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RNAs regulate multiple biological processes including RNA transcription, splicing,

stability, and translation. They play significant roles in cell biology (Connelly et al. (2016);

Licatalosi and Darnell (2010); Mukherjee et al. (2022); Chen et al. (2018b)). The

Encyclopedia of DNA elements project reported that only 1.5% of human genome is

translated into proteins, while approximately 70%–90% is transcribed to RNAs (Falese

et al. (2021)). RNAs greatly expand the range of targets from proteins to RNAs by re-

targeting mutated targets (Yu et al. (2019); Chen et al. (2020); Li et al. (2022); Yang et al.

(2022)). Particularly, noncoding RNAs have dense linkages with human diseases

including cancers. Now, RNAs have been diagnostic or prognostic markers of

complex diseases (Hui et al. (2011); Xu et al. (2022); Peng et al. (2022a); Shen et al.

(2022); Zhang T. et al. (2022); Chai et al. (2022)). In this topic, we aim to analyze diverse

RNA data to provide clues for the diagnosis and therapy of various diseases (Dal Molin

et al. (2022); Wang S. et al. (2022); Li J. et al. (2019); Liu et al. (2020)). Long noncoding

RNAs (lncRNAs) regulate many significant biological processes (such as immune

response and embryonic stem cell pluripotency) by linking to RNA-binding proteins

(Wapinski and Chang (2011); Chen and Huang (2017); Ping et al. (2018); Wang et al.

(2020)), Wang et al. (2021W.); Peng et al. (2020)). They have been important biomarkers

for cancers (Wu et al. (2022a); Banerjee et al. (2020); Zhang S. et al. (2021); Zhou G. et al.

(2021); Peng et al. (2022a); Liang et al. (2022b); Peng et al. (2021); Zhou L. et al. (2021)).

For example, lncRNAs AFAP1-AS1, CCAT1, CYTOR, GAS5, HOTAIR, and PVT1 are

molecular regulators of lung caner (Aftabi et al. (2021)). KCNQ1OT1may be a prognostic

biomarker in colorectal cancer (Lin et al. (2021)). lncRNAs are also oncogenes (such as

MKLN1-AS, GHET1, LASP1-AS, MALAT1, HULC, HOTAIR, and PAPAS) and tumor

suppressors (such as CASC2, DGCR5, MEG3, GAS5, and NRON) in hepatocellular

carcinoma (Guo et al. (2021)). Many machine learning methods have been proposed to

OPEN ACCESS

EDITED AND REVIEWED BY

William C. Cho,
QEH, Hong Kong SAR, China

*CORRESPONDENCE

Lihong Peng,
plhhnu@163.com
Liqian Zhou,
zhoulq11@163.com

SPECIALTY SECTION

This article was submitted to RNA,
a section of the journal
Frontiers in Genetics

RECEIVED 02 August 2022
ACCEPTED 20 September 2022
PUBLISHED 29 November 2022

CITATION

Peng L, Yang J, Wang M and Zhou L
(2022), Editorial: Machine learning-
based methods for RNA data
analysis—Volume II.
Front. Genet. 13:1010089.
doi: 10.3389/fgene.2022.1010089

COPYRIGHT

© 2022 Peng, Yang, Wang and Zhou.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Editorial
PUBLISHED 29 November 2022
DOI 10.3389/fgene.2022.1010089

https://www.frontiersin.org/articles/10.3389/fgene.2022.1010089/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1010089/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1010089/full
https://www.frontiersin.org/researchtopic/20934
https://www.frontiersin.org/researchtopic/20934
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1010089&domain=pdf&date_stamp=2022-11-29
mailto:plhhnu@163.com
mailto:zhoulq11@163.com
https://doi.org/10.3389/fgene.2022.1010089
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1010089


infer new LncRNA-Disease Associations (LDAs). For example,

graph convolutional completion with conditional random (Fan

et al. (2022)), heterogeneous graph attention network with meta-

paths (Zhao et al. (2022)), graph convolutional auto-encoders

(Silva and Spinosa (2021)), multi-view attention graph

convolutional network and stacking ensemble (Liang et al.

(2022b)), and learning to rank-based model (Wu et al.

(2022a)) are widely used methods for LDA prediction.

In this research topic, Sun et al. developed a weighted graph-

regularized matrix factorization approach (LPI-WGRMF) to

identify possible lncRNA-protein interactions (LPIs) based on

known biological information and LPI matrix. LPI-WGRMF

obtained an AUC of 0.9012 and AUPR of 0.7324 on LPI

dataset provided by Zhang et al. (Zhang et al. (2018)) based on

5-fold cross validation. They predicted that lncRNAs SNHG3,

SFPQ, and PRPF31 may interact with proteins Q9NUL5,

Q9NUL5, and Q9UKV8, respectively. Yao et al. designed a

random walk with restart algorithm (MHRWRLDA) to infer

LDAs on multiplex and heterogeneous networks. MHRWRLDA

computed an AUC of 0.6874 under leave-one-out cross validation,

and inferred that lncRNA BCYRN1 may associate with colon

cancer and hepatocellular carcinoma. Cheng et al. considered that

the recurrence rate of nonfunctioning pituitary adenoma is

relatively high after surgical resection and built lncRNA

signatures for its prognosis. They obtained microarray

sequencing profiles of lncRNA expressions from 66 patients

who suffered from nonfunctioning pituitary adenoma.

