra and

62 brain substantia nigra specimens from the GSE8397,

GSE7621, GSE20163, and GSE20186 cohorts of Parkinson’s

patients (Figure 1E), which were batch processed for

subsequent analysis (Figure 1F).

Assessment of the microenvironment in
Parkinson’s disease

We quantified the ssGSEA enrichment scores for different

immune cell subpopulations, related functions or pathways in

PD, and normal controls. The abundance of immune cells and

immune functions in each sample is shown in the heat map

(Figure 2A). Figures 2B,C show the correlation heat map between

immune cells and immune function, with the darker red color

representing a larger association between the two. We compared

ssGSEA scores between PD and normal groups and showed that

B cells, mast cells, NK cells, and regulatory T cells were more

abundant in normal brain substantia nigra tissue, while

macrophages, pDCs, and Tfh were more abundant in PD

substantia nigra (Figure 2D). Human leukocyte antigen, MHC

class_I, and type II interferon responses were higher in the PD

group (Figure 2E), while APC_co_inhibition,

APC_co_stimulation, and T_cell_co-stimulation were enriched

in the normal group.

We then collected 17 reported cuprotosis-related genes, and

we showed the correlation between these genes and immune

pathways in ssGSEA results using a heat map (Figure 2F). We

found that the vast majority of CRGs act in the immune

microenvironment of PD.

Selection of characteristic genes via least
absolute shrinkage and selection
operator, random forest, and support
vector machine-recursive feature
elimination algorithms

Three machine learning algorithms were applied to select

signature genes among genes associated with Parkinson’s disease

onset and cuprotosis. Five variables, ATP7A, SLC31A1, DLAT,

PDHB, and DBT, were identified as diagnostic markers for PD by

the LASSO regression operation (Figures 3A,B). Figure 3C

represents the effect of the number of decision trees on the

error rate. The x-axis represents the number of decision trees,

while the y-axis represents the error rate. The error rate is usually

stable when we use about 104 decision trees. For the random

forest algorithm, 11 signature genes with relative importance

scores greater than two were identified, including DBT, ATP7A,

NLRP3, LIAS, DLAT, SLC31A1, DLST, PDHA1, ATP7B, LIPT1,

and FDX1 (Figure 3D). For the SVM-RFE algorithm, the error

was minimized when the number of features was 10, including

DBT, ATP7A, LIAS, NLRP3, DLST, SLC31A1, DLAT, ATP7B,

MTF1, and PDHA1 (Figure 3E). After the intersection, four

common signature genes, ATP7A, SLC31A1, DLAT, and DBT,

were finally identified (Figure 3F).

Diagnostic efficacy of characteristic genes

In the four combined GEO cohorts, the expression of the

three characteristic genes ATP7A, SLC31A1, and DBT was lower

in PD than in normal controls (Figure 4A, p < 0.05), while DLAT

was not significantly different in the two groups. In contrast, in

the comparison between stage IV and V Parkinson’s disease
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FIGURE 2
Immune cell infiltration analysis. (A) Heat map of immune cells and immune function in PD group and normal control group. (B,C) Correlation
matrix of immune cells and immune function. The red color indicates a positive correlation, the blue color indicates a negative correlation, and the
darker color indicates a stronger correlation. (D,E)Comparison of the degree of immune cell infiltration and immune function between the PD group
and normal control group. (F) Correlation analysis of cuprotosis-related genes and immune cells as well as immune function. *p < 0.05, **p <
0.01, ***p < 0.001, ns no significance.
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patients, probably due to the small sample size, only ATP7A was

significantly different in the two groups (Figure 4B, p < 0.05),

suggesting what seems to indicate their potential role in

Parkinson’s onset and progression. Based on the results of the

analysis of variance, we estimated the diagnostic performance of

the three signature genes. The AUC values of the ROC curves for

the signature genes were 0.683 for ATP7A (Figure 4C), 0.717 for

DBT (Figure 4D), and 0.811 for SLC31A1 (Figure 4E),

respectively. With GSEA, we evaluated the signaling pathways

involved in the signature genes. Our results show that ATP7A

(Figure 4F) is associated with steroid hormones, DBT is mainly

associated with Alzheimer’s disease (Figure 4G), and SLC31A1

(Figure 4H) is associated with axon guidance, calcium signaling

pathways, and Long-term potentiation.

Establishment of nomogram for
predicting Parkinson’s disease

When these three variables were integrated into one

variable, the AUC of the ROC curve was 0.752 (Figure 5A).

This suggests that the three characteristic CRGs have good

diagnostic efficiency in predicting Parkinson’s disease

progression. Columnar line graphs were constructed to

diagnose Parkinson’s disease by integrating trait genes and

clinical traits (Figure 5B). In the column line graph, each

trait gene corresponds to a score, and the total score is

obtained by summing the scores of all trait genes. The total

score corresponds to the different risks of Parkinson’s. The

calibration curves showed that the column line plot was able to

accurately estimate the prediction of Parkinson’s onset

(Figure 5C). As shown in the decision curve analysis,

patients with Parkinson’s can benefit from the column line

graph (Figure 5D).

Identification of immune-associated
cuprotosis genes subtypes in parkinson’s
disease

PD samples were clustered by the consensus clustering

method based on the expression profiles of three cuprotosis

FIGURE 3
Selection of signature genes among genes associated with Parkinson’s onset and cuprotosis. (A) Ten cross-validations of adjusted parameter
selection in the LASSO model. Each curve corresponds to one gene. (B) LASSO coefficient analysis. Vertical dashed lines are plotted at the best
lambda. (C) Relationship between the number of random forest trees and error rates. (D) Ranking of the relative importance of genes. (E) SVM-RFE
algorithm for feature gene selection. (F) Venn diagram showing the feature genes shared by LASSO, random forest, and SVM-RFE algorithms.
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signature genes. The optimal number of subtypes was 2 as

determined by consensus matrix plots, CDF plots, relative

changes in regions under the CDF curve, and trace plots

(Figures 6A–D). The two immune subtypes were named

C1 and C2. PCA demonstrated significant differences

between the subtypes (Figure 6E). The heat map (Figure 6F)

shows the differential gene expression in the two immune

subtypes.

Different immunological characteristics of
the two subtypes

As shown in Figures 7A,B, the C2 subtype had higher

immune functions such as B_cells, DCS, Neutrophils, TIL and

Treg, APC_co_stimulation, CCR, and Check-point than the

C1 subtype. Most of the immune checkpoint genes such as

CTLA4 and CD28 were also expressed more in the

FIGURE 4
Characterized gene expression, diagnostic efficacy, and enrichment analysis. (A) Box line plot depicting trait gene expression in Parkinson’s
disease and normal controls. (B) Box line plot depicting trait gene expression in braak3 and braak4 phases. (C–E) ROC curves for estimating the
diagnostic performance of the signature genes. (F–H)GSEA identifies themajor signaling pathways involved in signature genes. *p < 0.05, **p < 0.01,
***p < 0.001.
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C2 subtype than in the C1 subtype (Figure 7C). GSVA results

showed that TNFA_SIGNALING signals, G2/M cell cycle

checkpoints, and E2F transcriptional genes (Figure 7D) were

higher in the C2 subtype than in the C1 subtype. Overall,

C2 could be identified as an immune subtype and C1 as a

non-immune subtype.

Discussion

Parkinson’s disease is a severe neurodegenerative disorder.

The typical pathology of Parkinson’s disease is characterized by

the loss of dopaminergic neurons in the dense substantia nigra

and the aggregation of alpha-synuclein, forming Lewy vesicles

and Lewy synapses. However, the exact pathogenesis of PD is

currently unknown. To our knowledge, no previous studies have

examined the correlation between CRG and the development of

Parkinson’s disease. Surprisingly, many CRGs are differentially

expressed between the nigrostriatal and normal brain tissue in

Parkinson’s disease, and most of these genes are significantly

associated with immune function and likely influence the staging

of Parkinson’s disease, suggesting a potential role of cuprotosis in

Parkinson’s disease.

Investigations have found a higher incidence of Parkinson’s

disease in areas with higher copper emissions. But the role of

copper in Parkinson’s disease is controversial, as some evidence

suggests the need to increase copper levels, while other results

suggest the opposite (Baldari et al., 2020). The main role of

copper is mediated by its ability to trigger, maintain and even

enhance free radical production. In general copper binding to α-

FIGURE 5
Construction of column line graph based on Characteristic CRGs. (A)The ROC curves estimating the diagnostic performance of characteristic
genes. (B) Construction of column line graph integrating Characteristic CRGs for PD. in the column line graph, each variable corresponds to a score,
and the total score can be calculated by summing the scores of all variables. (C)Calibration curves to estimate the prediction accuracy of the column
line graphs. (D) Decision curve analysis showing the clinical benefit of column line graphs.
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synuclein triggers increased proteogenic fibrillation and

oxidative stress (Gou et al., 2021). However, under the

influence of copper cyanobactin (Prohaska, 2011), the

reduction of copper may be associated with iron

accumulation, while iron deposition and consequent

ferroptosis may be an important mechanism of dopaminergic

neuronal death in PD (Wang et al., 2022). In an interesting

in vitro study (Spencer et al., 2011), complexes formed by

dopamine oxidation products with copper caused severe

damage to DNA. By injecting copper sulfate directly into the

substantia nigra of mice, a decrease in dopamine, an increase in

oxidative stress, and a loss of immune response were directly

induced (Yu et al., 2008). This also suggests that the inhibition of

cuprotosis combined with immunotherapy will be the focus of

treatment for Parkinson’s patients.