Univariable Cox regression analysis and random survival

forests-variable hunting were applied to filter lncRNAs. They

found that three lncRNAs, LOC101927765, RP11-23N2.4, and

RP4-533D7.4, have dense associations with tumor recurrence and

inferred that the three lncRNAs may be potential therapeutic

targets of nonfunctioning pituitary adenoma.

MicroRNAs (miRNAs) are a class of endogenous noncoding

RNAs with a length of approximately 22 nucleotides (Sun et al.

(2022); Chen et al. (2019b, 2018b); Zhang L. et al. (2021)).

MiRNAs regulate many biological activities and influence

almost all genetic pathways (Chen et al. (2018c); Peng et al.

(2017); Chen et al. (2018a)). Thus, miRNAs have been a class of

tumor suppressor genes in clinical medicine (Chen et al. (2019a);

Peng et al. (2018)). For example, miR-940 is a potential

biomarker of prostate cancer (Rajendiran et al. (2021)).

Urinary exosome microRNA signatures are noninvasive

prognostic markers for prostate cancer (Shin et al. (2021)).

Recently, machine learning methods have been widely used to

identify possible MicroRNA-Disease Associations (MDAs). For

example, tensor decomposition with relational constraints

(Huang et al. (2021)), similarity constrained matrix

factorization (Li L. et al. (2021)), tensor factorization and label

propagation (Yu et al. (2022)), deep attributed network

embedding model (Ji et al. (2021)), and multi-view

multichannel attention graph convolutional network (Tang

et al. (2021)) are popular methods in MDA prediction.

In this topic, Qu et al. explored a computational model

(BRWRMHMDA) for MDA inference combining enforcing

degree-based biased random walk with restart.

BRWRMHMDA computed an AUC of 0.8310 under leave-

one-out cross validation. They predicted that hsa-let-7f and

hsa-mir-30e may associate with esophageal neoplasms and

breast neoplasms, respectively. Zhou et al. proposed a

pseudogene-miRNA association identification method

(PMGAE) by integrating feature fusion, graph autoencoder,

and eXtreme gradient boosting. First, they computed three

types of similarities for pseudogenes and miRNAs, that is,

Pearson similarity, cosine similarity, and Jaccard similarity.

Second, the above similarities were fused to build a similarity

profile for each node. Third, the similarity profiles and

pseudogene-miRNA associations are further aggregated to

depict each node as a low-dimensional vector through a graph

autoencoder. Finally, the feature vector was fed into eXtreme

gradient boosting for pseudogene-miRNA association

prediction. PMGAE computed better AUC of 0.8634 and

AUPR of 0.8966. The results from PMGAE showed that

miRNAs hsa-miR-34c-5p, hsa-miR-199b-5p, and hsa-miR-

103a-3p may associate with pseudogenes RPLP0P2, HLA-H,

and HLA-J, respectively.

Circle RNAs (circRNAs) is a class of novel endogenous

noncoding RNAs with a covalently closed loop structure

(Wang C.-C. et al. (2021); Li G. et al. (2019); Wang et al.

(2021b)). circRNAs have more stable expressions due to their

resistances to RNA exonuclease degradation (Li et al. (2020);

Wang et al. (2021c,b)). They can regulate protein binding,

miRNA sponges, alternative splicing and transcription, and

generate pseudogenes (Wang C.-C. et al. (2021); Chen

(2020)). In addition, they demonstrate close associations with

cancers, cardiovascular and nervous system diseases (Wang C.-C.

et al. (2021); Li G. et al. (2019, 2020); Wang et al. (2021c,c,b)).

Therefore, various computational models have been developed to

detect possible CircRNA-Disease Associations (CDAs). For

example, network embedding and subspace learning method

(Xiao et al. (2021)), knowledge attention network (Lan et al.

(2022)), multi-source feature fusion-based machine learning

framework (Wang L. et al. (2022)), and robust nonnegative

matrix factorization model (Peng et al. (2022c)) are widely

used in CDA prediction.

Furthermore, Li et al. developed a computational CDA

identification method (GATGCN) based on graph attention

network and graph convolutional network. First, they fused

several biomedical data from different sources through the

centered kernel alignment model. Second, graph attention

network was deployed to obtain latent representation of

circRNAs and diseases. Finally, graph convolutional network

was explored to infer CDAs. GATGCN computed better an AUC

of 0.951 under leave-one-out cross validation and an AUC of 0.