An investigation pointed out that the enrichment of

senescent cells in tissues is associated with disorders of tissue

homeostasis, including Alzheimer’s and Parkinson’s, and that

copper accumulation is a common feature of senescent cells

in vitro (Masaldan et al., 2018). In addition to this, ferroptosis

inhibitors (iron chelators) have demonstrated good clinical relief

of PD symptoms, whereas the clinical translation of copper

chelators in PD has not progressed (Nunez and Chana-

Cuevas, 2018). Treatment strategies for Parkinson’s disease

must be adopted with caution due to the delicate balance of

copper homeostasis.

Among the 38 PD and 62 normal samples in the GSE8397,

GSE7621, GSE20163, and GSE20186 datasets, we selected three

signature genes (ATP7A, SLC31A1, and DBT) based on three

machine learning algorithms. These three genes were

differentially expressed in the PD and control groups and

most likely influenced the Braak staging of PD. All this

evidence can indicate the role of the signature genes in

Parkinson’s disease. The signature genes involved in this study

include ATP7A, SLC31A1, and DBT. ATP7A is widely

recognized as a copper-transporting ATPase due to mutations

in its gene that cause impaired copper transport and further cause

the neurological genetic disorder Menkes disease (Li et al., 2018).

ATP7A is involved in axonal growth, synaptic integrity, and

neuronal activation and has an important role in the root of

FIGURE 6
Construction of two subpopulations based on cuprotosis-related genes in the GEO cohort. (A) Heat map of the consensus matrix at k = 2. (B)
Consensus CDF at k = 2–9. (C) Relative change in area under the CDF curve. (D) Trace plot of sample classification when k = 2–9. (E) 3DPCA plot
showing that cuprotosis-associated genes effectively classify Parkinson’s patients into two subgroups (C1 and C2). (F)Heat map showing differential
gene expression in the two immune subtypes.
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stability for neurological function (Kaler, 2011). The SLC31A1

(solute carrier family 31 member 1) gene, also known as CTR1

(copper transporter protein 1), encodes a high-affinity copper

transporter protein in cell membranes that act as a homotrimer

to influence dietary copper uptake. Its more studied in tumors,

such as pancreatic cancer (Yu et al., 2019), colorectal cancer

(Barresi et al., 2016), and lung cancer (Barresi et al., 2016), as a

means of copper depletion affecting the prognosis of cancer

patients. DBT is a component of the branched-chain α-keto acid
dehydrogenase complex, and its deficiency allows the

accumulation of branched-chain amino acids and their

harmful derivatives in the body (Podebrad et al., 1999). An

association between Alzheimer’s disease and Parkinson’s

disease and the 2-oxoglutamate dehydrogenase gene has been

reported (Hengeveld et al., 2002).

We constructed two isoforms from three cuprotosis genes

based on machine learning and immune expression profiles. The

C2 subtype exhibited higher immune cell infiltration and

immune function compared to the C1 subtype. Therefore, our

classification reflects the immune status of Parkinson’s disease,

which may help in the diagnosis and treatment of PD. Although

machine learning algorithms can identify cuprotosis-related

genes in the characterization of Parkinson’s immune

progression, experiments are still needed to further elucidate

the mechanisms of the characterized genes.

Conclusion

Our results identified three characteristic cuprotosis-related genes

ATP7A, SLC31A1, and DBT involved in the immune process of

Parkinson’s disease. In addition, Parkinson’s disease samples were

classified into immune and non-immune subtypes by a new

molecular classification. However, little is known about the

relationship between specific genes and PD, and must be

performed in vitro and in vivo to verify our conjectures. This

FIGURE 7
The two subtypes have different immunological features and molecular mechanisms. (A,B) Comparison of the degree of immune cell
infiltration and immune function between the two subtypes. (C) Box plot showing the mRNA expression of signature genes in the two subtypes. (D)
Heat map showing the level of enrichment of the set of signature genes in the two subtypes. *p < 0.05; **p < 0.01 and ***p < 0.001.
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study provides important information to elucidate the physiological

and pathological processes of cuprotosis in PD. Overall, our findings

may contribute to the design of better immunotherapies for

Parkinson’s disease based on the mechanisms of cuprotosis.
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