932 under 5-fold cross-validation. They found that circRNAs

hsa_circRNA_404833, hsa_circ_0013509, hsa_circRNA_2149,
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circR_284, and circR_284 have the highest association scores

with lung cancer, diabetes retinopathy, prostate cancer,

cholangiocarcinoma, and clear cell renal cell carcinoma,

respectively.

A large quantity of transcriptomic data enable us to

investigate complex biological processes at single-cell

resolution levels (Peng et al. (2022b); Liang et al. (2022a);

Zhang et al. (2022b); Xu et al. (2020). Therefore, Miao et al.

(2021) considered specific noises and computing efficiency, and

then designed biologically interpretable integration strategies to

integrate multi-omics single-cell data. Zhou P. et al. (2021) used

multiscale stochastic dynamics to dissect transition cells from

transcriptome data. Ye et al. (2022) used combinatorial hybrid

sequencing to construct the axolotl cell landscape at single-cell

resolution. McKellar et al. (2021) detected transitional progenitor

states in mouse skeletal muscle regeneration based on single-cell

transcriptomic data. Wu et al. (2022b) exploited a stacking

ensemble learning-based model to implement single-cell Hi-C

classification.

In particular, Panchy et al. analyzed large-scale

transcriptome datasets using non-negative principal

component analysis and non-negative matrix factorization.

The results showed that the above two methods provided low-

dimensional features for the progression of biological processes.

They found that gene expression signatures from conserved

epithelial-mesenchymal transition can be applied to depict the

stages in multiple cell lines. Lang et al. evaluated the performance

of two sequencing platforms (Nextseq500 and MGISEQ-2000)

using the same capture DNA libraries built by the Illumina

protocol. The results demonstrated that a significant loss of

fragment occurred in the range of 101–133 bp sizes on

MGISEQ-2000 for Illumina libraries while not for the capture

DNA libraries. Bao et al. considered that it is crucial to

differentiate the transcriptomic and proteomic profiles

between unstable and stable atherosclerotic plaques. They

obtained 5 unstable and 5 stable human carotid

atherosclerotic plaques by carotid endarterectomy to identify

lncRNA-targeted genes and circRNA-originated genes. The

results indicated that 293 proteins, 488 lncRNAs,

91 circRNAs, and 202 mRNAs are differentially expressed

between unstable and stable atherosclerotic plaques.

Furthermore, CD5L, S100A12, CKB, CEMIP, and

SH3GLB1 may be key genes in regulating the stability of

atherosclerotic plaques. In addition, Zheng et al. used a series

matrix file search method and obtained data related to breast

cancer from the ArrayExpress and Gene Expression Omnibus

databases. They found that RSK2 is a possible biomarker in breast

cancer.

RNA sequencing data have been broadly applied to screen

therapeutic strategies for various diseases (Przybyla and

Gilbert (2022); Zhang Y. et al. (2021); Li C.-x. et al. (2021)).

Chen et al. (2022) used RNA sequencing to explore the

mechanism of oxygen-boosted sonodynamic therapy for the

treatment of hepatocellular carcinoma. Zhang et al. (2022c)

integrated single-cell and bulk RNA sequencing data to probe a

pan-cancer stemness signature. Sammut et al. (2022)

combined multi-omics data including DNA and RNA

sequencing and machine learning technique to predict

breast cancer therapy response. Based on RAN sequencing

data, Ma et al. first downloaded RNA sequencing data related

to gliomas from the TCGA database. Then they used DESeq2,

key driver and weighted gene correlation network to identify

differentially expressed genes. They observed that Paclitaxel,

Cidofovir, 6-benzyladenine, Erlotinib, Bilirubin, Oxaliplatin,

Nutlins, Valproic acid, and Fenofibrate may be potential drugs

in inhibiting the recurrence of gliomas. Similarly, Xiang et al.

detected gene expression and network differences between

limited and advanced stages for the diffuse large B-cell

lymphoma (DLBCL) patients to predict potential agents

against DLBCL. First, they collected RNA sequencing data

from the DLBCL patients at different clinical stages from the

TCGA database. Second, they used DESeq2 to identify

differentially expressed genes and weighted gene correlation

network and differential modules to analyze variations

between different stages. Finally, they extracted important

genes using key drivers and identified potential agents for

DLBCL patients using gene-expression perturbations and the

CREEDS database. The results indicated that the

thistle1 module had high association with the clinical stage

of DLBCL. In addition, MOCOS, RAB6C, ACCSL, MMP1, and

RGS21 were highly linked to the occurrence and development

of DLBCL.

RNAs are a carrier of genetic information and have broad

roles in regulating gene expression and other biological

processes. Furthermore, the majority of noncoding RNAs are

highly associated with diseases including cancers and

nontumorigenic diseases. Thus, RNA data analysis contributes

to prioritizing previously unrecognized therapeutic targets. We

anticipate that this topic can provide clues for the diagnose and

prognosis of complex diseases especially cancers.
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